JPH04204128A - Stress sensor and manufacture thereof - Google Patents

Stress sensor and manufacture thereof

Info

Publication number
JPH04204128A
JPH04204128A JP33360390A JP33360390A JPH04204128A JP H04204128 A JPH04204128 A JP H04204128A JP 33360390 A JP33360390 A JP 33360390A JP 33360390 A JP33360390 A JP 33360390A JP H04204128 A JPH04204128 A JP H04204128A
Authority
JP
Japan
Prior art keywords
thin plate
insulating film
plate piece
stress sensor
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33360390A
Other languages
Japanese (ja)
Inventor
Fujio Sato
藤男 佐藤
Morio Tamura
田村 盛雄
Hisanori Hashimoto
久儀 橋本
Kiyoshi Tanaka
潔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP33360390A priority Critical patent/JPH04204128A/en
Publication of JPH04204128A publication Critical patent/JPH04204128A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To block the growing and expansion of the peeling of an insulating film which is formed in a cutting step and to improve operating reliability as a sensor by forming a step part at the periphery of the thin plate piece wherein a part which acts as a stress sensor is formed. CONSTITUTION:A step part is provided at the entire periphery or at a part of the periphery of a thin plate piece 1 wherein a strain detecting part comprising strain gages 5 and electrode wirings 6 is formed. An insulating film 4 is formed on the entire upper surface of this pattern and rigidly fixed to the thin plate piece 1. In the fabricating method of this sensor, the plate piece is cut with a cutter 13 after the formation of the insulating film 4. At first, a cutting groove 12 is formed, and the groove part is cut by the cutter 13. Thus, the step part is formed in the thin plate piece 1. Cracks and peeling parts are formed at the edges of the cut part. These parts are formed at the lower surface of the step and are not expanded to the upper surface of the step. The sensor can be readily fabricated by simply forming the groove 12 in the thin plate piece 1. Thus, the sensor having the high operation reliability, from which the effect of the peeling is removed, can be fabricated at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は応力センサ及びその製造方法に関し、特に例え
ば土木・建設機械の構成部材に生じる応力あるいはその
結果当該部材に生じる歪みを測定する応力センサ、更に
はその他の各種機械部材の応力等の測定に使用される応
力センサ及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stress sensor and a method for manufacturing the same, and particularly to a stress sensor that measures stress generated in a structural member of a civil engineering/construction machine or the resulting strain generated in the member. The present invention also relates to a stress sensor used to measure stress in various other mechanical members, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

応力センサの種類には、例えば圧力センサ、歪みセンサ
、トルクセンサ、荷重センサなどが存在する。これらの
応力センサのうち従来比較的に良く知られている圧力セ
ンサを例にとって以下説明する。
Types of stress sensors include, for example, pressure sensors, strain sensors, torque sensors, and load sensors. Among these stress sensors, a relatively well-known pressure sensor will be described below as an example.

第7図は従来の代表的な圧力センサの縦断面図を示す。FIG. 7 shows a longitudinal sectional view of a typical conventional pressure sensor.

第7図において、1は薄板片であり、圧力に応じて変形
する機能を有している。薄板片1の図中下部には筒部材
2が固着される。筒部材2の一端は薄板片1の下面周辺
部に固着され、薄板片1を支持する。la、2aはそれ
ぞれ薄板片1と筒部材2の接合面である。薄板片1はそ
の周辺部を筒部材2で支持されているので、その中央部
のみが周辺拘束を受けながら動き得る。薄板片1の中央
部は起歪部となっており、その下面は受圧面となってい
る。流体等によって受圧面に圧力が加わると、薄板片1
は歪みを生じる。図中矢印3は圧力を意味している。
In FIG. 7, 1 is a thin plate piece, which has the function of deforming in response to pressure. A cylindrical member 2 is fixed to the lower part of the thin plate piece 1 in the figure. One end of the cylindrical member 2 is fixed to the periphery of the lower surface of the thin plate piece 1 to support the thin plate piece 1. la and 2a are joint surfaces between the thin plate piece 1 and the cylindrical member 2, respectively. Since the peripheral portion of the thin plate piece 1 is supported by the cylindrical member 2, only the central portion thereof can move while being constrained by the peripheral portion. The center portion of the thin plate piece 1 is a strain-generating portion, and the lower surface thereof is a pressure-receiving surface. When pressure is applied to the pressure receiving surface by fluid etc., the thin plate piece 1
causes distortion. Arrow 3 in the figure means pressure.

一方、薄板片1の受圧面と反対側の面には、先ず絶縁膜
4が形成され、更に絶縁膜4の上面には半導体歪みゲー
ジ5及び電極配線6が形成されている。この電極配線6
は半導体歪みゲージ5を外部の他の電気回路部と接続す
るためのものである。
On the other hand, an insulating film 4 is first formed on the surface of the thin plate piece 1 opposite to the pressure-receiving surface, and furthermore, a semiconductor strain gauge 5 and an electrode wiring 6 are formed on the upper surface of the insulating film 4. This electrode wiring 6
is for connecting the semiconductor strain gauge 5 to other external electric circuit parts.

上記構成を有する圧力センサの従来の製造方法は、第8
図〜第14図に示す通りである。
The conventional method for manufacturing a pressure sensor having the above configuration is as follows:
As shown in FIGS.

7は金属製薄板基材であり、かなり大きな面積を有する
ものである。後にこの薄板基材7を細かく切断して前述
した薄板片1を作る。薄板基材7の上面には絶縁膜4が
形成される。この絶縁膜4にはSin、 、 SiC、
SiNx等をプラグ7CVDやスパッタリング等の成膜
方法で形成する。更に8は歪みゲージを作るための多結
晶シリコン薄膜であり、絶縁膜4の上面全面に形成され
る。次にフォトリソグラフィの方法によって前記多結晶
シリコン薄膜8を複数の歪みゲージ5のパターンに形成
する。6は電極配線であって、Au、kl等を真空蒸着
法及びスパッタリング法で形成する。
7 is a metal thin plate base material, which has a fairly large area. Later, this thin plate base material 7 is cut into pieces to produce the above-mentioned thin plate pieces 1. An insulating film 4 is formed on the upper surface of the thin plate base material 7. This insulating film 4 includes Sin, , SiC,
A plug 7 of SiNx or the like is formed by a film forming method such as CVD or sputtering. Furthermore, 8 is a polycrystalline silicon thin film for making a strain gauge, and is formed on the entire upper surface of the insulating film 4. Next, the polycrystalline silicon thin film 8 is formed into a pattern of a plurality of strain gauges 5 by photolithography. Reference numeral 6 denotes electrode wiring, which is formed of Au, Kl, etc. by vacuum evaporation and sputtering.

第13図は、応力センサとしての機能する薄板片1を取
出すための切断工程である。この切断工程では、所定数
の半導体歪みゲージ5と電極配線6とからなる組ごとに
、絶縁膜4及び薄板基材7をダイシングマシンのカッタ
9で切断し、前述の薄板片1を切出す。薄板片1は一枚
の薄板基材7から多数作られる。次いで最終工程として
、薄板片1の下面の所定箇所に筒部材2を接合すれば、
完成する。接合手段としては、例えば接合面2aにアル
ミニウム等のインサート部材10を塗布し、両者を密着
し、550℃以上の温度で所定時間の間アニーリングす
る方法が用いられる。
FIG. 13 shows a cutting process for removing the thin plate piece 1 that functions as a stress sensor. In this cutting process, the insulating film 4 and the thin plate base material 7 are cut by the cutter 9 of the dicing machine for each set consisting of a predetermined number of semiconductor strain gauges 5 and electrode wiring 6, and the above-mentioned thin plate pieces 1 are cut out. A large number of thin plate pieces 1 are made from a single thin plate base material 7. Next, as a final step, if the cylindrical member 2 is joined to a predetermined location on the lower surface of the thin plate piece 1,
Complete. As the bonding means, for example, a method is used in which an insert member 10 made of aluminum or the like is applied to the bonding surface 2a, the two are brought into close contact with each other, and annealing is performed at a temperature of 550° C. or higher for a predetermined period of time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した従来の応力センサの製造方法では、大面積の薄
板基材7に半導体製造技術及び成膜技術を用いて多数の
歪みゲージ及び電極配線を作製し、その後に薄板基材7
上面に形成された絶縁膜4と当該薄板基材7を一緒に切
断することにより多数の薄板片1を得ることができ、こ
れによって大量生産することができる。
In the conventional stress sensor manufacturing method described above, a large number of strain gauges and electrode wirings are fabricated on a large-area thin plate base material 7 using semiconductor manufacturing technology and film forming technology, and then the thin plate base material 7 is
By cutting the insulating film 4 formed on the upper surface and the thin plate base material 7 together, a large number of thin plate pieces 1 can be obtained, thereby enabling mass production.

しかしながら、従来の製造工程ではカッタ9で絶縁膜4
が形成された薄板基材7を切断するという工程が存在し
且つ絶縁膜4には比較的に脆弱な材料を使用しているた
め、切断時のカッタ9の回転作用及び摩擦作用で切断箇
所近傍の絶縁膜4にひびが発生したり、あるいは切断箇
所の縁の近傍の絶縁膜4と薄板基材部分との間に剥離が
発生する。このような剥離が存在すると、薄膜片1を圧
力センサの受圧部として長期間使用している間に、当該
剥離部が成長し、最後には歪みゲージや電極配線の下側
部位にも剥離が発生し、圧力センサとして機能が消失す
るというおそれもある。
However, in the conventional manufacturing process, the cutter 9 cuts the insulating film 4.
Since there is a step of cutting the thin plate base material 7 on which a Cracks occur in the insulating film 4, or peeling occurs between the insulating film 4 and the thin plate base material near the edge of the cut location. If such peeling exists, the peeled part will grow while the thin film piece 1 is used as a pressure receiving part of a pressure sensor for a long period of time, and eventually the lower part of the strain gauge and electrode wiring will also be peeled off. There is also a risk that the pressure sensor may lose its function.

本発明の目的は、その製造工程に切断工程を含む応力セ
ンサについて、当該切断工程で発生する絶縁膜の剥離部
が小さい部位として形成され、更にその後に剥離が歪み
ゲージ等の絶縁膜下部まで成長するのを防止する構造を
有し、もって長期間にわたって安定にセンシング動作す
る応力センサを提供すると共に、かかる特性を有する応
力センサを簡易に且つ低コストで作ることのできる製造
方法を提供することにある。
An object of the present invention is to provide a stress sensor whose manufacturing process includes a cutting process, in which the peeled part of the insulating film that occurs in the cutting process is formed as a small part, and the peeled part then grows to the lower part of the insulating film of a strain gauge, etc. An object of the present invention is to provide a stress sensor that has a structure that prevents this from occurring and thereby performs stable sensing operation over a long period of time, and to provide a manufacturing method that can easily produce a stress sensor having such characteristics at a low cost. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る応力センサは、受圧部を有する薄板片の一
方の面に形成された絶縁膜と、この絶縁膜上に形成され
た歪みゲージと、この歪みゲージと外部の電気回路部と
を接続するための電極配線を有し、薄板片が、絶縁膜と
歪みゲージと電極配線が形成された大面積の一枚状薄板
基材から切り出されて形成される応力センサであって、
前記薄板片の周縁に段差部を有していることを特徴とす
る。
The stress sensor according to the present invention connects an insulating film formed on one side of a thin plate piece having a pressure receiving part, a strain gauge formed on this insulating film, and this strain gauge to an external electric circuit part. A stress sensor is formed by cutting out a thin plate piece from a large area monolithic thin plate base material on which an insulating film, a strain gauge, and an electrode wiring are formed,
It is characterized in that the thin plate piece has a stepped portion at its periphery.

本発明に係る応力センサは、前記の構成において、段差
部が、歪みゲージが形成される箇所と切断が行われる箇
所との間の段差であることを特徴とする。
The stress sensor according to the present invention is characterized in that, in the above configuration, the step portion is a step between a location where the strain gauge is formed and a location where cutting is performed.

本発明に係る応力センサは、前記の各構成において、薄
板片の受圧面の側に筒部材を固定したことを特徴とする
The stress sensor according to the present invention is characterized in that in each of the above configurations, a cylindrical member is fixed to the pressure receiving surface side of the thin plate piece.

本発明に係る応力センサは、前記の各構成において、歪
みゲージは半導体歪みゲージであることを特徴とする。
The stress sensor according to the present invention is characterized in that in each of the above configurations, the strain gauge is a semiconductor strain gauge.

本発明に係る応力センサの製造方法は、薄板基材に溝を
形成し、薄板基材の溝を形成した面に絶縁膜を形成し、
絶縁膜の上にて溝によって囲まれる複数の領域のそれぞ
れに歪みゲージ及び電極配線を形成し、溝の幅よりも小
さい幅を有した切断具で薄板基材を溝に沿って切断し、
複数の応力センサ用薄板片を作るようにしたことを特徴
とする。
A method for manufacturing a stress sensor according to the present invention includes forming a groove in a thin plate base material, forming an insulating film on the surface of the thin plate base material on which the groove is formed,
Strain gauges and electrode wiring are formed in each of a plurality of regions surrounded by grooves on the insulating film, and the thin plate base material is cut along the grooves with a cutting tool having a width smaller than the width of the grooves.
The present invention is characterized in that a plurality of thin plate pieces for stress sensors are made.

本発明に係る応力センサの製造方法は、前記の製造方法
において、歪みゲージは半導体歪みゲージであることを
特徴とする。
A method for manufacturing a stress sensor according to the present invention is characterized in that the strain gauge is a semiconductor strain gauge in the aforementioned manufacturing method.

〔作用〕[Effect]

本発明による応力センサでは、歪みゲージや電極配線か
らなる歪み検出部が形成された薄板片の全周縁又は一部
局縁に段差部が形成される形態とし、この形態によって
薄板片の上面全面に形成される絶縁膜を薄板片に強固に
固着させる。この応力センサの製造方法では絶縁膜を形
成した後にカッタで切断する工程を含んでいるが、切断
部用に溝を形成し、当該溝部分を切断することにより、
切出された各薄板片には段差が形成される。切断部の縁
にはひびや剥離が形成されるが、段差の下面であるので
、その剥離等が段差の上面にまで大きくなることはない
。すなわち、切断する箇所と歪み検出部を形成する箇所
との間に段差部を設けることにより、切断に起因する剥
離の影響を遮断することができる。
In the stress sensor according to the present invention, a stepped portion is formed on the entire periphery or a partial edge of a thin plate piece on which a strain detection section consisting of a strain gauge or an electrode wiring is formed, and in this form, a stepped portion is formed on the entire upper surface of the thin plate piece. The insulating film is firmly attached to the thin plate piece. This stress sensor manufacturing method includes a step of forming an insulating film and then cutting it with a cutter, but by forming a groove for the cutting part and cutting the groove part,
A step is formed in each cut out thin plate piece. Although cracks and peeling are formed at the edges of the cut portions, since they are on the lower surface of the step, the peeling and the like do not extend to the upper surface of the step. That is, by providing a stepped portion between the location to be cut and the location where the strain detection portion is formed, it is possible to block the influence of peeling caused by cutting.

本発明による応力センサの製造方法では、前述した特徴
を有する応力センサを容易に形成することができる。す
なわち絶縁膜を形成する前の初期の段階で、薄板片を切
出すための薄板基材の表面に例えば格子状に溝を形成し
、その後は従来通り半導体技術及び成膜技術を適用して
絶縁膜や歪み検出部を形成し、その後に溝に沿って切断
を行うことにより応力センサとして機能する部分を備え
た薄板片を取出すようにするものである。
With the method for manufacturing a stress sensor according to the present invention, a stress sensor having the above-described characteristics can be easily formed. In other words, at an early stage before forming an insulating film, grooves are formed in the shape of a lattice on the surface of the thin plate base material from which the thin plate pieces are cut out, and then the insulation is formed by applying conventional semiconductor technology and film formation technology. A thin plate piece having a portion functioning as a stress sensor can be taken out by forming a film and a strain detecting portion and then cutting along a groove.

〔実施例〕〔Example〕

以下に、本発明の実施例を添付図面に基づいて説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係る応力センサの特徴が示された縦断
面図であり、第2図〜第6図は本発明に係る応力センサ
の製造工程を示す図である。本実施例では従来技術で説
明した場合と同様に圧力センサの例について説明する。
FIG. 1 is a longitudinal sectional view showing the features of the stress sensor according to the present invention, and FIGS. 2 to 6 are diagrams showing the manufacturing process of the stress sensor according to the present invention. In this embodiment, an example of a pressure sensor will be described in the same way as in the case of the prior art.

本実施例に係る図示例に関し、前記従来の圧力センサで
説明した同一の要素には同一の符号を付して説明する。
Regarding the illustrated example according to this embodiment, the same elements as described in the conventional pressure sensor will be described with the same reference numerals.

第1図において、1は受圧機能を有し圧力に応じて変形
する金属製薄板片、2は薄板片1の下部周辺部に取り付
けられた筒部材である。薄板片1は平面で矩形の形状を
有する。筒部材2は例えば円筒上で5US630等の金
属で形成され、変形しやすい薄板片1を支持する。この
構造では薄板片1は周辺部を固定され、その中央部のみ
が変形する。当該中央部の下面が受圧面となる。薄板片
1の中央部は、図中矢印3の方向に圧力を受けたとき起
歪部としての機能を発揮する。薄板片1も実際上5US
630等により作製され、その厚みは0.2〜2Il1
mである。薄板片1と筒部材2との接合は、従来技術の
場合と同様に拡散接合法や接着剤を用いた方法が利用さ
れる。
In FIG. 1, numeral 1 is a metal thin plate piece that has a pressure receiving function and deforms in response to pressure, and 2 is a cylindrical member attached to the lower periphery of the thin plate piece 1. The thin plate piece 1 has a planar rectangular shape. The cylindrical member 2 is made of metal such as 5US630 in a cylindrical shape, and supports the thin plate piece 1 which is easily deformed. In this structure, the peripheral portion of the thin plate piece 1 is fixed, and only the central portion thereof is deformed. The lower surface of the central portion becomes the pressure receiving surface. The central portion of the thin plate piece 1 functions as a strain-generating portion when pressure is applied in the direction of the arrow 3 in the figure. The thin plate piece 1 is actually 5US
630 etc., and its thickness is 0.2-2Il1
It is m. The thin plate piece 1 and the cylindrical member 2 are bonded together using a diffusion bonding method or a method using an adhesive, as in the case of the prior art.

前記薄板片1の周縁部には、全周縁(又はその一部)に
ついて段差11が形成されている。この段差11は、後
述されるように薄板基材から薄板片1を切り出すために
、薄板基材に形成された格子上の溝の一部である。
A step 11 is formed on the entire peripheral edge (or a part thereof) of the thin plate piece 1 . This step 11 is a part of a groove on a lattice formed in the thin plate base material in order to cut out the thin plate piece 1 from the thin plate base material as described later.

薄板片1の上面には絶縁膜4が形成されている。An insulating film 4 is formed on the upper surface of the thin plate piece 1.

この絶縁膜4の材質は前記従来技術で説明した通りであ
る。この絶縁膜4の機能は、更にその上に形成される歪
み検出部と薄板片1との間の電気的絶縁性を保持するた
めのものである。この絶縁膜4は薄板片1の上面全面に
わたり形成され、同時に前記段差11が形成されている
部分の表面全面にも形成される。ただし段差11の立壁
部の絶縁膜の層は薄くなっており、また段差11におけ
る上側面(上段面)の絶縁膜の厚みと下側面(下段面)
の絶縁膜の厚みはほぼ等しくなっている。また段差11
の下側面の絶縁膜に関しては、絶縁膜4と薄板片1との
間に剥離が生じている。しかしこの剥離は、その途中に
段差11の立壁面が存在するので、薄板片1の段差上側
面まで伸びていない。特に薄板片1全体で見てみると、
絶縁膜4は薄板片1の高い部分をキャップ状に覆ってお
り、且つ段差11の立壁部はその表面が粗い面であるの
で、その微細な凹凸により絶縁膜4と強固に結合してい
る。その結果、剥離が拡大するおそれがある場合に、そ
の拡大を阻止する作用を有する。
The material of this insulating film 4 is as explained in the prior art section. The function of the insulating film 4 is to maintain electrical insulation between the strain detection section formed thereon and the thin plate piece 1. This insulating film 4 is formed over the entire upper surface of the thin plate piece 1, and at the same time is also formed over the entire surface of the portion where the step 11 is formed. However, the insulating film layer on the vertical wall of the step 11 is thinner, and the thickness of the insulating film on the upper surface (upper step surface) of the step 11 and the lower surface (lower step surface) are
The thickness of the insulating film is almost the same. Also, step 11
Regarding the insulating film on the lower surface of the insulating film 4, peeling occurs between the insulating film 4 and the thin plate piece 1. However, this peeling does not extend to the upper surface of the step of the thin plate piece 1 because the vertical wall surface of the step 11 exists in the middle thereof. Especially when looking at the entire thin plate piece 1,
The insulating film 4 covers the high portion of the thin plate piece 1 in a cap-like manner, and since the vertical wall portion of the step 11 has a rough surface, it is firmly bonded to the insulating film 4 due to its fine irregularities. As a result, if there is a risk that the peeling will expand, it has the effect of preventing the expansion.

、絶縁膜4の上には更に半導体歪みゲージ5と、電気接
続線としての電極配線6が所要数形成される。
Further, on the insulating film 4, a semiconductor strain gauge 5 and a required number of electrode wirings 6 as electrical connection lines are formed.

次に第2図〜第6図に従って前記の圧力センサの製造方
法について説明する。
Next, a method of manufacturing the pressure sensor described above will be explained with reference to FIGS. 2 to 6.

本実施例による製造方法では、最初に前記薄板片1を多
数切り出すための金属製の薄板基材7が用意される(第
2図)。従って薄板基材7の材質及び厚みは前記薄板片
1と同じである。次にこの薄板基材7から多数の薄板片
1を取り出すための、切出し用の直線的溝12を例えば
格子目状に形成する(第3図)。溝12の形成方法とし
ては種々の手段を考えることができる。本実施例では例
えばグイシングツ−を用いて、幅11が0.2〜3II
Iの溝が形成される。また溝12の深さは特に限定され
ないが、薄板基材7の厚みの8〜9割程度の深さが望ま
しい。第4図は、薄板基材7の上面に絶縁膜4と、更に
各薄板片1に対応する所定領域の面に歪み検出部を構成
するための半導体歪みゲージ5及び電極配線6の組が形
成される。絶縁膜4、歪みゲージ5、電極配線6の形成
方法は前述した従来技術の場合と同様である。すなわち
、絶縁膜4は5in2. SiC、SiNx等をプラズ
マCvDやスパッタリング等の成膜方法で形成し、歪み
ゲージ5は絶縁膜4の上面全面に多結晶シリコン薄膜を
形成した後、フォトリソグラフィの方法によって形成し
、電極配線6は、Au、Aj!等を真空蒸着法及びスパ
ッタリング法で形成する。
In the manufacturing method according to this embodiment, first, a metal thin plate base material 7 from which a large number of the thin plate pieces 1 are cut out is prepared (FIG. 2). Therefore, the material and thickness of the thin plate base material 7 are the same as those of the thin plate piece 1. Next, linear cutting grooves 12 for taking out a large number of thin plate pieces 1 from the thin plate base material 7 are formed in, for example, a grid pattern (FIG. 3). Various methods can be considered for forming the grooves 12. In this embodiment, the width 11 is 0.2 to 3II by using, for example, a guiding tool.
A groove I is formed. Further, the depth of the groove 12 is not particularly limited, but it is preferably about 80 to 90% of the thickness of the thin plate base material 7. FIG. 4 shows that an insulating film 4 is formed on the upper surface of a thin plate base material 7, and a set of a semiconductor strain gauge 5 and an electrode wiring 6 for forming a strain detection section is further formed on the surface of a predetermined region corresponding to each thin plate piece 1. be done. The method of forming the insulating film 4, strain gauge 5, and electrode wiring 6 is the same as in the case of the prior art described above. That is, the insulating film 4 is 5in2. SiC, SiNx, etc. are formed by a film forming method such as plasma CVD or sputtering, the strain gauge 5 is formed by a photolithography method after forming a polycrystalline silicon thin film on the entire upper surface of the insulating film 4, and the electrode wiring 6 is formed by a photolithography method. , Au, Aj! etc. are formed by vacuum evaporation method and sputtering method.

本実施例の製造方法では、絶縁膜4は薄板基材7の上面
全面に形成され、その結果溝12の部分にも絶縁膜4が
形成されることになる。絶縁膜4の厚みは平面部では約
1〜20μmである。また溝12を形成する立壁面では
、図示例では誇張して示されているが、実際には絶縁膜
を形成する成膜技術に起因してその厚みが溝の底面等の
平面部に比較し相対的に薄くなっている。
In the manufacturing method of this embodiment, the insulating film 4 is formed on the entire upper surface of the thin plate base material 7, and as a result, the insulating film 4 is also formed in the grooves 12. The thickness of the insulating film 4 is approximately 1 to 20 μm on the planar surface. Furthermore, although the vertical wall surface forming the trench 12 is exaggerated in the illustrated example, in reality, due to the film formation technology used to form the insulating film, its thickness is smaller than that of the flat surface such as the bottom surface of the trench. It is relatively thin.

第5図に示される工程は歪み検出部が形成された薄板基
材7から圧力センサとしての薄板片1を取快出すための
切断工程である。この切断工程では、前記溝12の幅!
、よりも幅の小さい円盤状のカッタ13を使用し、且つ
前記溝12に沿って切断を行う。この切断工程において
、切断部分、すなわち溝12の底部分に形成された絶縁
膜4には切断の縁に沿って剥離が生じる。この剥離部分
は領域的に小さいものである。また薄板基材7からカッ
タ13で切出された平面矩形の薄板片1の外観形態につ
いては、図示される如くその全周縁又は一部局縁に段差
11が形成される。前記剥離が生じる部分は段差11の
下側面の部分であり、上側面の部分に剥離が拡大するこ
とはない。
The step shown in FIG. 5 is a cutting step for removing the thin plate piece 1 serving as a pressure sensor from the thin plate base material 7 on which the strain detection section is formed. In this cutting process, the width of the groove 12!
Cutting is performed along the groove 12 using a disc-shaped cutter 13 having a width smaller than that of the cutter 13 . In this cutting step, peeling occurs in the insulating film 4 formed at the cut portion, that is, the bottom portion of the groove 12, along the edges of the cut. This peeled portion is small in area. Further, regarding the external appearance of the planar rectangular thin plate piece 1 cut out from the thin plate base material 7 by the cutter 13, a step 11 is formed on the entire periphery or some local edges as shown in the figure. The part where the peeling occurs is the lower side of the step 11, and the peeling does not extend to the upper side.

第6図は最終工程であり、薄板片1と筒部材2との接合
工程を示す。接合方法は前述の従来方法と同様で、拡散
接合又は接着剤が使用される。拡散接合の場合には、筒
部材2の接合面2aにアルミニラムの如きインサート材
10を塗布し、薄板片1の接合面1aに密着する。その
後、所要の温度550℃以上で一定時間熱する。接着剤
による方法では、筒部材2の接合面に接着剤を塗布し、
薄板片1の接合面に密着させ、接着剤の効果に要する所
要の温度で一定時間加熱する。
FIG. 6 is the final step, and shows the step of joining the thin plate piece 1 and the cylindrical member 2. The bonding method is similar to the conventional method described above, and diffusion bonding or an adhesive is used. In the case of diffusion bonding, an insert material 10 such as aluminum laminate is applied to the joint surface 2a of the cylindrical member 2, and is brought into close contact with the joint surface 1a of the thin plate piece 1. Thereafter, it is heated at a required temperature of 550° C. or higher for a certain period of time. In the adhesive method, adhesive is applied to the joint surface of the cylindrical member 2,
It is brought into close contact with the bonding surface of the thin plate piece 1 and heated for a certain period of time at a temperature required for the adhesive to be effective.

以上の如くして圧力センサが形成される。この圧力セン
サでは、その周縁部に段差11の部分が形成されている
ため、切断工程で剥離やひびが形成されたとしても、そ
の剥離等は段差の下側面の箇所で止まり、歪み検出部が
形成される段差の上側面の箇所まで成長し拡大すること
がない。また段差11の形態とそれを被膜する絶縁膜4
との結合関係により絶縁膜4は薄板片1の表面に強固に
結合し、いっそう絶縁膜4の剥離拡大を防止している。
A pressure sensor is formed as described above. In this pressure sensor, the step 11 is formed on the periphery, so even if peeling or cracking occurs during the cutting process, the peeling will stop at the bottom surface of the step, and the strain detection section will not work properly. It does not grow and expand to the upper side of the formed step. Also, the shape of the step 11 and the insulating film 4 covering it
Due to this bonding relationship, the insulating film 4 is firmly bonded to the surface of the thin plate piece 1, further preventing the insulating film 4 from peeling and expanding.

前記実施例では主に圧力センサについて説明したが、本
発明による構成及び製造方法はその他の歪みセンサ等の
一船釣応カセンサに適用できるものである。また前記溝
12の形成方法としてはその他に型などを利用すること
も可能である。
In the above embodiments, the pressure sensor was mainly described, but the structure and manufacturing method according to the present invention can be applied to other single-boat fishing force sensors such as strain sensors. Further, as a method for forming the groove 12, it is also possible to use a mold or the like.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば、応力セ
ンサとして機能する部分が形成された薄板片の周縁に段
差部分を形成するようにしたため、薄板片ユニットの製
造方法の切断工程で形成される絶縁膜剥離の成長・拡大
が当該段差が存在するために阻止され、歪みゲージや電
極配線の下部の絶縁膜部分に剥離が伝播することがなく
、センサとしての動作信頼性が向上する。また製造方法
にかかる本発明によれば、上記特徴を有する応力センサ
を、単に薄板基材の表面に所定の溝を形成することによ
る容易に製作することができ、低コストで剥離の影響を
除去した動作信頼性の高い応力センサを製造することが
できる。
As is clear from the above description, according to the present invention, since the stepped portion is formed at the periphery of the thin plate piece on which the portion functioning as the stress sensor is formed, the stepped portion is formed in the cutting step of the method for manufacturing the thin plate piece unit. The presence of the step prevents the growth and expansion of the peeling of the insulating film, which prevents the peeling from propagating to the insulating film portion below the strain gauge and electrode wiring, improving the operational reliability of the sensor. Further, according to the present invention relating to the manufacturing method, the stress sensor having the above-mentioned characteristics can be easily manufactured by simply forming a predetermined groove on the surface of a thin plate base material, and the effects of peeling can be eliminated at low cost. A stress sensor with high operational reliability can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る応力センサの縦断面図、第2図〜
第6図は本発明に係る応力センサの製造方法を示す工程
図、第7図は従来の応力センサの縦断面図、第8図〜第
14図は従来の製造方法の工程図である。 〔符号の説明〕 1・・・・・・薄板片 2・・・・φ・筒部材 4・・・・・・絶縁膜 5・・・・・・歪みゲージ 6・・・・・・電極配線 7・・・・・・薄板基材 8・・・・・・多結晶シリコン薄膜 9.13・・噂カッタ 10・・・・・インサート部材 11・・・・・段差 12・・・・・溝
FIG. 1 is a longitudinal sectional view of the stress sensor according to the present invention, and FIG.
FIG. 6 is a process diagram showing a method of manufacturing a stress sensor according to the present invention, FIG. 7 is a longitudinal cross-sectional view of a conventional stress sensor, and FIGS. 8 to 14 are process diagrams of a conventional manufacturing method. [Explanation of symbols] 1...Thin plate piece 2...φ/cylindrical member 4...Insulating film 5...Strain gauge 6...Electrode wiring 7... Thin plate base material 8... Polycrystalline silicon thin film 9.13... Rumor cutter 10... Insert member 11... Step 12... Groove

Claims (6)

【特許請求の範囲】[Claims] (1)受圧部を有する薄板片の一方の面に形成された絶
縁膜と、この絶縁膜上に形成された歪みゲージと、この
歪みゲージと外部の電気回路部とを接続するための電極
配線を有し、前記薄板片が、前記絶縁膜と前記歪みゲー
ジと前記電極配線が形成された大面積の一枚状薄板基材
から切り出されて形成される応力センサにおいて、前記
薄板片の周縁に段差部を有していることを特徴とする応
力センサ。
(1) An insulating film formed on one side of a thin plate having a pressure receiving part, a strain gauge formed on this insulating film, and electrode wiring for connecting this strain gauge to an external electric circuit part. In a stress sensor in which the thin plate piece is cut out from a large area monolithic thin plate base material on which the insulating film, the strain gauge, and the electrode wiring are formed, a periphery of the thin plate piece has a A stress sensor characterized by having a stepped portion.
(2)請求項1記載の応力センサにおいて、前記段差部
は、前記歪みゲージが形成される箇所と切断が行われる
箇所との間の段差であることを特徴とする応力センサ。
(2) The stress sensor according to claim 1, wherein the step portion is a step between a portion where the strain gauge is formed and a portion where cutting is performed.
(3)請求項1又は2記載の応力センサにおいて、前記
薄板片の受圧面の側に筒部材を固定したことを特徴とす
る応力センサ。
(3) The stress sensor according to claim 1 or 2, characterized in that a cylindrical member is fixed to the pressure receiving surface side of the thin plate piece.
(4)請求項1〜3のいずれか1項に記載の応力センサ
において、前記歪みゲージは半導体歪みゲージであるこ
とを特徴とする応力センサ。
(4) The stress sensor according to any one of claims 1 to 3, wherein the strain gauge is a semiconductor strain gauge.
(5)薄板基材に溝を形成し、前記薄板基材の前記溝を
形成した面に絶縁膜を形成し、前記絶縁膜の上にて前記
溝によって囲まれる複数の領域のそれぞれに歪みゲージ
及び電極配線を形成し、前記溝の幅よりも小さい幅、を
有した切断具で前記薄板基材を前記溝に沿って切断し、
複数の応力センサ用薄板片を作るようにしたことを特徴
とする応力センサの製造方法。
(5) forming a groove in a thin plate base material, forming an insulating film on the surface of the thin plate base material on which the groove is formed, and forming a strain gauge on each of a plurality of regions surrounded by the grooves on the insulating film; and electrode wiring, and cutting the thin plate substrate along the groove with a cutting tool having a width smaller than the width of the groove;
A method for manufacturing a stress sensor, characterized in that a plurality of thin plate pieces for stress sensors are manufactured.
(6)請求項5記載の応力センサの製造方法において、
前記歪みゲージは半導体歪みゲージであることを特徴と
する応力センサの製造方法。
(6) In the method for manufacturing a stress sensor according to claim 5,
A method of manufacturing a stress sensor, wherein the strain gauge is a semiconductor strain gauge.
JP33360390A 1990-11-30 1990-11-30 Stress sensor and manufacture thereof Pending JPH04204128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33360390A JPH04204128A (en) 1990-11-30 1990-11-30 Stress sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33360390A JPH04204128A (en) 1990-11-30 1990-11-30 Stress sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04204128A true JPH04204128A (en) 1992-07-24

Family

ID=18267894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33360390A Pending JPH04204128A (en) 1990-11-30 1990-11-30 Stress sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04204128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227283A (en) * 2004-02-09 2005-08-25 Robert Bosch Gmbh Pressure sensor equipped with silicon chip on steel diaphragm
JP2008128864A (en) * 2006-11-22 2008-06-05 Nitta Ind Corp Sensor and manufacturing method therefor
WO2010023006A1 (en) * 2008-08-29 2010-03-04 Robert Bosch Gmbh Method for producing pressure sensor elements
JP2010262990A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Method for manufacturing sensor chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227283A (en) * 2004-02-09 2005-08-25 Robert Bosch Gmbh Pressure sensor equipped with silicon chip on steel diaphragm
JP2008128864A (en) * 2006-11-22 2008-06-05 Nitta Ind Corp Sensor and manufacturing method therefor
WO2010023006A1 (en) * 2008-08-29 2010-03-04 Robert Bosch Gmbh Method for producing pressure sensor elements
JP2010262990A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Method for manufacturing sensor chip

Similar Documents

Publication Publication Date Title
US5438875A (en) Removing sacrificial material through temporary channels as a method of making an overpressure-protected differential pressure sensor
US4071838A (en) Solid state force transducer and method of making same
US5000817A (en) Batch method of making miniature structures assembled in wafer form
US7819015B2 (en) Silicon carbide piezoresistive pressure transducer and method of fabrication
US8906730B2 (en) Method of forming membranes with modified stress characteristics
US4908921A (en) Method of making capacitive pressure sensors
JP3506932B2 (en) Semiconductor pressure sensor and method of manufacturing the same
US10197462B2 (en) Differential pressure sensor full overpressure protection device
KR20010050327A (en) Micromechanical device
EP3176557B1 (en) Pressure sensor die with protection against over pressure for high over pressure to operating span ratios
JPH04204128A (en) Stress sensor and manufacture thereof
JP2000124465A (en) Manufacture of semiconductor dynamical amount sensor
JPS63308390A (en) Manufacture of semiconductor pressure sensor
JP3159060B2 (en) Semiconductor chip bonding structure and bonding method
JP2541184B2 (en) Pressure-electricity converter manufacturing method
JP2003101034A (en) Piezo-resistance device and method of manufacturing the same
JP2800334B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPS62291073A (en) Semiconductor distortion detector
JPH1168120A (en) Semiconductor pressure sensor and its production
JP2726861B2 (en) Manufacturing method of semiconductor pressure sensor
JPS63311774A (en) Semiconductor pressure sensor and manufacture thereof
JPH06302836A (en) Manufacture of semiconductor strain sensor
JPH09292297A (en) Pressure sensor and its manufacture
JPH10111311A (en) Semiconductor acceleration sensor and manufacture thereof
JPS63144582A (en) Manufacture of semiconductor pressure sensor