JPH04203937A - Air flowmeter - Google Patents

Air flowmeter

Info

Publication number
JPH04203937A
JPH04203937A JP2328989A JP32898990A JPH04203937A JP H04203937 A JPH04203937 A JP H04203937A JP 2328989 A JP2328989 A JP 2328989A JP 32898990 A JP32898990 A JP 32898990A JP H04203937 A JPH04203937 A JP H04203937A
Authority
JP
Japan
Prior art keywords
flow velocity
entrance
grating
air
ventilation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2328989A
Other languages
Japanese (ja)
Inventor
Chihiro Kobayashi
千尋 小林
Atsushi Miyazaki
敦史 宮崎
Mitsukuni Tsutsui
筒井 光圀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2328989A priority Critical patent/JPH04203937A/en
Publication of JPH04203937A publication Critical patent/JPH04203937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To prevent influences of a divagation by controlling the ventilation resistance of a rectifier grating, and making constant the flow velocity of a measuring part in accordance with the pattern of the sneaking divagation. CONSTITUTION:A rectifier grating 12 bordered by a holding frame is rigidly held by a grating fixing member at an entrance where a suction air enters the body of the flowmeter. The grating is fine over an entrance 15 of a bypass, so that the ventilation resistance becomes large and the flow velocity is decreased. On the other hand, the grating 12 becomes coarse at the opposite side of the entrance 15, and therefore the ventilation resistance is small and the flow velocity is consequently increased. When a divagation pattern 17 which flows fast over the entrance 15 and slowly at the opposite side enters the body through a suction air duct 13, the flow velocity of the air entering the entrance 15 becomes generally uniform. Accordingly, even if the distribution of the flow rate after the air passes thought the grating 12 is not uniform, since the ventilation resistance over the entrance 15 is controlled so as to achieve the same flow velocity at the same flow rate, the influences of the divagation can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車用内燃機関における吸入空気流量測定
のための空気流量計に係り、特に熱線式空気流量計に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air flow meter for measuring the intake air flow rate in an internal combustion engine for an automobile, and more particularly to a hot wire air flow meter.

〔従来の技術〕[Conventional technology]

従来技術においては概に出願されている特開昭64−2
6112に記載のように、整流体構造において流体の流
速にほぼ比例した通気抵抗をそれぞれ整合する位置に設
け、管路内の流速を一様にする構造になっていた。
In the prior art, Japanese Patent Application Laid-Open No. 64-2
As described in No. 6112, in the fluid regulating structure, ventilation resistances approximately proportional to the flow velocity of the fluid are provided at matching positions, thereby making the flow velocity within the conduit uniform.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

、」二記従来技術は、空気通路内の断面流速を一様にす
る様に、流速にほぼ比例した通気抵抗を持たせる構造と
している。しかし実際には、エンジン装着時を考慮する
と、様々な偏流パターンがあり。
, 2. The prior art described in section 2 has a structure in which ventilation resistance is approximately proportional to the flow velocity so as to make the cross-sectional flow velocity within the air passage uniform. However, in reality, there are various drift patterns when considering when the engine is installed.

吸気管路断面を一様流速にすることは大変困難であると
いった問題があった。
There was a problem in that it was very difficult to maintain a uniform flow velocity across the cross section of the intake pipe.

本発明の目的は、吸気管路内において、様々な偏流パタ
ーンにおいても同一流量においては常に吸入空気検知部
近傍のポイント流速が一定になる様整流格子に通気抵抗
を持たせ、偏流の影響を受けない熱線式空気流量計を提
供することにある。
An object of the present invention is to provide a rectifier grid with ventilation resistance so that the flow velocity at a point near the intake air detection part is always constant at the same flow rate even in various drift patterns in the intake pipe, and to prevent the influence of drift. Our goal is to provide a hot wire air flow meter.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、空気通路内に配設
され、空気の流速を検知して流量を測定する熱線式空気
流量計の前記通路内における上流側に設けられた整流格
子構造において、同一流量における様々な偏流が発生し
た場合においても、流速測定部近傍の流速が常に一定の
流速になる様な通気抵抗を前記整流格子に設けたもので
ある。
In order to achieve the above object, the present invention provides a rectifying grid structure provided on the upstream side of a hot wire air flow meter that is disposed within an air passage and detects the flow velocity of air to measure the flow rate. The rectifying grid is provided with ventilation resistance so that the flow velocity near the flow velocity measuring section is always constant even when various drifts occur in the same flow rate.

〔作用〕[Effect]

上記の構造によると、整流格子の上流側に偏流が生じた
場合でも、常に同一流量においては、同一流速が測定出
来、流れの速度分布しこ影響を受けず、正確な流量測定
を行なうことが出来る。
According to the above structure, even if a biased flow occurs on the upstream side of the rectifier grid, the same flow velocity can always be measured at the same flow rate, and the flow velocity distribution is not affected, making it possible to accurately measure the flow rate. I can do it.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第10図を使って説
明する。第1図において、熱線式空気流量計の空気通路
を構造するボディ1は、主空気通路5の中に一体化した
バイパス通路6を前記した主空気通路5の中心より外側
に配置している。さらにバイパス通路6には、吸入空気
量を検出する熱線3と吸入空気温度を検出する感温抵抗
体4が配置されている。さらに、熱線3で検出した吸入
空気量を電気信号、に変換する電子制御モジュール2が
配置されている。ボディ]、に吸入された空気7は、主
空気通路5と、バイパス通路6に分流して流れる。バイ
パス通路6内を流れる空気量は熱線3、感温抵抗体4を
通りバイパス通路出口15より主空気通路5に合流する
。ボディ1の吸入空気入口部には保持枠10で枠取られ
た整流格子12が、整流格子固定部材11により固定保
持されている。また、整流格子12の目の粗さは、第3
図に示す通りバイパス通路人口15上で1i、密にその
反対側では、粗くなっている。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 10. In FIG. 1, a body 1 constituting an air passage of a hot wire air flow meter has a bypass passage 6 integrated into a main air passage 5 disposed outside the center of the main air passage 5. Further, in the bypass passage 6, a hot wire 3 for detecting the amount of intake air and a temperature sensitive resistor 4 for detecting the temperature of the intake air are arranged. Furthermore, an electronic control module 2 is arranged that converts the amount of intake air detected by the hot wire 3 into an electrical signal. The air 7 sucked into the main air passage 5 and the bypass passage 6 are divided into a main air passage 5 and a bypass passage 6. The amount of air flowing through the bypass passage 6 passes through the hot wire 3 and the temperature-sensitive resistor 4 and merges into the main air passage 5 from the bypass passage outlet 15. A rectifying grid 12 framed by a holding frame 10 is fixedly held at the intake air inlet portion of the body 1 by a rectifying grid fixing member 11. Moreover, the coarseness of the rectifying grating 12 is the third
As shown in the figure, the bypass passage population 15 is denser on the upper side and coarser on the opposite side.

第4図において、吸入空気ダク1−13を通り、偏流パ
ターン17の様なバイパス入口部15上で流速が速く、
その反対側では遅い偏流がボディ1に入り込むとすると
、バイパス人口15上では。
In FIG. 4, the flow velocity is high through the intake air duct 1-13 and on the bypass inlet part 15 like the drift pattern 17.
On the other side, if a slow drift enters body 1, then on the bypass population 15.

整流格子の粗さが密になっているため、通気抵抗が大き
くなり、流速は遅くなり、バイパス入口150反対側に
おいては、整流格子の粗さが粗くなっているため通気抵
抗が小さく、バイパス人口15上で遅くなった分流法は
早くなる。その結果、整流格子12を通過した後の流速
分布は主空気通路内で一様な流速にならず、主空気通路
5の中心が速く、両端が遅くなる分布24の形となり、
バイパス通路人口15に入り込む空気の流速ベクトルは
、16bの様になる。一方、第5図は、整流格子12を
バイパス通路入口上の整流格子の目を粗く、その反対を
目を密にしたものである。今、第6図に示すようなバイ
パス人口15上でおそく、その反対側が速く偏流17と
同一流量の偏流18が、吸入空気ダクト13を通ってボ
ディ1に入り込むとすると、バイパス人口15と反対側
においては、整流格子12の目が粗いため、通気抵抗が
大きいため、入り込んでくる流速はおそくなり。
Since the roughness of the rectifier grid is dense, the ventilation resistance is large and the flow velocity is slow. On the opposite side of the bypass inlet 150, the roughness of the rectifier grid is coarse, so the ventilation resistance is small and the bypass population is low. The diversion method that was slow on 15 becomes faster. As a result, the flow velocity distribution after passing through the rectifying grid 12 is not uniform within the main air passage, but takes the form of a distribution 24 in which the flow velocity is fast at the center of the main air passage 5 and slow at both ends.
The flow velocity vector of the air entering the bypass passageway 15 is as shown in 16b. On the other hand, in FIG. 5, the rectifier grid 12 above the bypass passage inlet has a coarse mesh, and the opposite grid has a dense mesh. Now, suppose that a biased flow 18 having the same flow rate as the biased flow 17 which is slow on the bypass population 15 and faster on the opposite side as shown in FIG. 6 enters the body 1 through the intake air duct 13, then the side opposite to the bypass population 15 In this case, since the rectifying grid 12 has a coarse mesh, the ventilation resistance is large, and the incoming flow rate is slow.

バイパス人口15上では逆に通気抵抗が小さいため、流
速は速くなる。その結果、整流格子12を通過した後の
流速分布は主空気通路5内で一様にならず主空気通路5
の中心が速く、両端が遅くなる分布25の形となり、バ
イパス人口15に入り込む空気の流速ベクトルは16d
の様になる。第4図、第6図で整流格子12を通過した
後の流速分布は主空気通路、の断面内で一様にならない
が、バイパス人口15に入り込む空気の流速ベクトル1
6b、16dは、ほぼ同し値を示している。これにより
、異った偏流が発生した場合においても、又、整流格子
を通過した後の流速分布か−・様でなくても、バイパス
通路入口上の通気抵抗をコントロールし、同一流量にお
いて同一流速になる様な通気抵抗を持たせることにより
偏流の影響を防止することが可能である。
On the contrary, since the ventilation resistance is small above the bypass port 15, the flow rate becomes faster. As a result, the flow velocity distribution after passing through the rectifying grid 12 is not uniform within the main air passage 5;
The shape of the distribution 25 is such that the center is fast and the ends are slow, and the flow velocity vector of the air entering the bypass population 15 is 16d.
It will look like this. 4 and 6, the flow velocity distribution after passing through the rectifying grid 12 is not uniform within the cross section of the main air passage, but the flow velocity vector 1 of the air entering the bypass population 15
6b and 16d show almost the same value. As a result, even if different drifts occur, or even if the flow velocity distribution after passing through the rectifier grid is different, the ventilation resistance at the entrance of the bypass passage can be controlled, and the flow velocity remains the same at the same flow rate. It is possible to prevent the influence of drifting by providing ventilation resistance such that

熱線式空気流量計においては、吸気空気ダクト13の形
状や、エアクリーナ形状等により、様々な偏流パターン
がある。第7図は、バイパス通路人口15上だけに特に
速い流速が発生した場合の対策例であり、第8図、第9
図はバイパス通路6を構成するブリッジ上にのみに流速
分布の変化が有る場合の対策例、又、第10図は、バイ
パス通路6を構成するブリッジ部に対し斜めに流速分布
の変化が有る場合の対策例である。
In the hot wire air flow meter, there are various drift patterns depending on the shape of the intake air duct 13, the shape of the air cleaner, and the like. Figure 7 shows an example of measures to be taken when a particularly high flow velocity occurs only on the bypass passage population 15, and Figures 8 and 9
The figure shows an example of countermeasures when there is a change in the flow velocity distribution only on the bridge that constitutes the bypass passage 6, and Fig. 10 shows an example of countermeasures when there is a change in the flow velocity distribution diagonally with respect to the bridge that constitutes the bypass passage 6. This is an example of countermeasures.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱線式空気流量計において、上流側か
ら偏流が発生した場合でも、その影響を低減した熱線式
空気流量計を提供する効果がある。
According to the present invention, there is an effect of providing a hot-wire type air flow meter in which even when a drift occurs from the upstream side, the influence of the drift is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す熱線式空気流量計の
断面図、第2図は第1図を空気の流れの上流側からみた
側面図、第3図は本発明の整流格子の単品図、第4図は
第3図の整流格子を使った、熱線式空気流量計の空気入
口部の流速分布を示す説明図、第5図は第3図に対し、
熱線式空気流量計の空気入口に対し整流格子の目の粗さ
を逆にした図、第6図は第5図の整流格子を使った熱線
式空気流量計の空気入口部の流速分布を示す説明図、第
7図から第10図は様々な偏流に対し熱線式空気流量計
の空気入口部の流速を一定にするための応用例を示す図
である。 1・・・ボディ、2・・・電子制御モジュール、3・・
・熱線、4・・・感温抵抗体、5・・・主空気通路、6
・・・バイパス空気通路、7・・・吸入空気量、8・・
・主空気通路を流れる空気量、9・・・バイパス空気通
路を流れる空気量、10・・・整流格子保持枠、11・
・・整流格子固定部材、12・・整流、格子(1)、1
3・・・吸入空気ダクト、14・・・シール部材、15
・・・バイパス通路入口、16・・バイパス通路に入り
込む流速、17・・・偏流パターン(1)、18・・・
偏流パターン(2)、19・・整流格子(2)、20・
・整流格子(3)、21・・整流格子(4)、22・・
・整流格子(5)、23・・・バイパス通路出口、24
・・整流格子12を通過した後の偏流(1)、25−4
I流格子12を通過した後の偏流(2)、26  バイ
パス通路を第 l 因 第 7 口 lさ 第 と ■。 第 9 図 第 7O磨
FIG. 1 is a sectional view of a hot wire air flow meter showing an embodiment of the present invention, FIG. 2 is a side view of FIG. 1 viewed from the upstream side of the air flow, and FIG. 3 is a rectifier grid of the present invention. Figure 4 is an explanatory diagram showing the flow velocity distribution at the air inlet of a hot wire air flow meter using the rectifying grid shown in Figure 3.
Figure 6 shows the flow velocity distribution at the air inlet of a hot-wire air flowmeter using the rectifier grid shown in Figure 5, with the coarseness of the rectifier grid reversed for the air inlet of a hot-wire air flowmeter. The explanatory drawings, FIGS. 7 to 10, are diagrams showing application examples for making the flow velocity at the air inlet of a hot wire air flow meter constant in response to various drifting flows. 1...Body, 2...Electronic control module, 3...
・Hot wire, 4... Temperature sensitive resistor, 5... Main air passage, 6
...Bypass air passage, 7...Intake air amount, 8...
- Amount of air flowing through the main air passage, 9... Amount of air flowing through the bypass air passage, 10... Rectifying grid holding frame, 11.
... Rectifier grid fixing member, 12... Rectifier, grid (1), 1
3... Intake air duct, 14... Seal member, 15
... Bypass passage entrance, 16... Flow velocity entering the bypass passage, 17... Unbalanced flow pattern (1), 18...
Straight flow pattern (2), 19... rectifier grating (2), 20...
- Rectifier grid (3), 21... Rectifier grid (4), 22...
- Rectifier grid (5), 23... bypass passage outlet, 24
...Normal flow after passing through the rectifying grid 12 (1), 25-4
The polarized flow after passing through the I flow grid 12 (2), 26 bypass passage. Fig. 9 7O polishing

Claims (1)

【特許請求の範囲】 1、流体の通路内に配設され、前記流体の流速を検知し
て流量を測定する空気流量計の前記通路内における上流
側に設けられた整流体構造において、前記整流体に流速
検出部近傍の流速が前記整流体の上流側に生じた偏流の
度合にかかわらず、ほぼ一定になるように通気抵抗をそ
れぞれ整合する位置に設けたことを特徴とする空気流量
計。 2、請求項1において、整流体は、様々な偏流に対し、
それぞれにマッチングを行ない通気抵抗を設定したこと
を特徴とする空気流量計。
[Scope of Claims] 1. In a fluid regulating structure provided in the upstream side of the passage of an air flow meter that is disposed in a fluid passage and measures the flow rate by detecting the flow velocity of the fluid, An air flowmeter characterized in that ventilation resistances are provided at positions that match each other so that the flow velocity of the fluid near the flow velocity detection section is approximately constant regardless of the degree of drift that occurs on the upstream side of the fluid regulator. 2. In claim 1, the flow regulator has the following functions for various drifting currents:
An air flow meter characterized by matching and setting ventilation resistance for each.
JP2328989A 1990-11-30 1990-11-30 Air flowmeter Pending JPH04203937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2328989A JPH04203937A (en) 1990-11-30 1990-11-30 Air flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328989A JPH04203937A (en) 1990-11-30 1990-11-30 Air flowmeter

Publications (1)

Publication Number Publication Date
JPH04203937A true JPH04203937A (en) 1992-07-24

Family

ID=18216363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328989A Pending JPH04203937A (en) 1990-11-30 1990-11-30 Air flowmeter

Country Status (1)

Country Link
JP (1) JPH04203937A (en)

Similar Documents

Publication Publication Date Title
US6240775B1 (en) Flow rate sensor
JPH06194199A (en) Air flow rate meauring device
JP4140553B2 (en) Air flow measurement device
JPS6233528B2 (en)
EP0054887B1 (en) Air flow meter assembly
EP0458081A2 (en) Air flow meter
JP4106224B2 (en) Flow measuring device
JP4752472B2 (en) Air flow measurement device
JPH04157325A (en) Thermal air flowmeter
JPH04203937A (en) Air flowmeter
US5708214A (en) Karman vortex flow meter
JP2933871B2 (en) Karman vortex flow meter
JPS62159016A (en) Flow rate detector
JPH0320619A (en) Hot-wire type air flowmeter
JPH08159833A (en) Flow measuring device
JPH06288805A (en) Air flowmeter
JPH04290918A (en) Structure of flow straightening element for air flow meter
JPS5942808B2 (en) flow measuring device
JPS5819510A (en) Hot wire type airflow meter
JP4132169B2 (en) Intake device
JPH06265386A (en) Heat sensitive flow rate sensor
JP2001033288A (en) Air flow rate measuring device
JPH08145756A (en) Air flow measuring device
JPS5847213A (en) Vortex type air flow meter
JP2851884B2 (en) Thermal air flow meter