JPH04204107A - Measuring system of distance in underwater robot and measuring system of surface indentation - Google Patents

Measuring system of distance in underwater robot and measuring system of surface indentation

Info

Publication number
JPH04204107A
JPH04204107A JP33064790A JP33064790A JPH04204107A JP H04204107 A JPH04204107 A JP H04204107A JP 33064790 A JP33064790 A JP 33064790A JP 33064790 A JP33064790 A JP 33064790A JP H04204107 A JPH04204107 A JP H04204107A
Authority
JP
Japan
Prior art keywords
distance
television camera
camera
measured
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33064790A
Other languages
Japanese (ja)
Other versions
JP2584344B2 (en
Inventor
Masakazu Matsushima
正和 松嶋
Shunsuke Takahashi
俊輔 高橋
Toshiyuki Harada
俊之 原田
Shuji Kishimoto
岸本 修治
Mamoru Abe
守 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2330647A priority Critical patent/JP2584344B2/en
Publication of JPH04204107A publication Critical patent/JPH04204107A/en
Application granted granted Critical
Publication of JP2584344B2 publication Critical patent/JP2584344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the main body of a robot from becoming large in size, by a construction wherein a distance between the main body of the robot and a substance to be measured is computed from a prescribed distance between a TV camera and a laser device, an angle of irradiation of the laser device and displacement of a luminescent point inside the sphere of image pickup. CONSTITUTION:The main body 1 of a robot is provided with a TV camera 2 for picking up an image of the surface 9 of a substance to be measured and with a laser device 3 separated by a prescribed space l from the camera 2. The device 3 is so constructed that the luminescent point 10 can be displaced within a sphere F which can be picked up by the camera 2, that is, an angle theta1 of irradiation can be scanned within an angle theta. Information on an image picked up by the camera 2 is led to MONITOR TV 8 to be projected thereon through a TV image circuit 6 in an underwater cable 5 and VTR 7, while it is inputted to a processing operation device 12. The angle theta1 of irradiation for which the device 3 is instructed by a remote operation is inputted to this device 12, together with the space l, which is inputted thereto beforehand, and a distance between the camera 2 and the surface 9 of the substance to be measured is determined from a space between the luminescent point 10 obtained from the information on the image and the center line of the camera 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば発電所の導水路等の点検等に使用される
水中ロボットにおける距離測定方式及び被測定物の表面
凹凸測定方式に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a distance measurement method and a surface roughness measurement method of an object to be measured in an underwater robot used for, for example, inspecting a water conduit in a power plant. .

〔従来技術〕[Prior art]

従来、例えば発電所における導水路内を点検する場合、
水中点検用ロボットが用いられている。この水中点検用
ロボットは導水路内壁面を撮影するテレビカメラを有し
ており、このテレビカメラの西面情報を水中ケーブルを
介して陸上等に配置されたモニターテレビに映し、これ
を作業者が目視しながら水中点検用ロボットを遠隔操作
することによって行なっている。
Conventionally, for example, when inspecting the inside of a water conduit at a power plant,
An underwater inspection robot is used. This underwater inspection robot is equipped with a television camera that photographs the inner wall surface of the headrace channel, and the information from this television camera on the west side is displayed via an underwater cable on a monitor television placed on land, etc., and this is displayed by the operator. This is done by remotely controlling an underwater inspection robot while observing visually.

しかしながら、この作業においては水中ロボットと壁面
間の距離の測定が困難で、特に壁面に剥離等による凹凸
が生じている場合、その凹凸の程度(特に深さ)が測定
できないという問題があった。
However, in this work, it is difficult to measure the distance between the underwater robot and the wall surface, and especially when the wall surface has unevenness due to peeling etc., there is a problem that the degree (particularly the depth) of the unevenness cannot be measured.

ところで、この−船釣に壁面の凹凸測定システムとして
は、(1)超音波を利用する方式と(2)レーザ光を利
用する方式とが知られている。
By the way, there are two known systems for measuring wall surface irregularities for boat fishing: (1) a system that uses ultrasonic waves and (2) a system that uses laser light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる方式の測定システムを水中ロボッ
トに用いる場合に問題がある。
However, there are problems when using such a measurement system in an underwater robot.

即ち、超音波を利用する方法は、多重反射がある場合に
は、多数の反射波の中から特定の反射波を分離して処理
することが困難なために使用できず、その結果、導水路
内等の点検を行なう水中ロボットには使用することがで
きない。
In other words, methods using ultrasonic waves cannot be used when there are multiple reflections because it is difficult to separate and process a specific reflected wave from among the many reflected waves. It cannot be used for underwater robots that perform internal inspections.

一方、後者のレーザ光を利用する場合にも問題がある。On the other hand, there are also problems when using the latter laser beam.

具体的には、第8図に示すようにロボット本体1にテレ
ビカメラ2、レーザ装置3、及び画像センサー4を配置
し、テレビカメラ2からの画像情報は水中ケーブル5内
のテレビ画像2回線6及びVTR7を経てモニタテレビ
8に映像を映しだす。
Specifically, as shown in FIG. 8, a television camera 2, a laser device 3, and an image sensor 4 are arranged on the robot body 1, and image information from the television camera 2 is transmitted through a television image line 6 in an underwater cable 5. The video is then projected onto a monitor television 8 via a VTR 7.

一方、レーザ装置3により被測定物の表面9に照射され
た輝点10は画像センサー4により検知され画像センサ
データ回線11を介して処理・演算装置12へ導かれ、
ここで水中ロボットと被測定物の表面9(壁面)との距
離が演算され、インターフェイス13及びVTR7を経
てモニタテレビ8上に映すことができるとともに、デー
タ収録装置14に収録されることとなる。
On the other hand, a bright spot 10 irradiated onto the surface 9 of the object to be measured by the laser device 3 is detected by the image sensor 4 and guided to the processing/arithmetic device 12 via the image sensor data line 11.
Here, the distance between the underwater robot and the surface 9 (wall surface) of the object to be measured is calculated, and can be displayed on the monitor television 8 via the interface 13 and VTR 7, and is also recorded in the data recording device 14.

しかし、この方式においては、特別の画像センサー4及
び画像センサデータ回線11を設ける必要があり、ロボ
ット本体1が大型化し、かつ建造コストが高くなるとい
う問題があった。
However, in this method, it is necessary to provide a special image sensor 4 and image sensor data line 11, which increases the size of the robot body 1 and increases the construction cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記したような従来の問題を解決するためにな
されたものであって、ロボット本体に被測定物を撮影す
るテレビカメラと、該テレビカメラと所定間隔を有し、
かつ少なくとも前記テレビカメラの撮影範囲内に輝点を
変位可能なレーザ装置とを配置するとともに、前記テレ
ビカメラの画像情報を水中ケーブルを介して水上に設け
られた処理・演算処理に導き、該処・理演算装置におい
て、前記所定間隔と前記レーザ装置の照射角と前記輝点
の変位とによりロボット本体と被測定物との距離を演算
する如く構成した点に特徴がある。
The present invention has been made in order to solve the conventional problems as described above, and includes a television camera mounted on a robot body for photographing an object to be measured, and a robot having a predetermined distance from the television camera.
A laser device capable of displacing a bright spot is disposed at least within the photographing range of the television camera, and the image information of the television camera is guided to processing/arithmetic processing provided above the water via an underwater cable. - The physical calculation device is characterized in that it is configured to calculate the distance between the robot body and the object to be measured based on the predetermined interval, the irradiation angle of the laser device, and the displacement of the bright spot.

更−に、本発明は、水中ロボットにおける距離測定方式
とレーザ装置による輝点をX軸、Y軸方向に間隔を置い
て変位させ、複数の輝点を有する画面情報を作成し、処
理・演算装置において所定間隔と前記レーザ装置の照射
角と各輝点とにより各輝点との距離を演算するとともに
、この各輝点間を結ぶことによって水中ロボットにおけ
る被測定物の表面凹凸測定方式を提供するものである。
Furthermore, the present invention displaces bright spots using a distance measurement method and a laser device in an underwater robot at intervals in the X-axis and Y-axis directions, creates screen information having a plurality of bright spots, and performs processing and calculations. The apparatus calculates the distance to each bright spot using a predetermined interval, the irradiation angle of the laser device, and each bright spot, and connects the bright spots to provide a method for measuring the surface unevenness of an object to be measured in an underwater robot. It is something to do.

〔作  用] 本発明にかかる水中ロボットにおける距離測定方式によ
れば、レーザ装置による輝点を有する画面情報に基づい
て演算によりこれを測定するようにしたため、特別の画
像センサーや画像データ回線を必要としないため、ロボ
ット本体の大型化を防止することができるとともに、建
造コストを低減させることが可能である。
[Function] According to the distance measurement method for the underwater robot according to the present invention, since the distance is measured by calculation based on screen information having a bright spot from a laser device, a special image sensor and image data line are not required. Therefore, it is possible to prevent the robot body from increasing in size and to reduce construction costs.

〔実 施 例〕〔Example〕

以下、第1図乃至第7図に基づき本発明による水中ロボ
ットにおける距離測定方式、及び表面凹凸測定方式の一
実施例を説明する。
Hereinafter, an embodiment of a distance measuring method and a surface unevenness measuring method in an underwater robot according to the present invention will be described based on FIGS. 1 to 7.

第1図において、第8図と同一符号は同一名称を示す。In FIG. 1, the same reference numerals as in FIG. 8 indicate the same names.

ロボット本体1には被測定物の表面9を撮影するための
テレビカメラ2とこのテレビカメラ2と所定間隔lを持
たせてレーザ装置3を取付けている。
A television camera 2 for photographing a surface 9 of an object to be measured and a laser device 3 are attached to the robot body 1 with a predetermined distance 1 from the television camera 2.

そしてこのレーザ装置3は少なくともテレビカメラ2の
撮影可能な範囲Fに輝点10を変位させることができる
よう、即ち照射角θ1が角θ内で走査可能なように構成
されている。
The laser device 3 is configured to be able to displace the bright spot 10 at least within the photographable range F of the television camera 2, that is, to be able to scan within the irradiation angle θ1.

そして、このテレビカメラ2で映された画面情報は、水
中ケーブル5内のテレビ画像回線6、VTR7を介して
モニタテレビ8に導かれて映写するとともに処理演算装
置12へ入力される。
The screen information shown by this television camera 2 is guided to a monitor television 8 via a television image line 6 in an underwater cable 5 and a VTR 7, where it is projected and input into a processing arithmetic unit 12.

この処理演算装置12には第2図に示すように予めテレ
ビカメラ2とレーザ装置3との間隔lが入力されている
とともに、レーザ装置3を遠隔操作により指示した照射
角θ1が入力されている。そして画面情報から得られた
輝度10とテレビカメラ2の中心線との間隔Xから先ず
角β1が求められる。然る後、 の(1)式より輝点10とテレビカメラ2の中心線との
実際の距離X1が求められる。一方、の式によりテレビ
カメラ2の中心Oと被測定物の表面9までの距離Y、が
求められるのである。
As shown in FIG. 2, this processing/arithmetic unit 12 has input in advance of the distance l between the television camera 2 and the laser device 3, as well as the irradiation angle θ1 instructed by the remote control of the laser device 3. . First, the angle β1 is determined from the distance X between the brightness 10 obtained from the screen information and the center line of the television camera 2. After that, the actual distance X1 between the bright spot 10 and the center line of the television camera 2 is determined from the following equation (1). On the other hand, the distance Y between the center O of the television camera 2 and the surface 9 of the object to be measured can be determined by the following equation.

そしてかかるレーザ装置3を遠隔操作によりX方向に間
隔を置いて移動させる。即ち、第3図に示すように照射
角θ1を照射角θ1〜θnに順次変更し、輝点10を水
平方向に変位させてその都度前記方式により演算装置が
なされ、その結果をデータ収録装置14に収録するとと
もにインターフェイス13、VTR7を経てモニタテレ
ビ8上に表示する。′そして第4図に示すモニタテレビ
8上の点Pを結ぶことにより、二次的な凹凸を表示する
ことができる。
The laser device 3 is then moved at intervals in the X direction by remote control. That is, as shown in FIG. 3, the illumination angle θ1 is sequentially changed to the illumination angles θ1 to θn, the bright spot 10 is displaced in the horizontal direction, and the arithmetic unit is calculated according to the above method each time, and the results are stored in the data recording device 14. At the same time, it is displayed on a monitor television 8 via an interface 13 and a VTR 7. 'And by connecting the points P on the monitor television 8 shown in FIG. 4, secondary unevenness can be displayed.

勿論、レーザ族W3を前記したように水平照射角θ1に
加えて垂直照射角ψで可変することもできる。即ちZ軸
方向へ可変とするものであって、この場合第5図乃至第
7図を参照して説明する。
Of course, the laser group W3 can be varied by the vertical irradiation angle ψ in addition to the horizontal irradiation angle θ1 as described above. That is, it is variable in the Z-axis direction, and this case will be explained with reference to FIGS. 5 to 7.

第5図においてレーザ族W3は水平照射角θ、及び垂直
照射角ψで被測定物の表面9に輝点10を照射する。こ
の実施例においてテレビカメラ2の水平角2α、垂直角
2βで可変可能なようになっている。
In FIG. 5, a laser group W3 irradiates a bright spot 10 onto the surface 9 of the object to be measured at a horizontal irradiation angle θ and a vertical irradiation angle ψ. In this embodiment, the horizontal angle 2α and vertical angle 2β of the television camera 2 are variable.

そして前述したようにががる輝点1oを有する画面情報
が処理演算装置12へ導入されると、テレビカメラ2の
中心がらの輝点1oにおけるX1yの変位と間隔!及び
水平照射角θがらその変位量が次の(3)〜(5)式か
ら求められる。
Then, when the screen information having the bright spot 1o that diverges as described above is introduced into the processing arithmetic unit 12, the displacement and interval of X1y at the bright spot 1o from the center of the television camera 2! The amount of displacement is obtained from the following equations (3) to (5) using the horizontal illumination angle θ.

sinθ tanδ Z=□2  ・・・・ (5) cos (θ+γ) ただし、 tanγ””    □2tanα tanδ0no  ・2 tanβCo57ここでHO
・・・テレビカメラ画像垂直幅SO・・・   〃  
  水平軸 そして第6図のaまたはbに示すようにレーザ族f3を
水平方向に変位させる。
sinθ tanδ Z=□2 ・・・・ (5) cos (θ+γ) However, tanγ”” □2tanα tanδ0no ・2 tanβCo57 Here HO
...TV camera image vertical width SO...
horizontal axis and displace laser family f3 in the horizontal direction as shown in FIG. 6a or b.

次にレーザ装置3を垂直方向に変向して輝点10の間隔
を置いて照射し、この画面情報により演算した後、モニ
タテレビ8上に表示すると第7図に示すように三次元的
な距離が表示されることになる。したがって、被測定物
の表面の凹凸が測定できるのである。
Next, the laser device 3 is turned in the vertical direction to irradiate bright spots 10 at intervals, and after calculating based on this screen information, when displayed on the monitor television 8, a three-dimensional image appears as shown in FIG. The distance will be displayed. Therefore, the unevenness of the surface of the object to be measured can be measured.

[発明の効果〕 本発明にかかる水中ロボットにおける距離測定方式及び
表面の凹凸測定方式は、ロボット本体に被測定物を撮影
するテレビカメラと、該テレビカメラと所定間隔を有し
かつ少なくとも前記テレビカメラの撮影範囲内に輝点を
走査可能な如きレーザ装置とを配置し、更に前記テレビ
カメラの画面情報を水中ケーブルを介して水上に設けら
れた処理・演算装置に導き、該処理・演算装置において
、前記所定間隔とレーザ装置の照射角と前記輝点の変位
とによりロボット本体と被測定物との距離を演算するよ
うにした構成している。
[Effects of the Invention] The distance measuring method and the surface unevenness measuring method in the underwater robot according to the present invention include a television camera that photographs an object to be measured on the robot body, and a television camera that is located at a predetermined distance from the television camera and that is located at a predetermined distance from the television camera. A laser device capable of scanning a bright spot is arranged within the photographing range of the television camera, and furthermore, the screen information of the television camera is guided to a processing/computing device installed above the water via an underwater cable, and the processing/computing device The distance between the robot body and the object to be measured is calculated based on the predetermined interval, the irradiation angle of the laser device, and the displacement of the bright spot.

従って、レーザ装置による輝点を有する画面情報に基づ
いて演算によりこれを測定するようにしたため、′特別
の画像センサーや画像データ回線を必要としないため、
ロボット本体の大型化を防止することができるとともに
、建造コストを低減させることができる。
Therefore, since this is measured by calculation based on screen information with bright spots from a laser device, no special image sensor or image data line is required.
It is possible to prevent the robot main body from increasing in size and to reduce construction costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明による水中ロボットの距離
測定方式及び表面凹凸測定方式の実施例を示すものであ
って、第1図は本発明を実施するための装置の系統図、
第2図は演算方式の説明図、第3図は二次元的凹凸測定
の説明図、第4図はモニタテレビ画面図、第5図は他の
実施例における演算方式の説明図、第6図は三次的凹凸
測定の説明図、第7図はモニタテレビ画面図である。ま
た、第8図は従来のレーザ光を水中テレビの距離測定に
用いる場合の説明図である。 1・・・ロボット本体  2・・・テレビカメラ3・・
・レーザ装W   4・・・画像センサー5・・・水中
ケーブル  6・・・テレビ画像回線7・・・VTR8
・・・モニタテレビ 9・・・表面      10・・・輝点11・・・画
像センサデータ回線 12・・・処理・演算装置 13・・・インターフェイ
ス14・・・データ収録装置。 代理人 弁理士  小 川 信 −
1 to 7 show embodiments of a distance measuring method and a surface unevenness measuring method for an underwater robot according to the present invention, and FIG. 1 is a system diagram of an apparatus for carrying out the present invention;
Fig. 2 is an explanatory diagram of the calculation method, Fig. 3 is an explanatory diagram of two-dimensional unevenness measurement, Fig. 4 is a monitor TV screen diagram, Fig. 5 is an explanatory diagram of the calculation method in another embodiment, Fig. 6 7 is an explanatory diagram of tertiary unevenness measurement, and FIG. 7 is a monitor TV screen diagram. Moreover, FIG. 8 is an explanatory diagram when a conventional laser beam is used for distance measurement of an underwater television. 1...Robot body 2...TV camera 3...
・Laser equipment W 4...Image sensor 5...Underwater cable 6...TV image line 7...VTR 8
...Monitor TV 9...Surface 10...Bright spot 11...Image sensor data line 12...Processing/arithmetic device 13...Interface 14...Data recording device. Agent Patent Attorney Nobuo Ogawa −

Claims (1)

【特許請求の範囲】 1、ロボット本体に被測定物を撮影するテレビカメラと
、該テレビカメラと所定間隔を有しかつ少なくとも前記
テレビカメラの撮影範囲内に輝点を走査可能なレーザ装
置とを配置するとともに、前記テレビカメラの画面情報
を水中ケーブルを介して水上に設けられた処理・演算装
置に導き、該処理・演算装置において、前記所定間隔と
レーザ装置の照射角と前記輝点の変位とによりロボット
本体と被測定物との距離を演算するようにしたことを特
徴とする水中ロボットにおける距離測定方式。 2、ロボット本体に被測定物を撮影するテレビカメラと
、該テレビカメラと所定間隔を有しかつ少なくとも前記
テレビカメラの撮影範囲内に輝点を変位可能な如きレー
ザ装置とを配置するとともに、前記テレビカメラの画面
情報を水中ケーブルを介して水上に設けられた処理・演
算装置に導くように構成し、前記レーザ装置による輝点
を少なくともX軸方向に間隔を置いて変位させて複数の
輝点を有する画面情報を作成し、前記処理・演算装置に
おいて前記所定間隔とレーザ装置の照射角と、前記各輝
点とにより各輝点との距離を演算するとともに該各輝点
間を結ぶようにしたことを特徴とする水中ロボットにお
ける被測定物の表面凹凸測定方式。
[Claims] 1. A television camera for photographing an object to be measured on a robot body, and a laser device having a predetermined distance from the television camera and capable of scanning a bright spot at least within the photographing range of the television camera. At the same time, the screen information of the television camera is guided through an underwater cable to a processing/arithmetic device installed on the water, and the processing/arithmetic device determines the predetermined interval, the irradiation angle of the laser device, and the displacement of the bright spot. A distance measurement method for an underwater robot, characterized in that the distance between the robot body and an object to be measured is calculated by 2. A television camera for photographing the object to be measured and a laser device having a predetermined distance from the television camera and capable of displacing a bright spot at least within the photographing range of the television camera are disposed on the robot body; The screen information of the television camera is configured to be guided to a processing/arithmetic unit installed on the water via an underwater cable, and the bright spots produced by the laser device are displaced at intervals at least in the X-axis direction to form a plurality of bright spots. , and the processing/arithmetic unit calculates the distance to each bright spot based on the predetermined interval, the irradiation angle of the laser device, and each bright spot, and connects the bright spots. A method for measuring the surface roughness of an object to be measured in an underwater robot.
JP2330647A 1990-11-30 1990-11-30 Distance measurement method and surface roughness measurement method for underwater robot Expired - Fee Related JP2584344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2330647A JP2584344B2 (en) 1990-11-30 1990-11-30 Distance measurement method and surface roughness measurement method for underwater robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2330647A JP2584344B2 (en) 1990-11-30 1990-11-30 Distance measurement method and surface roughness measurement method for underwater robot

Publications (2)

Publication Number Publication Date
JPH04204107A true JPH04204107A (en) 1992-07-24
JP2584344B2 JP2584344B2 (en) 1997-02-26

Family

ID=18235009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2330647A Expired - Fee Related JP2584344B2 (en) 1990-11-30 1990-11-30 Distance measurement method and surface roughness measurement method for underwater robot

Country Status (1)

Country Link
JP (1) JP2584344B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285541A (en) * 1995-04-17 1996-11-01 Shadan Kento Kai Method and device for distance measurement and method and device for medical support
KR100830243B1 (en) * 2006-05-19 2008-05-16 대우조선해양 주식회사 Final sighting
JP2008236589A (en) * 2007-03-23 2008-10-02 Toshiba Corp Underwater camera module, monitoring device comprising underwater camera module and operation of underwater camera module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217606A (en) * 1985-07-15 1987-01-26 Hitachi Zosen Corp Underwater measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217606A (en) * 1985-07-15 1987-01-26 Hitachi Zosen Corp Underwater measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285541A (en) * 1995-04-17 1996-11-01 Shadan Kento Kai Method and device for distance measurement and method and device for medical support
KR100830243B1 (en) * 2006-05-19 2008-05-16 대우조선해양 주식회사 Final sighting
JP2008236589A (en) * 2007-03-23 2008-10-02 Toshiba Corp Underwater camera module, monitoring device comprising underwater camera module and operation of underwater camera module

Also Published As

Publication number Publication date
JP2584344B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US11887291B2 (en) Systems and methods for inspecting pipelines using a robotic imaging system
KR101204486B1 (en) Instrument for examining/measuring object to be measured
JP4799088B2 (en) Method and apparatus for measuring work position in remote inspection
US11635391B2 (en) Systems and methods for inspecting pipelines using a pipeline inspection robot
US10633066B2 (en) Apparatus and methods for measuring positions of points on submerged surfaces
US20020181650A1 (en) Apparatuses and methods for non-destructive inspection
JP4111902B2 (en) Automatic inspection system
EP0009856A1 (en) Underwater apparatus for inspecting a submerged object
JP2000018921A (en) Dimension measuring method and apparatus thereof
JP2006162335A (en) X-ray inspection device, x-ray inspection method and x-ray inspection program
WO2017145202A1 (en) Inspection system, inspection method, and inspection program
JPH04204107A (en) Measuring system of distance in underwater robot and measuring system of surface indentation
US20030016285A1 (en) Imaging apparatus and method
JP2003148936A (en) Three-dimensional measurement method for object by light-section method
JPH0675617A (en) Camera view point change system
JPH0334803B2 (en)
JPH0238995A (en) In-furnace visual inspection device
JP2003075361A (en) Non-destructive inspection method
JPH02150734A (en) Underwater inspecting device
JPS6217606A (en) Underwater measuring device
JPH07229848A (en) Equipment for inspecting product through image processing
JPS62137681A (en) Observation device for body surface
JPH01127952A (en) Ultrasonic video device
JPH08271679A (en) Reactor vessel inside inspection device
JPH0778471B2 (en) Wafer adhesion dust inspection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees