JPH04204297A - Multiple wavelength spectral diffraction element - Google Patents

Multiple wavelength spectral diffraction element

Info

Publication number
JPH04204297A
JPH04204297A JP33724790A JP33724790A JPH04204297A JP H04204297 A JPH04204297 A JP H04204297A JP 33724790 A JP33724790 A JP 33724790A JP 33724790 A JP33724790 A JP 33724790A JP H04204297 A JPH04204297 A JP H04204297A
Authority
JP
Japan
Prior art keywords
crystal
crystal layer
lattice
relation
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33724790A
Other languages
Japanese (ja)
Other versions
JP2968995B2 (en
Inventor
Katsumi Tani
谷 克美
Eriko Chiba
恵里子 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP33724790A priority Critical patent/JP2968995B2/en
Publication of JPH04204297A publication Critical patent/JPH04204297A/en
Application granted granted Critical
Publication of JP2968995B2 publication Critical patent/JP2968995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To extract X-ray light beams of more than two wave length, simultane ously with one element by constituting the element with a multitude of crystal layers having flat crystal surface causing Bragg's reflection and arranging each crystal surface to be in poly type relation of the same component or to be in the relation of super lattice structure due to the substitution of part of atoms. CONSTITUTION:A spectral diffraction element consists from the surface, of the first crystal layer 1 with lattice coefficient of d1, the second crystal layer 2 with lattice coefficient of d2 and the third crystal layer 3 with lattice coefficient of d3 in turn, the lattice coefficients d1, d2 and d3 are preferred to be in the relation of d1>d2>d3. And for each crystal layer 1, 2 and 3, ones with crystal structures in poly type relation are used. The poly type relation is obtained by constituting crystal structure of layered basic structures such as SiC, CdI2, ZnS, etc. When white X-ray comes in the surface of spectral diffraction element, mixed beams of X-ray with wavelengths lambda1, lambda2 and lambda3 separated by the Bragg's condition of 2d1 sintheta=lambda1 2d2sintheta=lambda2, 2d3sintheta=lambda3 are emitted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2波長以上のX線光束を同時に取り出すことの
できる多波長分光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-wavelength spectroscopic element that can simultaneously extract X-ray beams of two or more wavelengths.

〔従来の技術及び発明が解決しようとする課題〕X線分
光素子(モノクロメータ)は、入射X線をブラック反射
させ、単色化したX線光束を取り出すものであり、この
素子には単結晶(平板あるいはわん曲結晶)、モザイク
結晶などが用いられる。
[Prior art and problems to be solved by the invention] An X-ray spectrometer (monochromator) black-reflects incident X-rays and extracts a monochromatic X-ray beam. Flat or curved crystals), mosaic crystals, etc. are used.

これらの分光素子には種々のタイプのものが提案されて
いるが、従来の分光素子はすべて1波長のみのX線光束
を取り出す作用をするものであった。
Various types of these spectroscopic elements have been proposed, but all conventional spectroscopic elements have the function of extracting an X-ray beam of only one wavelength.

一方、結晶および非晶質の構造解析では、異常分散法は
有力な手段である。各原子の散乱因子(X線の散乱能)
は、それぞれの吸収端の波長で大きく変化する(異常分
散)。このため、測定するX線の波長として、物質を構
成する各原子の吸収端近傍の波長を用い、複数回の測定
を行うことにより。
On the other hand, the anomalous dispersion method is an effective method for structural analysis of crystals and amorphous materials. Scattering factor of each atom (X-ray scattering power)
changes significantly depending on the wavelength of each absorption edge (abnormal dispersion). Therefore, by performing multiple measurements using a wavelength near the absorption edge of each atom that makes up the substance as the wavelength of the X-rays to be measured.

物質内での各原子の位置を解析するのに充分な情報を得
ることできる。
Enough information can be obtained to analyze the position of each atom within the material.

しかしながら、異なる2波長のX線を用いて回折測定を
行う場合には、同様なX線回折測定を、X線源を換えて
2度行わなければならない。また、微弱な回折強度を測
定するためにX線回折測定に長時間を必要とし、測定中
に物質が変化するなど種々の困難がある。
However, when performing diffraction measurements using X-rays of two different wavelengths, the same X-ray diffraction measurements must be performed twice by changing the X-ray source. Furthermore, there are various difficulties such as the X-ray diffraction measurement requires a long time to measure weak diffraction intensity and the substance changes during the measurement.

またX線を微細加工などのフォトリソグラフィーに用い
ることも試みられている。このX線を用いたフォトリソ
グラフィーにおいても所望の2波長以上のX線を含む光
束を用いると非常に効率を向上させることが可能となる
Furthermore, attempts have been made to use X-rays for photolithography such as microfabrication. Even in photolithography using X-rays, the efficiency can be greatly improved by using a beam containing X-rays with two or more desired wavelengths.

しかしながら、公知のX線分光素子を用いたのでは、白
色X線光束が照射されても、このX線分光素子からのブ
ラック反射により取り出されるX線光束は1波長のもの
であるため、何らかの手段により上記の問題を解決する
ことが望まれていた。
However, if a known X-ray spectroscopic element is used, even if a white X-ray beam is irradiated, the X-ray beam extracted by black reflection from this X-ray spectroscopic element is of one wavelength. It has been desired to solve the above problems.

本発明はこのような従来技術の実情に鑑みなされたもの
で、1つの素子で2波長以上のX線を含む光束を同時に
取出す二とのできる多波長分光素子を提供することを目
的とする。
The present invention was made in view of the actual state of the prior art, and it is an object of the present invention to provide a multi-wavelength spectroscopic element that can simultaneously extract light beams containing X-rays of two or more wavelengths with a single element.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明によれば、ブラック反
射を起こす結晶面が平面な複数の結晶層より構成され、
各結晶層は同一組成の多型の関係にあるかまたは一部原
子の置換による超格子構造の関係にあることを特徴とす
る多波長分光素子が提供される。
In order to achieve the above object, the present invention comprises a plurality of crystal layers with flat crystal planes that cause black reflection,
A multi-wavelength spectroscopic element is provided in which each crystal layer has a polymorphic relationship with the same composition or a superlattice structure relationship due to partial substitution of atoms.

〔作 用〕[For production]

白色X線が素子表面に入射すると、多型の関係もしくは
一部原子の置換による超格子構造の関係にある各結晶層
の表面においてブラックの条件を満足した波長のXJi
が回折され、結晶層の数に応じた数の波長のX線が混合
した平行光束が取出される。
When white X-rays are incident on the element surface, XJi of a wavelength that satisfies Black's condition is generated on the surface of each crystal layer that has a polymorphic relationship or a superlattice structure relationship due to partial substitution of atoms.
is diffracted, and a parallel beam of light mixed with X-rays of wavelengths corresponding to the number of crystal layers is extracted.

〔実施例〕〔Example〕

以下本発明を実施例により詳述する。 The present invention will be explained in detail below with reference to Examples.

第1図は本発明の一実施例の多波長(3波長)分光素子
の概念図であり、表面側から、格子定数d、の第1結晶
層1、格子定数d2の第2結晶層2及び格子定数d3の
第3結晶層3を順次積層した構成を有する。
FIG. 1 is a conceptual diagram of a multi-wavelength (three-wavelength) spectroscopic element according to an embodiment of the present invention, and from the surface side, a first crystal layer 1 with a lattice constant d, a second crystal layer 2 with a lattice constant d2, and a second crystal layer 2 with a lattice constant d2. It has a structure in which third crystal layers 3 having a lattice constant d3 are sequentially laminated.

d、、d2及びd3はd、>d2>d3なる関係にある
ことが望ましい。各結晶層1,2.3には多型(ポリタ
イプ)の関係にある結晶構造を有するものを用いる。多
型には、SiC,Cdl□、 ZnSなどで良く知られ
ており、基本となる層状構造を積み重ねて結晶構造を作
る場合に、積み重ねる時の規則により積み重ね方向の同
期(格子定数)に種々のものが出現できる現象であり、
ジダーノフ、ラムスプールら研究により知られている。
It is desirable that d, d2 and d3 have a relationship of d>d2>d3. Each crystal layer 1, 2.3 has a crystal structure having a polytype relationship. Polymorphisms are well known in SiC, Cdl□, ZnS, etc., and when creating a crystal structure by stacking basic layered structures, there are various synchronizations (lattice constants) in the stacking direction depending on the stacking rules. It is a phenomenon in which things can appear,
It is known from the research of Zhdanov, Ramspur et al.

) ここで説明の簡潔化のために、−例としてZnSの多型
を2波長分光素子に用いた場合につき説明する。これは
ZnS四面体のつくる層の積み重ねにより構成される分
光素子であるが、分光素子の第1層は^BCABC・、
第2層はABAB^6・の積み重ねの各結晶層となって
いるとする。すなわち、ラムスプールの記号により各結
晶層の構造を記述すれば、3C及び2Hである。この場
合、第1層の格子定数d。
) Here, in order to simplify the explanation, a case will be described as an example in which a ZnS polymorphism is used in a two-wavelength spectroscopic element. This is a spectroscopic element constructed by stacking layers made of ZnS tetrahedrons, but the first layer of the spectroscopic element is ^BCABC・,
It is assumed that the second layer is a stacked crystal layer of ABAB^6. That is, if the structure of each crystal layer is described using Ramspur symbols, it is 3C and 2H. In this case, the lattice constant d of the first layer.

と第2図の格子定数d2との比はd+/dt=3/2と
なり、2波長分光素子が構成されたことになる。
The ratio of the lattice constant d2 in FIG. 2 is d+/dt=3/2, and a two-wavelength spectroscopic element is constructed.

第1図に示す実施例の分光素子は上記の2波長分光素子
の原理を第1結晶層1と第2結晶層2、第2結晶層2と
第3結晶層3に応用したもので、このような構成とする
ことで、白色X線が本実施例の分光素子の表面に入射す
ると、2dlsin IJ =λ1.2d2.sinθ
:^2.2d3+inθ二λ3のブラックの条件により
分光された波長人1、λ2、λ3のX線が混合した光束
が射出されることになる。
The spectroscopic element of the embodiment shown in FIG. 1 applies the principle of the above two-wavelength spectroscopic element to the first crystal layer 1 and the second crystal layer 2, and the second crystal layer 2 and the third crystal layer 3. With this configuration, when white X-rays are incident on the surface of the spectroscopic element of this embodiment, 2dlsin IJ =λ1.2d2. sinθ
:^2.2d3+inθ2λ3 A light beam containing a mixture of X-rays of wavelengths 1, λ2, and λ3 separated by Black's condition is emitted.

なお、上記実施例では3波長の分光素子を例示したが、
本発明は2波長あるいは4波長以上の分光素子にも同様
な原理で適用される。
In addition, in the above example, a three-wavelength spectroscopic element was illustrated, but
The present invention can be applied to a spectroscopic element with two wavelengths or four or more wavelengths using the same principle.

また、上記実施例ではZnSの多型を例示したが、Si
CやC(112、雲母などの多型を利用することもでき
、これらによりさまざまな格子定数の組合せをもつ多波
長分光素子の設計が可能である。
Furthermore, in the above embodiment, polymorphism of ZnS was exemplified, but Si
Polymorphisms such as C, C(112, mica, etc.) can also be used, and by using these polymorphisms, it is possible to design multi-wavelength spectroscopic elements with various combinations of lattice constants.

さらに、上記実施例では各結晶層に多型の関係にある結
晶構造のものを用いたが、これに代えて、一部原子の置
換による超格子構造の関係にあるものを用いても所期の
目的を達成することができる。
Furthermore, in the above embodiment, a crystal structure having a polymorphic relationship was used for each crystal layer, but instead of this, a layer having a superlattice structure due to the substitution of some atoms may also be used to achieve the desired results. can achieve the objectives of

〔発明の効果3 本発明によれば、的記構成としたので多波長の分光がで
きるため、線スペクトルで構成されたX線光束が得られ
、結晶の評価、物性測定への応用 □が可能であり、ま
た光化学反応の効率化などで)オドリソグラフィーにも
応用可能である。
[Effect of the invention 3] According to the present invention, because of the target configuration, multi-wavelength spectroscopy is possible, so an X-ray beam composed of a line spectrum can be obtained, and application to evaluation of crystals and measurement of physical properties is possible. It can also be applied to odolithography (by increasing the efficiency of photochemical reactions, etc.).

また、多層構造を多型あるいは一部原子の置換による超
格子構造を利用して層界面の形成を行っているので層界
面は連続しており分光素子として優れたものとなる。
In addition, since layer interfaces are formed using a polymorphism in the multilayer structure or a superlattice structure by substituting some atoms, the layer interfaces are continuous, making it an excellent spectroscopic element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る多波長分光素子の構成
を示す断面図である。 1・・・第1結晶層 2・・・第2結晶層 3・・第3
結晶層特許出願人 株式会社 リ  コ  −代理人 
弁理士 池浦敏明(ほか1名)第1図
FIG. 1 is a sectional view showing the configuration of a multi-wavelength spectroscopy element according to an embodiment of the present invention. 1...First crystal layer 2...Second crystal layer 3...Third
Crystal layer patent applicant Rico Co., Ltd. - Agent
Patent attorney Toshiaki Ikeura (and 1 other person) Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)ブラック反射を起こす結晶面が平面な複数の結晶
層より構成され、各結晶層は同一組成の多型の関係にあ
るかまたは一部原子の置換による超格子構造の関係にあ
ることを特徴とする多波長分光素子。
(1) It is composed of multiple crystal layers with flat crystal planes that cause black reflection, and each crystal layer has a polymorphic relationship with the same composition or a superlattice structure relationship due to partial substitution of atoms. Characteristic multi-wavelength spectroscopic element.
(2)結晶層界面での格子定数のミスフィットは存在し
ないが、界面に垂直方向ではそれぞれの結晶層の格子定
数が変化していることを特徴とする請求項1に記載の多
波長分光素子。
(2) The multi-wavelength spectroscopic element according to claim 1, wherein there is no lattice constant misfit at the crystal layer interface, but the lattice constant of each crystal layer changes in the direction perpendicular to the interface. .
(3)表面側の結晶層の格子定数が内部側の結晶層の格
子定数より順次大きくなるように構成されていることを
特徴とする請求項1又は2に記載の多波長分光素子。
(3) The multi-wavelength spectroscopic element according to claim 1 or 2, characterized in that the lattice constant of the crystal layer on the surface side becomes sequentially larger than the lattice constant of the crystal layer on the inner side.
JP33724790A 1990-11-30 1990-11-30 Multi-wavelength spectroscopy element Expired - Fee Related JP2968995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33724790A JP2968995B2 (en) 1990-11-30 1990-11-30 Multi-wavelength spectroscopy element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33724790A JP2968995B2 (en) 1990-11-30 1990-11-30 Multi-wavelength spectroscopy element

Publications (2)

Publication Number Publication Date
JPH04204297A true JPH04204297A (en) 1992-07-24
JP2968995B2 JP2968995B2 (en) 1999-11-02

Family

ID=18306826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33724790A Expired - Fee Related JP2968995B2 (en) 1990-11-30 1990-11-30 Multi-wavelength spectroscopy element

Country Status (1)

Country Link
JP (1) JP2968995B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011403A (en) * 1999-11-29 2007-01-18 X-Ray Optical Systems Inc Doubly curved optical device with graded atomic plane
WO2008061221A2 (en) * 2006-11-16 2008-05-22 X-Ray Optical Systems, Inc. X-ray focusing optic having multiple layers with respective crystal orientations
JP2008170236A (en) * 2007-01-10 2008-07-24 High Energy Accelerator Research Organization Measuring method for reflectivity curve of x ray and of neutron radiation and measuring instrument
JP2008528959A (en) * 2005-01-21 2008-07-31 コミサリヤ・ア・レネルジ・アトミク X-ray monochromator or neutron monochromator
CN103940837A (en) * 2014-04-01 2014-07-23 中国科学院物理研究所 SiC crystal monochromator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011403A (en) * 1999-11-29 2007-01-18 X-Ray Optical Systems Inc Doubly curved optical device with graded atomic plane
JP2008528959A (en) * 2005-01-21 2008-07-31 コミサリヤ・ア・レネルジ・アトミク X-ray monochromator or neutron monochromator
WO2008061221A2 (en) * 2006-11-16 2008-05-22 X-Ray Optical Systems, Inc. X-ray focusing optic having multiple layers with respective crystal orientations
WO2008061221A3 (en) * 2006-11-16 2008-10-09 X Ray Optical Sys Inc X-ray focusing optic having multiple layers with respective crystal orientations
JP2010510494A (en) * 2006-11-16 2010-04-02 エックス−レイ オプティカル システムズ インコーポレーテッド X-ray focusing optical system having multilayers with respective crystal orientations
US7738629B2 (en) 2006-11-16 2010-06-15 X-Ray Optical Systems, Inc. X-ray focusing optic having multiple layers with respective crystal orientations
JP2008170236A (en) * 2007-01-10 2008-07-24 High Energy Accelerator Research Organization Measuring method for reflectivity curve of x ray and of neutron radiation and measuring instrument
JP4521573B2 (en) * 2007-01-10 2010-08-11 大学共同利用機関法人 高エネルギー加速器研究機構 Neutron beam reflectivity curve measuring method and measuring apparatus
CN103940837A (en) * 2014-04-01 2014-07-23 中国科学院物理研究所 SiC crystal monochromator

Also Published As

Publication number Publication date
JP2968995B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
EP2132556B1 (en) Device for sorting and concentrating electromagnetic energy and apparatus comprising at least one such device
US6510200B1 (en) Multi-layer structure with variable bandpass for monochromatization and spectroscopy
EP0313968B1 (en) High resolution spectroscopic arrangement
JPS6311822A (en) Diffraction grating
JPH04204297A (en) Multiple wavelength spectral diffraction element
JP2021099485A (en) Polarization spectral filter, polarization spectral filter array, and polarization spectral sensor
Baranov et al. Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system
Neviere et al. Electromagnetic theory as it applies to x-ray and XUV gratings
EP2009470B1 (en) Multi-layer film type diffraction grating
JPH11295245A (en) X-ray spectroscopic element and x-ray analysis apparatus using the same
JP2968993B2 (en) X-ray spectrometer
Martynov et al. Deep multilayer gratings with adjustable bandpass for spectroscopy and monochromatization
Brandt et al. Band structure of the misfit compound (PbS) NbS2 compared to NbSe2: experiment and theory
RU2282222C2 (en) Mirror-monochromator for hard ultra-violet radiation
Servidori X-ray monochromator combining high resolution with high intensity
Moore et al. Neutron reflectivity and lattice spacing spread of pyrolytic graphite
JPS6049231A (en) Multiple-layer monochrometer and apparatus using said meter
JP3323670B2 (en) Radiation spectrometer
JPS63111500A (en) Multilayer film reflecting mirror for x-ray and device using said reflectign mirror
JPS5744840A (en) X-ray spectroscopic crystal
DE19638885C1 (en) Optical diffraction grating based on a porous material
JPH03209156A (en) Fluorescent x-ray analysis apparatus and composite artificial multilayered film body
US20040013227A1 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive x-ray spectrometric devices
Zajtsev et al. Characteristics of acousto-optic tunable filter for colorimetry
JP2009300303A (en) Irregularly spaced groove laminar diffraction grating of multilayered film and spectroscopic device using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees