JPH04204254A - Cell sorter - Google Patents

Cell sorter

Info

Publication number
JPH04204254A
JPH04204254A JP2335977A JP33597790A JPH04204254A JP H04204254 A JPH04204254 A JP H04204254A JP 2335977 A JP2335977 A JP 2335977A JP 33597790 A JP33597790 A JP 33597790A JP H04204254 A JPH04204254 A JP H04204254A
Authority
JP
Japan
Prior art keywords
nozzle
tip
electromagnets
cell
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2335977A
Other languages
Japanese (ja)
Inventor
Kazuo Yamaguchi
一夫 山口
Yutaka Nagai
豊 永井
Mutsuhisa Hiraoka
睦久 平岡
Yasushi Zaitsu
財津 靖史
Tokio Oodo
大戸 時喜雄
Hiroshi Hoshikawa
星川 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nippon Koden Corp
Original Assignee
Fuji Electric Co Ltd
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nippon Koden Corp filed Critical Fuji Electric Co Ltd
Priority to JP2335977A priority Critical patent/JPH04204254A/en
Publication of JPH04204254A publication Critical patent/JPH04204254A/en
Pending legal-status Critical Current

Links

Classifications

    • G01N15/149

Abstract

PURPOSE:To separate and collect many kinds of cells accurately at the same time by making the tip of the nozzle of a flow cell long in a needle shape, attaching a magnetic body to the tip, arranging electromagnets so as to face the magnetic body, and controlling the magnetic fields of the electromagnets so that the tip of the nozzle is moved when the magnetic forces are imparted to the electromagnets. CONSTITUTION:A slender, needle-shaped nozzle 3a of a flow cell 3 has flexibility in certain degree. The angle of the tip can be freely changed. A permanent magnet 26 is attached to the vicinity of the tip part of the nozzle 3a. Both poles of the permanent magnet 26 and the poles of the same polarity of the electromagnets are arranged so as to face each other. Therefore, one pole of the permanent magnet 26 is attracted to one of the two poles having the same polarity in the electromagnets 27a and 27b. The other pole of the permanent magnet 26 is repelled from the other one of the poles of the electromagnets 27a and 27b. Then, the tip of the nozzle 3a is moved in the lateral direction. The flying track of liquid droplets 29 is changed by the movement of the nozzle 3a. In this way, the many kinds of cells can be accurately separated and collected.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は細胞分取袋!(セルソータ)の分取機構に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a cell sorting bag! (cell sorter) sorting mechanism.

(従来の技術〕 セルソータは特定のタイプの細胞を生きた状態で選別収
集することができる装置であり、細胞分析、DNA量の
測定、モノクロナール抗体の生産5細胞融合などの研究
、血球分析、癌検診などの臨床検査、その他医学、生物
学の広い分野で利用されている。
(Prior art) A cell sorter is a device that can sort and collect specific types of cells in a living state, and is used for cell analysis, DNA amount measurement, monoclonal antibody production, research such as 5-cell fusion, blood cell analysis, It is used in clinical tests such as cancer screening, and in a wide range of other fields of medicine and biology.

その代表的な装置構成の模式図を第4図に示し、その作
動について第4図を参照して説明する。細胞の入ったサ
ンプル液1とシース液2がそれぞれの容器から加圧空気
により、配管を通してフローセル3に導かれる。フロー
セル3ではサンプル液1をシース液2が円筒状に包み込
むシースフローを形成し、フローセル3の下端のノズル
から鞘状となったままジェット流4として噴出される。
A schematic diagram of a typical device configuration is shown in FIG. 4, and its operation will be explained with reference to FIG. A sample liquid 1 containing cells and a sheath liquid 2 are guided from their respective containers to a flow cell 3 through piping by pressurized air. In the flow cell 3, the sheath liquid 2 surrounds the sample liquid 1 in a cylindrical shape to form a sheath flow, and is ejected from a nozzle at the lower end of the flow cell 3 as a jet stream 4 while remaining in a sheath shape.

シースフローはジェット流4の中心軸に沿って細胞が一
つ一つ正確に流れるように形成される。フローセル3の
下端部またはジェット流4に、レーザ光源5から出射さ
れレンズ系6により絞り込まれたレーザ光7が照射され
る。サンプル液1に入っている細胞は多種類の蛍光物質
(蛍光プローブ)でラヘルされていて、レーザ光7中を
細胞が通過すると散乱光と蛍光が発生する。散乱光は集
光レンズ8とビームブロック9からなる集光光学系を経
て、光検出器10で検出される。一方蛍光については、
赤色蛍光は集光レンズ11.ハーフミラ−12゜集光レ
ンズ13.フィルタ14からなる集光光学系で集められ
て光検出器15により検出され、緑色蛍光はこれとは別
経路のハーフミラ−12から集光レンズ16.フィルタ
17で集められ、光検出器18により検出される。光検
出器10,15.18からの信号は信号処理回路19に
送り、ここで散乱光と蛍光の強度を分析し、細胞の同定
を行なうことができる。
The sheath flow is formed so that the cells flow precisely one by one along the central axis of the jet stream 4. The lower end of the flow cell 3 or the jet stream 4 is irradiated with laser light 7 emitted from a laser light source 5 and narrowed down by a lens system 6 . The cells contained in the sample liquid 1 are coated with various types of fluorescent substances (fluorescent probes), and when the cells pass through the laser beam 7, scattered light and fluorescence are generated. The scattered light passes through a condensing optical system consisting of a condensing lens 8 and a beam block 9, and is detected by a photodetector 10. On the other hand, regarding fluorescence,
Red fluorescence is detected by condensing lens 11. Half mirror 12° condensing lens 13. The green fluorescence is collected by a condensing optical system consisting of a filter 14 and detected by a photodetector 15, and the green fluorescence is sent from a half mirror 12 through a condensing lens 16. It is collected by a filter 17 and detected by a photodetector 18. Signals from the photodetectors 10, 15, 18 are sent to a signal processing circuit 19, where the intensity of scattered light and fluorescence is analyzed and cells can be identified.

このとき上記のフローセル3には圧電振動子20によっ
て微小な振動が加えられており、ジェット流4はフロー
セル3のノズルを出て一定の距離を膝下した後、液的2
1となる。単位時間に形成される液滴21の数はフロー
セル3に加える振動の周波数と一致する。分取したい細
胞の入っている液滴21には、その形成直前に先の分析
結果をフィードバックした図示していないコントローラ
により電圧を印加し、プラスまたはマイナスの電荷を与
えておき、帯電された液111i21は、コントローラ
22により高電圧を印加した対向する一対の偏向tfi
23a。
At this time, minute vibrations are applied to the flow cell 3 by the piezoelectric vibrator 20, and the jet stream 4 exits the nozzle of the flow cell 3 and travels a certain distance, and then the liquid 2
It becomes 1. The number of droplets 21 formed per unit time matches the frequency of vibration applied to the flow cell 3. Immediately before forming the droplet 21 containing the cells to be sorted, a voltage is applied by a controller (not shown) that feeds back the previous analysis results to give it a positive or negative charge, and the charged liquid 111i21 is a pair of opposing deflectors tfi to which a high voltage is applied by the controller 22;
23a.

23bの間を通過し、その際に静電力を受けてその飛跡
が変化する。飛跡の変化した液滴24はそれぞれ異なる
分取容器25に落とし、各分取容器25中に所望の細胞
を分取することができる。
23b, and its trajectory changes as it receives electrostatic force. The droplets 24 whose trajectories have changed are dropped into different sorting containers 25, and desired cells can be sorted into each sorting container 25.

しかし、上記の装置には次のような問題がある。However, the above device has the following problems.

〔発明が解決しようとする諜1!!I)上記のセルソー
タでは、−度に分取することができる細胞の種類は、液
滴21または偏向板23a、23bに印加する電圧の極
性(±)を変えることによる2種類のみであるが、−度
に多種類の細胞の分取が可能であることが望ましい。
[The invention tries to solve the problem 1! ! I) In the above cell sorter, there are only two types of cells that can be sorted at -degrees by changing the polarity (±) of the voltage applied to the droplet 21 or the deflection plates 23a and 23b. - It is desirable to be able to sort out many types of cells at once.

これに対して多種類の細胞の分取を行なうためには、例
えば特開昭62−255868号公報に記載されている
ように、偏向板に印加する電圧の大きさを適宜調整して
偏向角を多段階に変え、細かく区分された受は皿に落と
すという方法があるが、これは液滴の一つを帯電させる
と、その@後の液滴にも静電誘導による帯電の影響が及
ぶので、偏向板に印加する電圧波形はかなり複雑になり
その制御が難しいという問題がある。また、電界の大き
さを正しく設定しても、連続して次々に落下する液滴の
大きさもしくは質量にはばらつきがあり、これらによっ
て液滴の飛跡も微妙に変化してしまい、液滴の非常に細
かい分画を行なうことが不可能であった。
On the other hand, in order to sort out many types of cells, it is necessary to adjust the deflection angle by appropriately adjusting the magnitude of the voltage applied to the deflection plate, as described in JP-A-62-255868, for example. There is a method in which the droplets are changed into multiple stages and the finely divided receiver is dropped onto a plate, but in this case, when one droplet is charged, subsequent droplets are also affected by the charge due to electrostatic induction. Therefore, there is a problem in that the voltage waveform applied to the deflection plate becomes quite complex and difficult to control. Furthermore, even if the electric field size is set correctly, there are variations in the size or mass of droplets that fall one after another, and this causes subtle changes in the trajectory of the droplets. It was not possible to perform very fine fractionations.

本発明は上述の点に鑑みてなされたものであり、その目
的は簡単な装置構成と制御機構により、高精度な分画を
行なうことが可能なセルソータを提供することにある。
The present invention has been made in view of the above-mentioned points, and its object is to provide a cell sorter that can perform highly accurate fractionation with a simple device configuration and control mechanism.

〔課題を解決するための手段) 上記の課題を解決するために本発明のセルソータは、針
状に細長く加工したフローセルノズルの先端近傍に磁性
体を取り付け、この磁性体と対向するように電磁石を少
くとも一つ配置し、電磁石が磁性体を引き寄せるときに
、ノズル先端から落下する液滴を偏向させるように、フ
ロー系と分取機構を構成したものである。
[Means for Solving the Problems] In order to solve the above problems, the cell sorter of the present invention attaches a magnetic material near the tip of a flow cell nozzle processed into an elongated needle shape, and installs an electromagnet to face the magnetic material. The flow system and separation mechanism are configured such that at least one electromagnet is disposed and the droplets falling from the nozzle tip are deflected when the electromagnet attracts the magnetic material.

(作用〕 上記のように構成した本発明のセルソータは、フローセ
ルのノズルがある程度の可撓性を持つので、ノズル先端
の角度を変えることができ、このことによって液滴の落
下位置を一次的に決め、液滴を任意の個所に正確に導く
ことを可能としている。
(Function) In the cell sorter of the present invention configured as described above, since the nozzle of the flow cell has a certain degree of flexibility, the angle of the nozzle tip can be changed, thereby temporarily changing the falling position of droplets. This makes it possible to accurately guide droplets to any desired location.

即ち、セルソータはフローセル内で液体に加わる圧力は
十分に大きいので、フローセルを飛び出した液滴の飛跡
は、重力の影響をあまり受けることなく液滴の出射する
角度によって決まり、そのため液滴の大きさや質量のば
らつきなどによる飛跡の変化を殆ど受けずに済む、した
がって、本発明のセルソータではフローセルノズルの角
度を選択することにより、−度に多種類の細胞の分取を
容易に行なうことができる。
In other words, in a cell sorter, the pressure applied to the liquid in the flow cell is sufficiently large, so the trajectory of the droplet leaving the flow cell is determined by the angle at which the droplet exits without being affected by gravity, and therefore the droplet size and The cell sorter of the present invention is hardly affected by changes in trajectory due to variations in mass, etc. Therefore, by selecting the angle of the flow cell nozzle, it is possible to easily sort out many types of cells at once.

(実施例) 以下、実施例に基づき本発明を説明する。(Example) The present invention will be explained below based on Examples.

本発明のセルソータが従来と異なる点は、フローセルの
ノズルの形状とノズルの先端を磁力を利用して動かす機
構にあり、その他の構成は第4図に示したものとほぼ同
しであるから、ここでは、本発明に関わる部分のみを模
式図として第1図に示し、第4図と共通部分を同一符号
で表わす。第1図において、ガラス製のフローセル3の
ノズル3aは細長い針状を呈し、外径数十−1長さ数1
に加工する。したがって、このノズル3aはある程度の
可撓性を持っており、先端の角度は自由に変えることが
できる。ノズル3aの先端部近傍には、例えばノズル3
aが貫通するように永久磁石26を取り付け、永久磁石
26の両磁極(N、S)は、二つの電磁石27a、27
bの同し極性の磁極(N同士またはS同士)とが対向す
るギヤツブの間に所定の間隔で配置しである。原理的に
、26は永久磁石でなくとも、磁性体であればよく、ま
た、電磁石は、少くとも一つあればよい、電磁石27a
、27bの極性と磁力は、第3図に示した信号処理回路
19からの信号に基づき作動するコントローラ28の電
流の大きさと方向を制御することにより行なわれ、永久
磁石26の一方の磁極(例えばS極)では、電磁石27
a。
The cell sorter of the present invention differs from the conventional one in the shape of the flow cell nozzle and the mechanism for moving the tip of the nozzle using magnetic force; the other configurations are almost the same as that shown in FIG. Here, only the parts related to the present invention are schematically shown in FIG. 1, and parts common to those in FIG. 4 are denoted by the same reference numerals. In FIG. 1, the nozzle 3a of the glass flow cell 3 has an elongated needle shape, and has an outer diameter of several tens of digits and a length of several tens of digits.
Process it into Therefore, this nozzle 3a has a certain degree of flexibility, and the angle of the tip can be changed freely. For example, the nozzle 3 is located near the tip of the nozzle 3a.
The permanent magnet 26 is attached so that a passes through the permanent magnet 26, and both magnetic poles (N, S) of the permanent magnet 26 are connected to two electromagnets 27a, 27.
Magnetic poles of the same polarity (both N or S) are arranged at a predetermined interval between opposing gears. In principle, 26 does not need to be a permanent magnet, but may be any magnetic material, and at least one electromagnet is sufficient, such as electromagnet 27a.
, 27b are controlled by controlling the magnitude and direction of the current of the controller 28 which operates based on the signal from the signal processing circuit 19 shown in FIG. S pole), the electromagnet 27
a.

27bの二つの同じ極性の磁極(例えばN極)の一つに
引き寄せられ、永久磁石26の他方の陽性(例えばN極
)では電磁石27a、27b磁極(例えばN極)の他の
一つとは反発するので、これに伴ないノズル3aの先端
は横方向に移動する。その様子を示した模式図が第2図
であり、ノズル3aの移動によって液滴の飛跡は29の
ように変わる。ノズル3aの先端は垂直方間と約30°
程度まで任意の角度に向けることができる。受は皿30
(第1図)はノズル3aの先端の下方70〜80誼の距
離に置き、第2図のような液滴29の落下角度に対応し
て細かく区分しである。受は皿30は例えば4閣の間隔
で区分したとき、ノズル3aの先端の可動角度から逆算
して約10種類の細胞を分離収集することができる。
It is attracted to one of the two magnetic poles of the same polarity (for example, N pole) of electromagnet 27b, and is repelled by the other positive magnetic pole (for example, N pole) of electromagnets 27a and 27b (for example, N pole) of the other permanent magnet 26. As a result, the tip of the nozzle 3a moves laterally. FIG. 2 is a schematic diagram showing this situation, and the trajectory of the droplet changes as shown in 29 as the nozzle 3a moves. The tip of the nozzle 3a is approximately 30° from the vertical direction.
It can be oriented at any angle. The receiver is plate 30
(FIG. 1) is placed at a distance of 70 to 80 degrees below the tip of the nozzle 3a, and is divided finely according to the falling angle of the droplet 29 as shown in FIG. When the tray 30 is divided into four sections, for example, about 10 types of cells can be separated and collected by calculating backward from the movable angle of the tip of the nozzle 3a.

なお、フローセル3の先端のノズル3aの移動時に、液
滴に横方向の速度が加わることに対しては、ノズル3a
の径を十分小さ(して液滴の分離をよくし、フローセル
3に与える超音波振動の周期とノズル3a先端の移動を
同期させて制御することにより、その影響を無くすこと
ができる。
Note that when the nozzle 3a at the tip of the flow cell 3 moves, the nozzle 3a
This effect can be eliminated by making the diameter of the nozzle 3a sufficiently small to improve separation of the droplets, and by synchronizing and controlling the period of ultrasonic vibration applied to the flow cell 3 and the movement of the tip of the nozzle 3a.

以上は液滴21の偏向を一次元(直線〕としたものであ
るが、永久磁石と電磁石の数を増し、二次元滴に偏向さ
せれば、さらに多くの種類の細胞を分離収集することが
可能である。
The above example assumes that the droplet 21 is deflected in one dimension (straight line), but if the number of permanent magnets and electromagnets is increased to deflect the droplet into a two-dimensional droplet, even more types of cells can be separated and collected. It is possible.

第3図は第2図とは異なるノズル移動の実施例を示す図
で、第3図に示すように、ノズルを磁力によりねしる方
法でも同様な効果が得られる。
FIG. 3 is a diagram showing an embodiment of nozzle movement different from that in FIG. 2. As shown in FIG. 3, the same effect can be obtained by a method in which the nozzle is twisted by magnetic force.

以上のように、本発明のセルソータはフロー系と細胞の
分取機構を簡単な装置によって構成し、多種類の細胞を
分取可能としたものである。
As described above, the cell sorter of the present invention comprises a flow system and a cell sorting mechanism using a simple device, and is capable of sorting many types of cells.

(発明の効果] フローセルから噴出する液滴に電荷を与えて帯電し、高
電圧を印加した一対の偏向板の間を通してその飛跡を変
化させ、細胞を含む液滴を分取する従来のセルソータは
、多種類の分取を行なうには、偏向板に印加する電圧波
形の制御が難しいなどの問題があったのに対して、本発
明によるセルソータでは実施例で述べたように、フロー
セルのノズル先端を針状に長くして磁性体を取り付け、
これを少くとも一つの′@電磁石磁性体と対向配置し、
測定光学系の分析結果に基づいて電磁石に磁力を与えた
とき、ノズル先端が移動するようにしたため、1M1石
の発生する磁界を制御することにより、液滴を任意の個
所に落下させることができ、その結果多種類の細胞を一
度に精度よく分離収集することが可能になった。
(Effects of the Invention) Conventional cell sorters that charge droplets ejected from a flow cell, change their trajectory through a pair of deflection plates to which a high voltage is applied, and sort out droplets containing cells. In contrast, in the cell sorter according to the present invention, as described in the embodiment, the nozzle tip of the flow cell is connected to a needle. Attach the magnetic material to a long shape,
This is arranged facing at least one ′@electromagnet magnetic body,
Based on the analysis results of the measurement optical system, the nozzle tip moves when a magnetic force is applied to the electromagnet, so by controlling the magnetic field generated by the 1M1 stone, droplets can be dropped to any desired location. As a result, it has become possible to accurately separate and collect many types of cells at once.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセルソータにおけるフロー系と分取機
構を示す部分模式図、第2図は本発明のセルソータにあ
゛けるノズル移動に伴なう液滴の飛跡の変化を示す模式
図、第3図は本発明のノズル移動の異なる実施例を示す
模式図、第4図は従来のセルソータの構成と作動を説明
するための模式1:サンプル液、2:シース液、3:フ
ローセル、3a:ノズル、4ニジエツト流、5:レーザ
光源、6:レンズ系、7:レーザ光、8,11,13,
16 :集光レンズ、9:ビームブロック、10.15
.18 :光検出器、12:ハーフミラ−,14,1’
7:フィルタ、19:信号処理回路、20:圧電振動子
、21:液滴、22.28:コントローラ、23a、2
3b  :偏向板、25:分取容器、26:永久磁石、
27a、27b  :電磁石、24.29:飛跡の変化
した液滴、30:受は皿。 代理人弁遁士 山 口  鳳 “ −−1,ノ 箋1 図 諷2 閃 第3圓 tq イ盲噌門1gきItli口墓(1第4 凹
FIG. 1 is a partial schematic diagram showing the flow system and separation mechanism in the cell sorter of the present invention, and FIG. 2 is a schematic diagram showing changes in droplet tracks as the nozzle moves in the cell sorter of the present invention. FIG. 3 is a schematic diagram showing different embodiments of nozzle movement of the present invention, and FIG. 4 is a schematic diagram for explaining the configuration and operation of a conventional cell sorter. 1: Sample liquid, 2: Sheath liquid, 3: Flow cell, 3a : Nozzle, 4-jet flow, 5: Laser light source, 6: Lens system, 7: Laser light, 8, 11, 13,
16: Condensing lens, 9: Beam block, 10.15
.. 18: Photodetector, 12: Half mirror, 14, 1'
7: Filter, 19: Signal processing circuit, 20: Piezoelectric vibrator, 21: Droplet, 22.28: Controller, 23a, 2
3b: deflection plate, 25: separation container, 26: permanent magnet,
27a, 27b: Electromagnet, 24.29: Droplet with changed trajectory, 30: Receiver is a plate. Proxy Bentonshi Yamaguchi Otori "--1, Nosen 1 Zuman 2 Sendai 3rd Entq Ibakusamemon 1gki Itlikuchi Tomb (1st 4th concave)

Claims (1)

【特許請求の範囲】[Claims] 1)細胞の微粒子の含むサンプル液とシース液を導入し
たフローセルのノズルから前記サンプル液を前記シース
液で包み込む鞘状のジェット流として噴出させ、かつ前
記フローセルに振動を加えて前記ジェット流を液滴状と
して一列に噴出させるフロー系と、前記ジェット流にレ
ーザ光を照射する投光光学系と、前記レーザ光の照射に
より前記微粒子から発する散乱光、蛍光を検出し分析す
る測定光学系と、前記液滴を分離して収集する分取機構
とを有し、前記測定光学系からの信号に基づき前記液滴
に含まれる前記微粒子の種類に応じてその液滴を分取す
るセルソータであって、前記フロー系はフローセルの針
状ノズルはその先端近傍に取り付けた少なくとも一つの
磁性体とを有し、前記分取機構は前記磁性体と対向配置
した少くとも一つの電磁石を有することを特徴とするセ
ルソータ。
1) The sample liquid containing cell particles and the sheath liquid are introduced from the nozzle of the flow cell, and the sample liquid is ejected as a sheath-shaped jet flow surrounded by the sheath liquid, and the flow cell is vibrated to transform the jet flow into a liquid. a flow system that ejects particles in a line in the form of droplets; a projection optical system that irradiates the jet flow with laser light; and a measurement optical system that detects and analyzes scattered light and fluorescence emitted from the fine particles by irradiation with the laser light; A cell sorter comprising a sorting mechanism that separates and collects the droplets, and sorts the droplets according to the type of fine particles contained in the droplets based on a signal from the measurement optical system. , the flow system is characterized in that the needle-like nozzle of the flow cell has at least one magnetic body attached near its tip, and the sorting mechanism has at least one electromagnet disposed opposite to the magnetic body. cell sorter.
JP2335977A 1990-11-30 1990-11-30 Cell sorter Pending JPH04204254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2335977A JPH04204254A (en) 1990-11-30 1990-11-30 Cell sorter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335977A JPH04204254A (en) 1990-11-30 1990-11-30 Cell sorter

Publications (1)

Publication Number Publication Date
JPH04204254A true JPH04204254A (en) 1992-07-24

Family

ID=18294422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335977A Pending JPH04204254A (en) 1990-11-30 1990-11-30 Cell sorter

Country Status (1)

Country Link
JP (1) JPH04204254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011449A1 (en) * 1998-08-21 2000-03-02 Union Biometrica, Inc. Instrument for selecting and depositing multicellular organisms and other large objects
CN103013811A (en) * 2011-09-20 2013-04-03 北京富通华投资有限公司 Sperm sorter
EP1739402B1 (en) * 2004-04-23 2017-08-02 The Furukawa Electric Co., Ltd. Methods of separating, identifying and dispensing specimen and device therefor, and analyzing device method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011449A1 (en) * 1998-08-21 2000-03-02 Union Biometrica, Inc. Instrument for selecting and depositing multicellular organisms and other large objects
US6657713B2 (en) 1998-08-21 2003-12-02 Union Biometrica, Inc. Instrument for selecting and depositing multicellular organisms and other large objects
EP1739402B1 (en) * 2004-04-23 2017-08-02 The Furukawa Electric Co., Ltd. Methods of separating, identifying and dispensing specimen and device therefor, and analyzing device method
CN103013811A (en) * 2011-09-20 2013-04-03 北京富通华投资有限公司 Sperm sorter

Similar Documents

Publication Publication Date Title
US7392908B2 (en) Methods and apparatus for sorting particles hydraulically
US4325483A (en) Method for detecting and controlling flow rates of the droplet forming stream of an electrostatic particle sorting apparatus
US4284496A (en) Particle guiding apparatus and method
US4318481A (en) Method for automatically setting the correct phase of the charge pulses in an electrostatic flow sorter
JP5487638B2 (en) Apparatus for microparticle sorting and microchip
US5464581A (en) Flow cytometer
US5700692A (en) Flow sorter with video-regulated droplet spacing
US4318483A (en) Automatic relative droplet charging time delay system for an electrostatic particle sorting system using a relatively moveable stream surface sensing system
US4317520A (en) Servo system to control the spatial position of droplet formation of a fluid jet in a cell sorting apparatus
EP0025296B1 (en) Apparatus and method for positioning the point of droplet formation in the jetting fluid of an electrostatic sorting device
US7880108B2 (en) Deflection plate
US4756427A (en) Method and apparatus for sorting particles
US6833542B2 (en) Method for sorting particles
US20020064809A1 (en) Focused acoustic ejection cell sorting system and method
TWI391181B (en) Material mixing device and material mixing method
US20030124516A1 (en) Method of using optical interrogation to determine a biological property of a cell or population of cells
JPH0640061B2 (en) Capture tube sorting apparatus and method for flow cytometer
WO2004033059A2 (en) Methods and apparatus for optophoretic diagnosis of cells and particles
JP2011237201A (en) Particulate dispensing device, microchip, and microchip module
EP1472368A2 (en) Methods and apparatus for generating and utilizing linear moving optical gradients
Stovel et al. Individual cell sorting.
JPH04204254A (en) Cell sorter
Van Den Engh High‐speed cell sorting
US20190257736A1 (en) System and Method for Precision Deposition of Liquid Droplets
US4280623A (en) Method and apparatus for controlling, orienting and analyzing biological cells in liquid suspension