JPH04203954A - Emission spectral analysis method of acid-soluble aluminum within steel - Google Patents

Emission spectral analysis method of acid-soluble aluminum within steel

Info

Publication number
JPH04203954A
JPH04203954A JP33319090A JP33319090A JPH04203954A JP H04203954 A JPH04203954 A JP H04203954A JP 33319090 A JP33319090 A JP 33319090A JP 33319090 A JP33319090 A JP 33319090A JP H04203954 A JPH04203954 A JP H04203954A
Authority
JP
Japan
Prior art keywords
analysis
steel
emission
sample
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33319090A
Other languages
Japanese (ja)
Inventor
Kazumasa Sugimoto
杉本 和巨
Takanori Akiyoshi
孝則 秋吉
Koji Tsukada
塚田 鋼二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33319090A priority Critical patent/JPH04203954A/en
Publication of JPH04203954A publication Critical patent/JPH04203954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable analysis to be improved by eliminating a tip of a projecting part which is generated after coagulation and then analyzing an emission signal obtained by discharge. CONSTITUTION:An electron beam is emitted onto a surface layer of a sample 1 for using one part of it and then a tip of a projecting part 3 of a fused and coagulated part 2 which is generated by fusion and coagulation operation is removed after this fused part is coagulated. Then, emission is made by discharge, the obtained emission signal is analyzed, and a quantitative value is obtained. Then, an acid-soluble Al within steel is condensed and eliminated previously so that an emission signal when the acid-soluble Al within steel exists can be distinguished from an emission signal when it does not exist clearly, thus enabling analysis accuracy to be improved and obtaining an analysis value in a short time even if no chemical analysis is made.

Description

【発明の詳細な説明】 [産業上の利用分野] 鋼中成分の迅速分析に関連し、特に介在物を形成し易く
機器分析では充分な精度か得られ難い鋼中アルミニウム
のうち酸可溶性アルミニウムの発光分光分析に関する。
[Detailed Description of the Invention] [Industrial Application Field] Related to the rapid analysis of components in steel, acid-soluble aluminum, which is particularly susceptible to the formation of inclusions and difficult to obtain sufficient accuracy with instrumental analysis, Regarding emission spectroscopy.

[従来の技術] 製鋼に際してアルミニウムは脱酸剤として投入され、大
半は酸化物となってスラブ中に移行するか、一部は鋼中
に残る。この残ったアルミニウムには介在物の状態で存
在するものと、鋼に固溶しているものとかある。これら
のアルミニウムは正確には化学量論に基づいた化学分析
により測定されるものであり、存在形態の識別は酸に溶
解するかしないかによって行われている。即ち、前者は
殆どか酸化物で酸に溶解しない酸不溶性アルミニウム(
以下、 In5olA A’と称す)であり、後者は酸
に溶解する酸可溶性アルミニウム(以下、5olAAと
称す)である。又、両者を合わせたものが全アルミニウ
ム(以下、T、Afと称す)である。
[Prior Art] During steel manufacturing, aluminum is added as a deoxidizing agent, and most of it becomes an oxide and migrates into the slab, or a portion remains in the steel. Some of this remaining aluminum exists in the form of inclusions, while others exist as a solid solution in the steel. These types of aluminum are precisely measured by chemical analysis based on stoichiometry, and the existence form of aluminum is determined by whether it dissolves in acid or not. That is, the former is mostly acid-insoluble aluminum (which is an oxide and does not dissolve in acids).
The latter is acid-soluble aluminum (hereinafter referred to as 5olAA) that dissolves in acid. Moreover, the combination of both is total aluminum (hereinafter referred to as T and Af).

5olA lは、鋼の機械的性質に影響を与える重要な
成分てあり、製鋼工程管理にはその分析値の迅速なフィ
ードバックか要求されている。このため、湿式で行う化
学分析では時間がかかり過ぎるので、短時間分析法であ
る発光分光分析法を用いて高精度の情報が得られるよう
研究が続けられている。
5olAl is an important component that affects the mechanical properties of steel, and rapid feedback of its analytical values is required for steelmaking process control. For this reason, wet chemical analysis takes too much time, so research is continuing to obtain highly accurate information using optical emission spectroscopy, which is a short-time analysis method.

鋼中成分の発光分光分析では、溶鋼を固化した試料中の
元素を放電エネルギーによって励起し、基底状態に戻る
時に発する光の波長と強度とから各々元素種及び定量情
報を得る。そして、 In5olAI!と5olA I
!の形態別定量分析を行う場合は、両者の発光挙動の相
違に基づいて、放電パルス毎に得られる発光信号の強度
についての度数分布(以下、強度分布と称す)を解析す
ることによって、これらの量を求めることが行われてい
る。解析の方法は種々あり、歪み法、時差法、エネルギ
ー交互変換法などが知られている。
In emission spectroscopic analysis of components in steel, elements in a sample of solidified molten steel are excited by discharge energy, and the type and quantitative information of each element is obtained from the wavelength and intensity of the light emitted when returning to the ground state. And In5olAI! and 5olA I
! When performing a quantitative analysis of each type of light emission, based on the difference in light emission behavior between the two, these can be analyzed by analyzing the frequency distribution of the intensity of the light emission signal obtained for each discharge pulse (hereinafter referred to as intensity distribution). The amount is being determined. There are various analysis methods, including the distortion method, time difference method, and energy alternating conversion method.

しかし、従来、発光分光分析では試料中の In5oI
A l!の含有量が多い場合、5olA t!の分析精
度が劣るという欠点があり、最近ではその改善に努力が
払われている。例えば、CAMP−I S I JVo
13 (1990)−601では、Afの発光信号と同
時に酸素の発光信号を得てこれらを解析することによっ
て5olA 1分析精度を向上させる方法(以下、酸素
解析法と称す)か報告されている。即ち、酸素の発光信
号強度とAfの発光信号強度の関係に外挿手法を適用し
、酸素の発光を伴わないAI!の発光信号強度を推定す
ることによって5olA l量を求める。
However, conventionally, in emission spectrometry, In5oI in the sample
Al! If the content of is high, 5olA t! However, recently, efforts have been made to improve the accuracy of analysis. For example, CAMP-I S I JVo
13 (1990)-601, a method (hereinafter referred to as oxygen analysis method) of improving the accuracy of 5olA 1 analysis by obtaining and analyzing an oxygen emission signal simultaneously with an Af emission signal is reported. That is, by applying an extrapolation method to the relationship between the luminescence signal intensity of oxygen and the luminescence signal intensity of Af, AI! without oxygen luminescence is obtained. The amount of 5olAl is determined by estimating the luminescence signal intensity of .

[発明が解決しようとする課題] しかしなから、酸素の測定では利用し得る測定線の波長
か短く非常に吸収され易いので、現状では、酸素の測定
にはかなりの困難が伴うこと、と共に分析値にも未だ充
分な精度か得られないという問題が残されていた。
[Problem to be solved by the invention] However, the wavelength of the measurement line that can be used to measure oxygen is short and absorption is very easy. There still remained the problem that the values were not sufficiently accurate.

この問題を解決するためにこの発明は行われたもので、
発光前に 1nsolA lを充分に除くことによって
発光分光分析による5olA 1分析の精度を向上させ
ることを目的とする。
This invention was made to solve this problem.
The purpose is to improve the accuracy of 5olA 1 analysis by emission spectrometry by sufficiently removing 1nsolA 1 before emitting light.

[課題を解決するための手段] この目的を達成するための手段は、鋼の成分分析用試料
の分析に供する面にエレクトロンビームを照射して試料
表層の一部を溶融し、この溶融部か凝固した後に溶融凝
固操作によって生した凸部の先端を除去し、その後に放
電により発光させ得られる発光信号を解析することによ
って定量値を求める鋼中可溶性アルミニウムの発光分光
分析方法である。
[Means for Solving the Problem] The means for achieving this purpose is to irradiate the surface of a sample for component analysis of steel with an electron beam to melt a part of the surface layer of the sample, and to melt this melted part. This is an emission spectroscopic analysis method for soluble aluminum in steel, in which a quantitative value is obtained by removing the tips of the protrusions produced by the melt-solidification operation after solidification, and then emitting light by electric discharge and analyzing the resulting luminescent signal.

[作用] 鋼中成分の発光分光分析では、一般に放電エネルギーは
数百mのパルスとして与えられる。したがって、この放
電に応じて発光信号が得られるが、放電点内にIn5o
lA j7が存在した場合の発光信号(以下、Slと称
す)と存在しない場合の発光信号(以下、S、と称す)
とではその強度が異なり、S、の強度の方か大きいこと
か知られている。これが、発光挙動の相違である。この
相違を利用して、発光信号を解析するのであるが、この
相違は比較によってのみ知り得るものである。言い換え
れば、ある強度以上の発光信号か31でそれ以下の発光
信号がS、と判るものではない。
[Operation] In the emission spectroscopic analysis of components in steel, discharge energy is generally given as a pulse of several hundred meters. Therefore, a light emission signal is obtained in response to this discharge, but there is no In5O within the discharge point.
Luminescence signal when lA j7 exists (hereinafter referred to as Sl) and emission signal when it does not exist (hereinafter referred to as S)
It is known that the strength is different between S and S, and that the strength of S is greater. This is the difference in light emission behavior. This difference is used to analyze the luminescence signal, but this difference can only be known by comparison. In other words, it cannot be determined that a light emission signal with an intensity above a certain level is 31, and a light emission signal with an intensity lower than that is S.

[n5olA I!を殆ど含まない試料のAfの発光信
号の強度分布はS、の分布であり、 [n5olA I
!を含む試料のAfの発光信号の強度分布はSIとS。
[n5olA I! The intensity distribution of the Af emission signal of the sample containing almost no ion is the distribution of S, and [n5olA I
! The intensity distribution of the Af emission signal of the sample containing SI and S.

の混ざった分布であるが、前者と後者との間にはパター
ン或いは中央値に相違が見られる。このことから、Sl
の強度分布と83の強度分布との間には更に明瞭な相違
が存在すると推定される。しかし、ここで問題となるの
は、 In5olA l量か多く、全ての放電点内に 
1nsolA lか存在するような場合である。この場
合、発光信号はS、のみとなり比較の対象となるS、が
無く、信号強度から両者を識別することか不可能となる
。In5ol八l量の多い試料では上記の状態に近づい
ており、これか5olA f分析精度低下の原因となっ
ている。
Although the distribution is a mixture of the two, there are differences in the pattern or median value between the former and the latter. From this, Sl
It is estimated that there is a clearer difference between the intensity distribution of 83 and the intensity distribution of 83. However, the problem here is that the amount of In5olA is large and all discharge points are
This is a case where 1nsolA1 exists. In this case, the light emission signal is only S, and there is no S to be compared, making it impossible to distinguish between the two from the signal strength. Samples with a large amount of In5olAf approach the above state, and this is the cause of the decrease in the accuracy of 5olAf analysis.

第6図は歪み法を使用して解析した四種の試料種につい
て、5olA !!の発光分光分析値を化学分析値と較
べたものである。縦軸か発光分光分析値で、横軸が化学
分析値である。○印は In5olA /の多い転炉溶
鋼で0.01〜0.02wt%のIn5olA I!を
含んでいる。○印は全て直線の上側にあり正誤差を伴っ
ていることが読み取れる。
Figure 6 shows 5olA! for four sample types analyzed using the strain method. ! This is a comparison of the emission spectroscopic analysis values and the chemical analysis values. The vertical axis is the emission spectroscopic analysis value, and the horizontal axis is the chemical analysis value. The circle indicates 0.01-0.02wt% In5olA I! in converter molten steel with a large amount of In5olA I! Contains. All ○ marks are above the straight line, indicating that there is a correct error.

この問題を解消するためには、S8がSlと比較出来る
程度の頻度で得られるように、試料中のIn5olA 
I!を減らしてやればよい。
In order to solve this problem, it is necessary to obtain In5olA in the sample so that S8 can be obtained with a frequency comparable to Sl.
I! All you have to do is reduce it.

対象となる鋼では、5olA I量の上限か0.08%
、In5olA l量の上限か002%程度てあり、[
n5olA !!量か 0.005%を超えるような試
料で、上記した精度の問題が生じている。
For the target steel, the upper limit of 5olA I content is 0.08%.
, the upper limit of the amount of In5olA is about 002%, [
n5olA! ! The above-mentioned accuracy problem occurs with samples where the amount exceeds 0.005%.

したがって、 In5olA l量を0005%以下に
減らしてやればよいことになる。
Therefore, it is sufficient to reduce the amount of In5olAl to 0005% or less.

分析に供する面にニレクロトンビームを照射して試料表
層の一部を溶融し、凝固後に溶融凝固によって生した凸
部を除去することによって分析対象部の 1nsolA
 Iを減らすことか出来る。試料の一部を溶融すると、
 In5olA 1.は、融点か高くて溶融せず比重が
鋼の半分しかないので、浮上してくる。しかも、エレク
トロンビームを照射して溶融した場合、ビームを中心に
円形に溶融しその中央部か凸状に盛り上かって凝固する
。この様子を第1図に示す。図で、1は試料、2は溶融
凝固部、3は凸部である。
The surface to be analyzed is irradiated with a Nirecroton beam to melt part of the surface layer of the sample, and after solidification, the protrusions created by melting and solidification are removed to obtain 1nsolA of the target area.
It is possible to reduce I. When a part of the sample is melted,
In5olA 1. It has a high melting point, does not melt, and has only half the specific gravity of steel, so it floats to the surface. Furthermore, when the material is melted by irradiating it with an electron beam, it melts in a circular shape around the beam and solidifies in a convex shape at the center. This situation is shown in FIG. In the figure, 1 is a sample, 2 is a melted solidified part, and 3 is a convex part.

浮上してくる In5olAβは凸部3の先端に濃縮さ
れて集まる。この凸部3の先端を除去すると溶融凝固部
2に存在していた殆との 1nsolA !!か除かれ
ることになる。除去の仕方は、試料表面調整に平常用い
ているアルミナを含まないサンドペーパて研磨してもよ
く、又、頂部には放電し易いので、予備放電によって除
去することもできる。溶解凝固の過程で5olA lは
変化してはならないので溶融は非酸化性雰囲気で行う必
要があるが、真空中で照射されるエレクトロンビームは
これにも適している。又、過剰に高密度の溶融エネルギ
ーが投入された場合に、蒸発、突沸などにより試料が変
化するおそれもあるが、この点でも、エレクトロンビー
ム溶解は適している。
The floating In5olAβ is concentrated and collected at the tip of the convex portion 3. When the tip of this convex part 3 is removed, most of the 1nsolA that was present in the melted solidified part 2 is removed! ! or will be removed. The removal may be carried out by polishing with alumina-free sandpaper, which is commonly used for sample surface preparation, or by pre-discharge, since discharge is likely to occur at the top. Since 5olA1 must not change during the melting and solidification process, melting must be performed in a non-oxidizing atmosphere, and electron beam irradiation in a vacuum is also suitable for this purpose. Furthermore, if excessively high-density melting energy is input, there is a risk that the sample may change due to evaporation, bumping, etc., but electron beam melting is also suitable in this respect.

このように、溶融凝固し、凸部先端の除去を行った表層
部を分析対象とするが、 [n5olA fを0.02
%程度を含む試料でも、分析対象部では0.002以下
に減少している。このように、1nsolAf量は激減
しているので、最も好都合な条件で解析することが出来
、分析の精度、正確度は大幅に向上する。この解析には
、当然、従来研究されている [n5olA I!と5
olA fの発光挙動の相違を利用した方法、例えば、
歪み法、時差法、エネルギー交互変換法などを用いるこ
とが出来る。
In this way, the surface layer part that has been melted and solidified and the tips of the convex parts have been removed is the subject of analysis, but [n5olA f is 0.02
Even in samples containing approximately 0.0%, the amount decreased to 0.002 or less in the analysis target area. In this way, since the amount of 1nsolAf is drastically reduced, analysis can be performed under the most convenient conditions, and the precision and accuracy of analysis is greatly improved. Naturally, conventional research has been carried out for this analysis [n5olA I! and 5
A method that utilizes the difference in the luminescence behavior of olA f, for example,
A distortion method, a time difference method, an energy alternating conversion method, etc. can be used.

[実施例] 転炉出鋼溶鋼、取鍋精錬溶鋼、RH脱ガス精錬溶鋼、及
び連続鋳造溶鋼からサンプルを採取し、直径30画円柱
状に凝固し、断面を切断研磨して分析試料とした。
[Example] Samples were taken from molten steel extracted from a converter, ladle refined molten steel, RH degassed molten steel, and continuous cast molten steel, solidified into a cylindrical shape of 30 strokes in diameter, cut and polished in cross section, and used as analysis samples. .

1nsolA lを最も多く含む試料種は転炉出鋼溶鋼
で0.01〜0.02wt%、取鍋精錬溶鋼では0.0
05〜0.010wt%、RH脱ガス精錬溶銅では0.
002〜0.005wt%、連続鋳造溶鋼ではO,OO
1〜0. 002wt%を各々含む。
The sample types containing the most 1nsolAl are 0.01 to 0.02 wt% of molten steel extracted from a converter, and 0.0% of molten steel refined in a ladle.
05 to 0.010 wt%, and 0.05 to 0.010 wt% for RH degassed molten copper.
002-0.005wt%, O, OO for continuous casting molten steel
1~0. 002 wt% each.

これらの試料を用いて5olA I!の分析を行い、分
析値の再現精度及び正確度とを調へた。なお、この発明
の実施例としては、凸部先端をサンダーにより機械的に
除去したものと予備放電によって除去したものについて
調べた。同時に、比較例として分析部を溶融凝固しなか
ったものについても調へ、これらを比較した。
Using these samples, 5olA I! We analyzed the reproducibility and accuracy of the analytical values. As examples of the present invention, two cases were investigated: one in which the tip of the convex part was removed mechanically with a sander, and one in which it was removed by preliminary discharge. At the same time, as a comparative example, a sample in which the analysis part was not melted and solidified was also compared.

(実施例1) 分析試料面に垂直にエレクトロンビームを照射した。エ
レクトロンの加速電圧は10kvで、30w+Aで5秒
間照射に引続き80mAで5秒間照射し分析部を融解し
た。照射室内の真空度は10−’Tarて、照射後はそ
のまま放冷し凝固させた。この処理により直径10mm
程度の円形で中央部に先端が尖鋭な高さIm+程度の凸
部を持った分析部を得た。この凸部の高さの約半分を、
5i−C系のベルトサンダーで軽く研磨し、除去した。
(Example 1) An electron beam was irradiated perpendicularly to the surface of the analysis sample. The acceleration voltage of electrons was 10 kV, and the analysis area was melted by irradiation at 30 W+A for 5 seconds, followed by irradiation at 80 mA for 5 seconds. The degree of vacuum in the irradiation chamber was set to 10-'Tar, and after irradiation, the material was allowed to cool and solidify. This process results in a diameter of 10 mm.
An analysis part was obtained which was approximately circular in shape and had a protrusion in the center with a sharp tip and a height of approximately Im+. Approximately half the height of this convex part,
It was removed by light sanding with a 5i-C belt sander.

発光には、JIS−G−1253による直流スパーク的
発光DCLVS−bWの発光分光装置を用いた。即ち、
二次電圧400 v、インダクタンス10μH,キャパ
シタンスl0llF、レジスタンス2Ω、放電周波数は
400±である。分析値は通常の発光分光分析と同様に
一試料中の二分析部についての平均値とした。
For light emission, an emission spectrometer of DC spark light emission DCLVS-bW according to JIS-G-1253 was used. That is,
The secondary voltage was 400 V, the inductance was 10 μH, the capacitance was 10llF, the resistance was 2Ω, and the discharge frequency was 400±. The analytical value was the average value for two analytical parts in one sample, as in normal emission spectroscopic analysis.

AIの強度信号としては、内標準となるFeとの強度比
を用い、信号の解析には時差法を用いて行った。即ち、
放電順番4001番から5000番の発光信号の強度分
布の中央値をTとし、放電順番501番から1500番
の発光信号の強度分布の中央値とTとの差をΔTとして
、5olA I!量を次式で求めた。
As the intensity signal of AI, the intensity ratio with Fe serving as an internal standard was used, and the signal was analyzed using the time difference method. That is,
Let T be the median value of the intensity distribution of the light emission signals in the discharge orders 4001 to 5000, and let ΔT be the difference between T and the median of the intensity distribution of the light emission signals in the discharge orders 501 to 1500, 5olA I! The amount was calculated using the following formula.

(5olAf:l =に、 T−に、ΔT−(11但し
+kl及びに、は多数の標準試料を用い回帰計算によっ
て求めた。
(5olAf:l=, T-, ΔT-(11 However, +kl and 2 were determined by regression calculation using a large number of standard samples.

(実施例2) 試料分析部の融解凝固は実施例1.の場合と同様である
。凸部の先端は、放電開始直後15秒間の予備放電によ
って除去することかできた。
(Example 2) The melting and solidification of the sample analysis section was performed as in Example 1. The same is true for . The tip of the convex portion could be removed by preliminary discharge for 15 seconds immediately after the start of discharge.

Afの発光信号強度としてFe強度との比を用いたのは
実施例1と同じであるが、解析にはエネルギー交互変換
法を用いた。この方法は、高エネルギーレベルと低エネ
ルギーレベルの放電とを交互に繰り返し、これらの情報
を発光強度信号に加えて解析する。高エネルギーレベル
の場合の発光条件は実施例1と同じであり、低エネルギ
ーレベルでは放電の充電量を高エネルギーレベルの半分
とした。5olA f量は次式で求めた。
As in Example 1, the ratio of the Af emission signal intensity to the Fe intensity was used, but an energy alternating conversion method was used for analysis. This method alternates between high and low energy level discharges and adds this information to the emission intensity signal for analysis. The light emission conditions at the high energy level were the same as in Example 1, and at the low energy level, the charge amount for discharging was half that of the high energy level. The amount of 5olAf was determined using the following formula.

(5olA!り=k  (X、  −α (βX Ac
−X 、c)  1・・・  (2) 但し、X8 :低エネルギーレベルの発光信号強度分布
の中央値IXAC:高エネルギーレベルの累積度数分布
の高強度側5%の平均値、X8.:低エネルギーレベル
の累積度数分布の高強度側5%の平均値値。k、α及び
βは多数の標準試料を用い回帰計算によって求めた。
(5olA!ri=k (X, -α (βX Ac
-X, c) 1... (2) where, : Average value of the high intensity side 5% of the cumulative frequency distribution of the low energy level. k, α, and β were determined by regression calculation using a large number of standard samples.

比較例では、比較例1は時期差法、比較例2はエネルギ
ー交互変換法で解析した。
In the comparative examples, Comparative Example 1 was analyzed using the time difference method, and Comparative Example 2 was analyzed using the energy alternating conversion method.

これらの結果を化学分析値と対比し各々第2図乃至第5
図に示し、これらの分析精度の比較を第1表に示す。第
2図は実施例1、第3図は実施例2、第4図は比較例1
、第5図は比較例2の各々の発光分光分析値を縦軸に示
し、縦軸に化学分析値を示しである。図中の○印は転炉
出鋼溶鋼、口部は取鍋精錬溶鋼、△印はRH脱ガス精錬
溶鋼、・印は連続鋳造溶鋼を表す。第4図及び第5図に
見られる転炉出鋼溶鋼の正誤差は、第1図及び第2図で
は見られない。
These results are compared with the chemical analysis values and shown in Figures 2 to 5, respectively.
The results are shown in the figure, and a comparison of their analysis accuracy is shown in Table 1. Figure 2 is Example 1, Figure 3 is Example 2, and Figure 4 is Comparative Example 1.
, FIG. 5 shows the emission spectroscopic analysis values of each of Comparative Example 2 on the vertical axis, and the chemical analysis values on the vertical axis. In the figure, the ○ mark represents molten steel from a converter, the mouth represents ladle-refined molten steel, the △ mark represents RH degassing refining molten steel, and the * mark represents continuous casting molten steel. The correct errors in the molten steel tapped from the converter shown in FIGS. 4 and 5 are not seen in FIGS. 1 and 2.

第1表 σM ;同一試料で測定点を変え二点を分析した時の再
現精度。
Table 1 σM: Reproducibility accuracy when analyzing two points of the same sample at different measurement points.

σ、:同一試料二点分析の平均値の正確さ。σ: Accuracy of the average value of two analyzes of the same sample.

実施例では再現精度、正確さ共に大幅に改善されている
ことが判る。
It can be seen that both the reproducibility precision and accuracy are significantly improved in the example.

なお、従来技術の酸素解析法については特殊な分析装置
を使用する必要があり、同一試料を用いて比較すること
は出来ながったが、その報告された精度を従来例とし、
これと実施例のうち同じ5olA f量範囲のものと分
析値精度を比較してみた・即ち、5olA It量0.
02wt%程度までの少ない範囲での比較である。従来
例では、再現精度0.0007wt%、正確度0.00
18wt%である。これに対してこの範囲では、実施例
1では再現精度0.0005wt%、正確度0.000
9we%であり、実施例2では再現精度0.0004w
t%、正確度0.0009wt%である。
Note that the conventional oxygen analysis method requires the use of a special analyzer, making it impossible to compare using the same sample; however, the reported accuracy is taken as a conventional example.
I compared the accuracy of the analysis value with that of the example with the same 5olA f amount range, that is, 5olA It amount 0.
This is a comparison in a small range of about 0.02 wt%. In the conventional example, the reproducibility is 0.0007wt% and the accuracy is 0.00.
It is 18wt%. On the other hand, in this range, in Example 1, the reproducibility is 0.0005wt% and the accuracy is 0.000%.
9we%, and the reproducibility accuracy in Example 2 is 0.0004w
t%, and the accuracy is 0.0009wt%.

従来例に較べ、再現精度、正確さ共に向上していること
が明瞭である。
It is clear that both reproducibility and accuracy are improved compared to the conventional example.

[発明の効果] 以上のように、この発明によれば、5OIA fの発光
分光分析において 1nsolA 1を予め濃縮除去す
る。このため、放電点内に [n5olA Iが存在す
る場合の発光信号と存在しない場合の発光信号との識別
かより明確に行えるようになり、その結果、 In5o
lA f量の多い範囲においても分析精度が大きく向上
した。従来、時間のがかる化学分析に頼らざるを得なか
った製鋼工程管理において、短時間に正確な分析値が得
られるこの発明の効果は大きい。
[Effects of the Invention] As described above, according to the present invention, 1nsolA 1 is concentrated and removed in advance in the emission spectroscopic analysis of 5OIA f. For this reason, it becomes possible to more clearly distinguish between the luminescent signal when [n5olA I exists within the discharge point and the luminescent signal when it does not exist, and as a result,
The analytical accuracy was greatly improved even in the range where the amount of lAf was large. In steelmaking process management, which conventionally had to rely on time-consuming chemical analysis, the present invention has a great effect in that accurate analysis values can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための溶融凝固後の
試料の断面図、第2図はこの発明の一実施例である発光
分光分析値と化学分析との関係を示す図、第3図は他の
実施例である発光分光分析値と化学分析との関係を示す
図、第4図は比較例である発光分光分析値と化学分析と
の関係を示す図、第5図は他の比較例である発光分光分
析値と化学分析との関係を示す図、第6図は作用を説明
するための従来の一例である発光分光分析値と化学分析
との関係を示す図である。 l・・・試料、2・・・溶融凝固部、3・・・凸部。
FIG. 1 is a cross-sectional view of a sample after melting and solidification for explaining the present invention in detail, FIG. 2 is a diagram showing the relationship between emission spectroscopic analysis values and chemical analysis, which is an embodiment of the present invention, and FIG. The figure shows the relationship between the emission spectroscopic analysis value and chemical analysis as another example. Figure 4 shows the relationship between the emission spectroscopic analysis value and chemical analysis as a comparative example. FIG. 6 is a diagram showing the relationship between the emission spectrometry value and chemical analysis as a comparative example, and FIG. 6 is a diagram showing the relationship between the emission spectrometry value and chemical analysis as a conventional example for explaining the operation. l...sample, 2...melt solidification part, 3...convex part.

Claims (1)

【特許請求の範囲】[Claims] 鋼の成分分析用試料の分析に供する面にエレクトロンビ
ームを照射して試料表層の一部を溶融し、凝固後に溶融
凝固によって生じた凸部の先端を除去した後、放電によ
り発光させ得られる発光信号を解析することによって分
析することを特徴とする鋼中酸可溶性アルミニウムの発
光分光分析方法。
The surface of the sample for steel component analysis is irradiated with an electron beam to melt a part of the surface layer of the sample, and after solidification, the tips of the convexities produced by melting and solidification are removed, and then the light is emitted by electric discharge. An emission spectroscopic analysis method for acid-soluble aluminum in steel, characterized in that analysis is performed by analyzing signals.
JP33319090A 1990-11-29 1990-11-29 Emission spectral analysis method of acid-soluble aluminum within steel Pending JPH04203954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33319090A JPH04203954A (en) 1990-11-29 1990-11-29 Emission spectral analysis method of acid-soluble aluminum within steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33319090A JPH04203954A (en) 1990-11-29 1990-11-29 Emission spectral analysis method of acid-soluble aluminum within steel

Publications (1)

Publication Number Publication Date
JPH04203954A true JPH04203954A (en) 1992-07-24

Family

ID=18263317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33319090A Pending JPH04203954A (en) 1990-11-29 1990-11-29 Emission spectral analysis method of acid-soluble aluminum within steel

Country Status (1)

Country Link
JP (1) JPH04203954A (en)

Similar Documents

Publication Publication Date Title
DuPont et al. Solidification of Nb-bearing superalloys: Part I. Reaction sequences
JPH04203954A (en) Emission spectral analysis method of acid-soluble aluminum within steel
CN108709881A (en) Method based on carbon element content in spark discharge Atomic Emission Spectral Analysis silicon steel
JP6037014B2 (en) Steel manufacturing method
KR101443785B1 (en) Probe and analyze method of molten metal using the same
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
US4592655A (en) Method of determining elements in metals by means of optical emission spectrum analysis
CN109358066A (en) One kind is for continuous casting steel billet dendrite corrosion reagent and its preparation and application method
Chai Slag-metal reactions during flux shielded arc welding
KR101758530B1 (en) Method for analyzing inclusion in molten steel and method for manufacturing high clean molten steel for steel wire rod
Bischler et al. A microstructural study of phosphorus segregation and intergranular fracture in neutron irradiated submerged-arc welds
KR100547480B1 (en) How to measure cleanliness of steel
JP5978967B2 (en) Component adjustment method for molten steel
KR20010025911A (en) Measurement method of impurities in hot metal
JP2012026745A (en) ACCURATE QUANTITATIVE METHOD FOR SOL.Al IN STEEL AND PROCESS OPERATION METHOD OF ACCURATE QUANTITATIVE METHOD FOR SOL.Al IN STEEL
JP3900713B2 (en) Method for adjusting slag sample for fluorescent X-ray analysis and sampler
Coedo et al. Study of X-ray fluorescence spectrometry and spark ablation inductively coupled plasma atomic emission spectrometry for chromium determination in ferrochromium from bulk metal samples
JP3058043B2 (en) Probe and method for laser emission spectroscopy of molten metal
KR20020033884A (en) Measurement method of impurities in hot metal
JP4125935B2 (en) Rapid determination method and apparatus for molten metal components by form
KR20050108479A (en) Rapid determination method of size distribution of complexed element inclusions
JP2000009718A (en) Analysis method for fused steel
JPH01126526A (en) Apparatus for analyzing molten metal
SU1388748A1 (en) Method of making a specimen for testing gas-thermal coatings for cutting
JPH10197447A (en) Method for analyzing minute amount of lead in stainless steel according to emission spectrochemical analysis