JPH0420385B2 - - Google Patents

Info

Publication number
JPH0420385B2
JPH0420385B2 JP60068567A JP6856785A JPH0420385B2 JP H0420385 B2 JPH0420385 B2 JP H0420385B2 JP 60068567 A JP60068567 A JP 60068567A JP 6856785 A JP6856785 A JP 6856785A JP H0420385 B2 JPH0420385 B2 JP H0420385B2
Authority
JP
Japan
Prior art keywords
fibers
heat
resistant
flame
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60068567A
Other languages
Japanese (ja)
Other versions
JPS61227047A (en
Inventor
Hidemoto Hiraoka
Tsutomu Oohayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP6856785A priority Critical patent/JPS61227047A/en
Publication of JPS61227047A publication Critical patent/JPS61227047A/en
Publication of JPH0420385B2 publication Critical patent/JPH0420385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐熱難燃性膜体に関するものであり、
更に詳しく述べるならば、耐熱難燃性にすぐれ、
かつ、縫製性および耐屈曲性にすぐれた繊維膜体
に関するものである。 〔従来の技術〕 近年、建築材料、内装材等の素材、車両、船
舶、航空機等の各種用品、電気器具等に使用され
る合成樹脂の不燃化、難燃化が強く要望されてお
り法令による使用規制も強化されている。 その対策の1つとして例えば特公昭55−25055
号公報にはガラス繊維クロスの表面上にクロルス
ルフオン化ポリエチレンを主剤とする被膜層を形
成した不燃性膜体が開示されている。しかし、ク
ロルスルフオン化ポリエチレンが高価であるた
め、この不燃性膜体は実用化されていない。近年
耐熱難燃化被膜主剤としてシリコーン樹脂、又は
弗素樹脂を用いたものが種々開発されているが何
れも、前記クロルスルフオン化ポリエチレンにく
らべて更に高価であり、その上シリコーン樹脂は
架橋、被膜形成に長時間を要し、弗素樹脂は作業
性が悪く実用的な加工材料としては使用に難があ
る。以上の理由により耐熱難燃化被膜主剤として
は、樹脂自体が難燃性であり、かつ汎用性のある
ポリ塩化ビニル樹脂を使用することが好ましい。
被覆材料として最も一般的なポリ塩化ビニル樹脂
については、燃焼時多量の発煙を伴つて火炎現場
に居合せた人及び消防活動者を呼吸困難にさせ死
傷者を出すことがあるなどの問題があり、このた
めポリ塩化ビニル樹脂の不燃化を一層高め、さら
に、燃焼時の発煙を可及的減少せしめることが課
題となつている。特公昭55−4582号公報には塩化
ビニル樹脂にホウ酸塩、亜鉛化合物又は鉄化合物
の1種又は2種以上と、水酸化アルミニウム及び
又は硫酸バリウムを加えてなる組成物を不燃性基
布上に均一に被覆してなる不燃性膜体を開示して
いる。この膜体は火炎が近づいても殆んど燃焼す
ることがなく、また、たとえ着火した場合にも殆
んど発煙せず、さらに、所望の防水性及び強度を
備えたシート状物として広範な用途に供しうるも
のである。 しかし、この膜体は、基布として不燃性ガラス
繊維布帛を用いているため、その不燃性はすぐれ
ているが、その重量(目付)は大きくて使用や取
扱いに不便があり、また縫製しにくく、また耐屈
曲性が低いため、使用間に折損しやすく、ミシン
目から裂けやすいなどの問題があつた。 従つて、実用上十分な耐熱難燃性を保持し、か
つ、はげしい振動、はためき、或は繰り返えし屈
曲に十分耐え、縫製容易でミシン目からの裂断の
ない耐熱難燃性膜体の出現が強く望まれている。 〔発明が解決しようとする問題点〕 耐熱難燃性が満足すべきものであり、しかも縫
製しやすく、耐屈曲性が良好で、かつ、ミシン目
からの裂断の生じにくい耐熱難燃性膜体を提供す
る。 〔問題点を解決するための手段および作用〕 本発明の耐熱難燃性膜体は、無機繊維と、有機
繊維とを含んでなる基布と、この基布の少くとも
1面上に形成され、かつ、塩化ビニル樹脂と、耐
熱性無機添加剤とを含んでなる耐熱難燃被覆層と
を有し、前記基布中の無機繊維の有機繊維に対す
る混用重量比が、10:90〜99.5:0.5の範囲内に
あり、かつ前記無機添加剤が、チタン酸アルカリ
を含むことを特徴とするものである。 本発明の耐熱難燃性膜体の基布に用いられる無
機繊維は、石綿繊維、セラミツク繊維、シリカ繊
維、ガラス繊維、カーボン繊維および金属繊維か
ら選ぶことができる。 また基布に用いられる有機繊維は、天然繊維、
例えば、木綿、麻など、再生繊維、例えば、ビス
コースレーヨン、キユプラなど、半合成繊維、例
えば、ジ−およびトリ−アセテート繊維など、及
び合成繊維、例えば、ナイロン6、ナイロン66、
ポリエステル(ポリエチレンテレフタレート等)
繊維、芳香族ポリアミド繊維、アクリル繊維、ポ
リ塩化ビニル繊維、ポリオレフイン繊維および不
溶化又は難溶化されたポリビニルアルコール繊維
など、から選ぶことができる。 基布中の繊維は通常の糸条、例えば短繊維紡績
糸条、長繊維糸条、スプリツトヤーン、テープヤ
ーンおよびバルキーヤーンなどのいずれの形状の
ものでもよく、また基布は織物、編物又は不織布
或いはこれらの複合布のいずれであつてもよい。
しかし、縫製部分の強度や耐屈曲性を考慮すれ
ば、基布としては織物又は編物が好ましく、織物
がより好ましい。また、繊維の形態としては、ス
トレスに対する伸びが少ない長繊維(フイラメン
ト)の形状のものが好ましく、且つ平織布を形成
していることが好ましい。しかし、編織組織やそ
の形態については特に限定はない。有機繊維は、
得られる耐熱難燃性膜体の機械的強度を高いレベ
ルに維持するために有用である。 また有機糸条の破断伸度は10%以下、好ましく
は7%以下、5〜0.5%程度のものが無機繊維の
伸度性能とバランスして破断強力利用率を向上さ
せ破断強力を高めるために更に好ましい。 ガラス繊維が用いられる場合、その種類や太さ
などに格別の限定はないが、一般に、太さ約2〜
10μm、特に3μm程度のベーターヤーンと称され
ているものが賞用されている。 基布中における無機繊維と有機繊維との混用形
態に格別の限定はなく、混紡糸、混交織編物、混
交撚糸、混交バルキーヤーン或いは異種繊維糸条
の引揃え糸などのいづれであつてもよく、或いは
無機繊維と有機繊維とをそれぞれ別々に織成もし
くは編成等した後にそれらをいつしよに用いて基
布としてもよい。 本発明の耐熱難燃性膜体において、基布に含ま
れる有機繊維が300℃以上の融点、又は、加熱分
解点を有する耐熱性有機合成繊維を含むことが好
ましい。このような高融点、又は高分解点繊維を
形成するポリマーとしては第1表に示すようなも
のがある。
[Industrial Application Field] The present invention relates to a heat-resistant and flame-retardant film body,
To explain in more detail, it has excellent heat resistance and flame retardancy,
The present invention also relates to a fiber membrane having excellent sewing properties and bending resistance. [Prior art] In recent years, there has been a strong demand for synthetic resins used in building materials, interior materials, various items for vehicles, ships, aircraft, electrical appliances, etc. to be made flame-resistant and non-flammable, and this is required by law. Regulations on its use have also been strengthened. As one of the countermeasures, for example,
The publication discloses a noncombustible membrane in which a coating layer containing chlorosulfonated polyethylene as a main ingredient is formed on the surface of a glass fiber cloth. However, because chlorosulfonated polyethylene is expensive, this nonflammable membrane has not been put into practical use. In recent years, various types of heat-resistant and flame-retardant coatings using silicone resins or fluororesins as the main ingredient have been developed, but all of them are more expensive than the chlorosulfonated polyethylene mentioned above, and silicone resins are difficult to crosslink and coat. It takes a long time to form, and fluororesin has poor workability, making it difficult to use as a practical processing material. For the above reasons, it is preferable to use polyvinyl chloride resin, which is itself flame retardant and has versatile properties, as the main ingredient for the heat-resistant and flame-retardant coating.
Polyvinyl chloride resin, which is the most common coating material, has problems such as emitting a large amount of smoke when burned, making it difficult for people at the scene of the flames and firefighters to breathe, which can result in casualties. Therefore, it is a challenge to further improve the nonflammability of polyvinyl chloride resin and to further reduce smoke generation during combustion as much as possible. Japanese Patent Publication No. 55-4582 discloses that a composition obtained by adding one or more of borate, zinc compound, or iron compound, and aluminum hydroxide and/or barium sulfate to vinyl chloride resin is coated on a nonflammable base fabric. Discloses a noncombustible film body uniformly coated with This membrane hardly combusts even when a flame approaches, and even if it ignites, it emits almost no smoke.Furthermore, it can be widely used as a sheet-like material with the desired waterproofness and strength. It can be used for various purposes. However, since this membrane uses nonflammable glass fiber fabric as the base fabric, it has excellent nonflammability, but its weight (fabric weight) is large, making it inconvenient to use and handle, and it is difficult to sew. Also, due to the low bending resistance, there were problems such as easy breakage during use and easy tearing at perforations. Therefore, a heat-resistant and flame-retardant film body that maintains sufficient heat-resistant and flame-retardant properties for practical use, withstands strong vibrations, flapping, or repeated bending, is easy to sew, and does not tear from perforations. It is strongly desired that the [Problems to be solved by the invention] A heat-resistant and flame-retardant film body that has satisfactory heat-resistant and flame-retardant properties, is easy to sew, has good bending resistance, and is resistant to tearing from perforations. I will provide a. [Means and effects for solving the problems] The heat-resistant and flame-retardant film body of the present invention comprises a base fabric containing inorganic fibers and organic fibers, and a base fabric formed on at least one surface of the base fabric. , and has a heat-resistant and flame-retardant coating layer containing a vinyl chloride resin and a heat-resistant inorganic additive, and the weight ratio of inorganic fiber to organic fiber in the base fabric is 10:90 to 99.5: 0.5, and the inorganic additive contains an alkali titanate. The inorganic fibers used in the base fabric of the heat-resistant and flame-retardant membrane of the present invention can be selected from asbestos fibers, ceramic fibers, silica fibers, glass fibers, carbon fibers, and metal fibers. In addition, the organic fibers used for the base fabric are natural fibers,
For example, recycled fibers such as cotton, linen, etc., semi-synthetic fibers such as di- and tri-acetate fibers, etc., and synthetic fibers such as nylon 6, nylon 66, etc.
Polyester (polyethylene terephthalate, etc.)
The fibers can be selected from fibers such as aromatic polyamide fibers, acrylic fibers, polyvinyl chloride fibers, polyolefin fibers, and insoluble or hardly soluble polyvinyl alcohol fibers. The fibers in the base fabric may be in any form such as ordinary yarns, such as short fiber spun yarns, long fiber yarns, split yarns, tape yarns, and bulky yarns, and the base fabric may be woven, knitted, nonwoven, or Any of these composite fabrics may be used.
However, in consideration of the strength and bending resistance of the sewn portion, a woven or knitted fabric is preferable as the base fabric, and a woven fabric is more preferable. Further, as for the form of the fibers, it is preferable that the fibers are in the form of long fibers (filaments) that have little elongation under stress, and that they form a plain woven fabric. However, there are no particular limitations on the weaving structure or its form. organic fibers are
This is useful for maintaining the mechanical strength of the resulting heat-resistant and flame-retardant membrane at a high level. In addition, the elongation at break of the organic yarn is 10% or less, preferably 7% or less, and in order to balance the elongation performance of inorganic fibers and improve the utilization rate of breaking strength and increase the breaking strength. More preferred. When glass fiber is used, there are no particular limitations on its type or thickness, but generally it is about 2 to 2 mm thick.
Beta yarns of about 10 μm, especially about 3 μm, are used. There is no particular limitation on the form of mixture of inorganic fibers and organic fibers in the base fabric, and it may be any of blended yarn, blended woven and knitted fabric, blended twisted yarn, blended bulky yarn, or drawn yarn of different types of fiber threads. Alternatively, inorganic fibers and organic fibers may be woven or knitted separately and then used at any time to form the base fabric. In the heat-resistant and flame-retardant film body of the present invention, it is preferable that the organic fibers contained in the base fabric include heat-resistant organic synthetic fibers having a melting point of 300° C. or higher or a thermal decomposition point. Polymers that form such high melting point or high decomposition point fibers include those shown in Table 1.

【表】【table】

【表】【table】

【表】【table】

〔上式中、Ar1及びAr2は二価の芳香族基を表わし、これらは互に同一であつてもよく又は相異つていてもよい〕[In the above formula, Ar 1 and Ar 2 represent divalent aromatic groups, which may be the same or different]

で示される単位から選ばれる少くとも1種を主反
復単位として有するものであるのが好ましい。上
記式()及び()において、Ar1及びAr2
表わされる二価の芳香族基は、下記式、
It is preferable that the main repeating unit is at least one type selected from the units shown in the following. In the above formulas () and (), the divalent aromatic groups represented by Ar 1 and Ar 2 are represented by the following formula,

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】 および【formula】 and

〔上式中、Aは−O−、−S−、−SO−、−SO2−、−CO−、−CH2−又は−C(CH32−を表わす〕[In the above formula, A represents -O-, -S-, -SO-, -SO2- , -CO-, -CH2- or -C( CH3 ) 2- ]

で示される芳香族残基群から選ばれるのが好まし
い。これらの芳香族残基ハロゲン、アルキル基、
ニトロ基などの不活性置換基を含んでいてもよ
い。一般に、芳香族ポリアミドとしては、下記
式、 で示される反復単位を主成分として有するものが
更に好ましい。これらの耐熱性有機合成繊維の破
断伸度は一般に10%以下であり、しかも高強度を
示すので耐熱性の面からのみならず膜体の強力利
用率の向上の面からも高強力膜体を得るために極
めて好ましいものである。 耐熱性有機合成繊維としては、以上のもののほ
か、融点又は分解点が300℃以上のものであれば、
弗素系繊維やその他の繊維を用いることもでき
る。 本発明の基布中の無機繊維の有機繊維に対する
混用重量比は、10:90〜99.5:0.5の範囲内にあ
る。無機繊維の含有率が、10重量%未満になる
と、得られる膜体の難燃性が不十分となり、有機
繊維の含有率が0.5重量%未満になると、得られ
る膜体の屈曲強度が不十分となる。また、有機繊
維中には、少なくとも25重量%の前記耐熱性有機
合成繊維が含まれることが好ましく、その含有率
が30〜100重量%であることがより好ましく、50
〜100重量%であることが更に一層好ましい。 また、基布と耐熱難燃被覆層との接着性その他
の性能を助長するために、有機繊維中に300℃よ
りも低い融点又は分解点を有する低耐熱性繊維を
含んでいてもよい。この場合、混用される低耐熱
性繊維に格別の限定はない。しかし、混用される
低耐熱性繊維の混用率が、基布内繊維の合成重量
に対し70%以下であることが好ましく、50%以下
であることが更に好ましい。 無機繊維と有機繊維の混合比が99.5:0.5〜
70:30の範囲内にあるとき、得られる膜体の難燃
性が顕著にすぐれている。有機繊維は耐熱性有機
合成繊維から選ばれることが好ましいが、しかし
これに限定されるものではない。無機繊維と有機
繊維との混合重量比が70:30〜10:90の範囲にあ
るとき、得られる膜体の難燃性は良好であり、上
記重量比が50:50〜10:90の範囲では、有機繊維
の混用比が高くなつた場合、有機繊維として耐熱
性有機合成繊維を用い、その使用量の比率を増大
させることが好ましく、無機繊維の有機繊維に対
する混用率が20:80よりも小さい場合、有機繊維
の100%が耐熱性有機合成繊維であることがより
好ましい。耐熱難燃被覆層は後に述べる配合剤を
ポリ塩化ビニル樹脂に配合してもよい。 本発明において、耐熱難燃被覆層を形成するた
めに用いられるポリ塩化ビニル樹脂は、例えば、
塩化ビニル単独重合体、および、塩化ビニル−酢
酸ビニル共重合体、塩化ビニル−エチレン共重合
体、塩化ビニル−エチレン−酢酸ビニル共重合体
に塩化ビニルをグラフト重合した共重合体などの
塩化ビニル共重合体が挙げられる。 本発明に適用される塩化ビニル樹脂には、例え
ばホウ酸塩、亜鉛化合物等の減煙剤、及び水酸化
アルミニウム、硫酸バリウム、三酸化アンチモン
などの難燃剤のほか、通常使用される可塑剤、安
定剤、防炎剤、充填剤、顔料その他の添加物を添
加してもよい。 減煙剤に使用されるホウ酸塩では、ホウ酸カル
シウム、ホウ酸マグネシウム、ホウ酸バリウム等
が、また、亜鉛化合物では酸化亜鉛、炭酸亜鉛等
が、さらに、鉄化合物では、シユウ酸第1鉄、フ
マール酸第1鉄、黒色酸化鉄等が適当である。 また、可塑剤としては、ジオクチルフタレー
ト、ジイソデシルフタレート、ジブチルフタレー
ト等のフタール酸エステル類、ジオクチルアジペ
ート、ジオクチルセバケート等の脂肪族2塩基酸
エステル類又はエポキシ化大豆油、エポキシ化ア
マニ油等のエポキシ可塑剤等が用いられる。 また、防炎剤には、塩化パラフイン、脂肪族、
環状脂肪族又は芳香族系のハロゲン化合物類、ト
リクレジルホスフエート、トリス−2,3−ジブ
ロムプロピルホスフエート、トリス−2,3−ジ
クロルプロピルホスフエート等が用いられ、充填
剤には、炭酸カルシウム、シリカ、珪酸アルミニ
ウム等が適当である。 基布に施工される塩化ビニル樹脂組成物は、ペ
ースト、フイルム等が好ましく、ペーストは樹脂
組成物を不燃性有機溶剤を用いて希釈し、これを
含浸し、又はナイフコーテイング、ロールコーテ
イング等により塗布し、また、フイルムは主とし
てカレンダー機を用いて貼着される。通常ペース
トを含浸、塗布して固着せしめたのち、基布の片
面又は両面にフイルムを貼着し、基布に施工され
る樹脂全量を100〜300g/m2に規制している。 ペーストは均一に基布に含浸又は塗布され、糸
条に完全に浸透せしめたのち約100℃〜150℃で約
1〜5分間乾燥させ、さらに、150℃〜200℃の高
温雰囲気中で熱処理してゲル化せしめられる。 また、通常基布片面又は両面に、同一の樹脂組
成物フイルムを貼着する。フイルムは0.04〜0.20
mm程度の均厚のもので、カレンダー機を用いて加
熱加圧して基布に貼着せしめられる。基布全体に
固着される樹脂組成物重量は100〜300g/m2の範
囲にあることが好ましい。100g/m2未満では、
基布を完全に被覆することが難しく、また、300
g/m2を超えると、基布に対する樹脂分が過剰と
なつてかえつて、燃焼時発煙及び発熱量の増大を
招く危険がある。 このようにして得られた耐熱難燃性膜体は、燃
焼時の発煙、発熱量が低く、JIS−A−1321
(1975)に規定されている「建築物の内装材料及
び工法の難燃性試験法」における表面試験で発煙
係数が120以下であり、60以下、又は30以下のも
のもある。また、基布を連続フイルムをもつて均
一に被覆するので、少なくとも1500mm水柱の水圧
に耐えられ、また適度の強度を有して良好な耐熱
難燃性膜体が得られる。 本発明に係る膜体の防炎性判定、防水性試験は
下記により行なわれる。 (イ) 防炎性判定 JIS−A−1321(1975)に示す難燃性試験法に
基づいて基材試験及び表面試験を行う。(建築
基準法施行令、準不燃、難燃、表面試験、建設
省公告3415号)。表面試験における試験体に溶
融、亀裂がなく、変形、有毒ガスの発生がな
く、残炎時間が30秒未満で、排気温度曲線が標
準温度曲線を超えず、単位面積当りの発煙係数
(CA)で判定した。 (ロ) 防水性 JIS−L−1079化学繊維織物試験方法の
5.24.1.A法を用い試験片の裏側の3ケ所から水
滴が出たときの水位(mm)を測定した。 耐熱難燃被覆層は、上記のようなポリ塩化ビニ
ル樹脂および耐熱性無機添加剤から形成され、耐
熱難燃被覆層は、ポリ塩化ビニル樹脂の重量に対
し好ましくは1〜300%、より好ましくは10〜250
%の無機添加剤、例えばシリカ系添加剤、チタン
酸アルカリ系添加剤、石綿繊維、雲母およびその
他の無機耐熱材料、高屈折率無機化合物、或は、
吸熱型無機化合物などを添加したものであつても
よい。 無機添加剤はポリ塩化ビニル層の補強作用を果
たすもので、チタン酸アルカリを含み、更にその
他の無機添加剤、例えば、酸化チタン、マイカ、
アルミナ、タルク、ガラス繊維粉末、岩綿微細繊
維、シリカ粉末、クレイ等の各種無機物を含んで
いてもよい。得られるシートに表面平滑性を具備
せしめたい場合には、シートの表面平滑性を損う
ことのないように、無機添加剤として、一般に
50μm以下の微粉末状のものを使用するのが好ま
しい。 チタン酸アルカリはポリ塩化ビニル脂肪中に配
合されて使用されるもので、本発明の膜体に十分
な防炎特性を保持せしめるものである。 チタン酸アルカリについて更に詳しく説明す
る。チタン酸アルカリは、一般式M2O・nTiO2
mH2O(式中MはLi、Ma、K等のアルカリ金属を
表わし、nは8以下の正の実数を表わし、mは0
又は1以下の正の実数を表わす。)で表わされる
周知の化合物であり、更に具体的には、 LiTiO4Li2TiO3(0<n<1、m=0)で表わさ
れる食塩型構造のチタン酸アルカリ、 Na2Ti7O16、K2Ti6O15、K2Ti8O17(0<8、m=
0)で表わされるトンネル構造のチタン酸アルカ
リ等である。これらのうち、一般式 K2O・6TiO2mH2O(式中mは前記と同じ)で表
わされる六チタン酸カリウム及びその水和物は、
最終目的物の耐火、断熱性をより大きく向上させ
る点で好適である。六チタン酸カリウムに限らず
チタン酸アルカリは、一般に粉末又は繊維状の微
細結晶体であるが、このうち、繊維長5μm以上、
アスペクト比20以上、特に100以上のものは、本
発明の耐熱シートの強度の向上に好ましい結果を
もたらす。また、特に繊維状チタン酸カリウム
は、比熱が高いうえに断熱性能に優れ、本発明の
耐熱難燃性膜体の性能を具現するのに特に好まし
い。 チタン酸アルカリは、前記のものをそのまま使
用することも出来るが、これによるより優れた補
強効果を発現させるためには、チタン酸カリウム
に対して0.05〜1.0重量%程度のシランカツプリ
ング剤、例えばγ−アミノプロピルトリエトキシ
シラン、γ−グリシドキシプロピロトリメトキシ
シラン等のシランカツプリング剤で繊維表面が処
理されているものを利用するのが好ましい。 更に、本発明の耐熱難燃被覆層には高屈折率無
機化合物又は吸熱型無機化合物が含まれていても
よい。高屈折率無機化合物は輻射熱に対する遮断
性能に優れ、また吸熱型無機化合物は溶接又は溶
断時のスラグと直接接触した場合、この接触面に
おいて加熱され、その分解時に吸熱反応が起こ
り、スラグの温度を低下させる。従つて上記の無
機化合物は、本発明の被覆層の崩壊や貫通破壊を
おさえ、更には膜体基材を保護することが出来る
ものである。 本発明に有用な高屈折率無機化合物は屈折率
1.5以上のものであれば良いが、特に比重2.8以上
のものが好適であり、その例としては、下記のよ
うなものがある。 (1) ドロマイト (苦灰石)比重2.8〜2.9、屈折率1.50〜1.68 マグネサイト (菱黄土石)〃3.0〜3.1、 〃 1.51〜1.72 アラゴナイト − 〃2.9〜3.0、 〃 1.63〜1.68 アパタイト (燐灰石) 〃3.1〜3.2、 〃 1.68〜1.64 スピネル (尖晶石) 〃3.5〜3.6、 〃 1.72〜1.73 コンランダム − 比重3.9〜4.0、 〃 1.76〜1.77 ジルコン − 〃3.90〜4.10、屈折率1.79〜1.81 炭化ケイ素 − 〃3.17〜3.19、 〃 1.65〜2.68 等の天然又は合成鉱物の破砕品の粉末。 (2) フリツト又は高屈折ガラスもしくは燐鉱石と
蛇鉱石との固溶体として得られる熔成燐肥その
他の類似の固溶体の微細粉末もしくは粒状物、
繊繊状物質又は発泡体など。 また吸熱型無機化合物としては、焼石膏、明ば
ん、炭酸カルシウム、水酸化アルミニウム、ハイ
ドロサルサイト系ケイ酸アルミニウム等、結晶水
放出型、炭酸ガス放出型、分解吸熱型及び相転換
型等の吸熱型無機化合物を例示することができ
る。 チタン酸アルカリ、及び要すれば高屈折率無機
化合物、及び/又は吸熱型無機化合物をポリ塩化
ビニル樹脂中に混合分散せしめると、本発明に係
る膜体構造用の好ましい被覆用混合物が得られ
る。混合分散の調整方法としては、公知の手段が
すべて利用されうる。この他、上記被覆用混合物
中には、各成分を均質に分散させるための分散剤
や脱泡剤、色や機械強度等を調整するための着色
剤、樹脂粉末、難燃剤、金属粉、その他各種充填
剤を自由に混入し得る。尚、銅粉、ニツケル粉、
黄銅粉、アルミニウム粉等の金属粉の混入は、表
面熱反射効果、貫通抑制効果の向上の点から好ま
しい。 基布の表面を、耐熱難燃被膜層で被覆する方法
としては、基布の表面に被覆用混合物をスプレー
塗装、刷毛塗り、ロールコート等の塗工による方
法、或は被覆用混合物を成型加工したフイルムを
基布の表面に貼着する方法又は基布を被覆用混合
物中に浸漬し含浸加工する方法がある。 ポリ塩化ビニル樹脂とチタン酸アルカリならび
に高屈折率無機化合物、及び/又は吸熱型無機化
合物等の配合割合は、使用するポリ塩化ビニル樹
脂及び無機化合物の種類及び粒度により異なる
が、一般にチタン酸アルカリ並びに高屈折率無機
化合物および/又は吸熱型無機化合物の含有率が
高くなると、得られる被覆層の耐熱難燃性が向上
する。しかしポリ塩化ビニル樹脂の含有率が少な
すぎると、被覆層の強度が不足する結果、耐熱難
燃性膜体として用いたとき被覆層に亀裂を生じた
り又は被覆層が基布から剥離したりする等の欠点
が生ずる。 従つて、本発明ではポリ塩化ビニル樹脂100重
量部(以下重量部を部と略す。)に対して配合さ
れるチタン酸アルカリの量は1〜200部であるこ
とが好ましく、30〜100部であることがより好ま
しい。更にこれらに高屈折率無機質化合物、及
び/又は吸熱型無機化合物等を配合する場合は
400部を限度に、同一重量から1/4の重量までに相
当するチタン酸アルカリと置き換えて配合できる
が、普通10〜300部の範囲が好ましい。尚、これ
ら高屈折率無機化合物、吸熱型無機化合物の一部
又は全量を一般に常用されている無機質顔料、無
機質の増量用充填剤、難燃性を付与する無機粉末
等にかえることが出来るが、その使用量はポリ塩
化ビニル樹脂100部に対し400部以下であることが
好ましく、より好ましくは300部以下である。 本発明の効果をより優れたものにするため難燃
剤を併用してもよい。ここで使用される難燃剤に
ついては特に限定されるものではないが、例え
ば、リン酸エステル型、有機ハロゲン化合物型、
ホスフアゼン化合物型などの有機難燃剤、焼石
膏、明ばん、炭酸カルシウム、水酸化アルミニウ
ム、ハイドロタルサイト系ケイ酸アルミニウムな
どの結晶水放出型、炭酸ガス放出型、分解吸熱型
および相転換型などの無機化合物からなる吸熱分
解型無機化合物やアンチモン化合物等の無機難燃
剤等がある。 基布と被覆層との接着及び耐久性を向上させる
目的で、両者間に接着性物質を介在させてもよ
い。この場合、接着力の向上を図る以上に特に厚
く介在させる必要はない。接着性物質は被膜形成
のために用いられるのではなく、従つて接着剤と
して公知の物質を用いることができる。例えば、
アミノ基、イミノ基、エチレンイミン残基、アル
キレンジアミン残基を含むアクリレート、アジリ
ジニル基を含有するアクリレート、アミノエステ
ル変性ビニル重合体−芳香族エポキシ接着剤、ア
ミノ窒素含有メタクリレート重合体、その他の接
着剤を併用してもよい。またポリアミドイミド、
ポリイミド等の繊維基布を構成する樹脂と同質の
樹脂やRFL変性物質等を任意に選択することも
できる。 被覆層の重量や厚さには格別の限定はないが、
一般に10〜1000g/m2、好ましくは50〜300g/
m2の重量が好ましい。 本発明の耐熱難燃性膜体において、耐熱難燃被
覆層は片面のみに形成されてもよいが、基布の耐
候性の低さ等を補填するために両面に形成されて
もよく、使用状況によつては両面形成が必須の条
件になることもある。また、他の片面には、膜体
に要求される性能により、天然ゴム、ネオプレン
ゴム、クロロプレンゴム、シリコーンゴム、弗素
ゴム、ハイパロンその他の合成ゴム、又はエチレ
ン−酢酸ビニルコポリマー(EVA)樹脂、アク
リル樹脂、シリコーン樹脂、弗素樹脂、ウレタン
樹脂、ポリエステル樹脂その他の合成樹脂を用い
ることもできる。この場合、これらの樹脂は難燃
化されている必要がある。 本発明の耐熱難燃性膜体は、テープ状、又は短
冊状に形成されてもよいし、或は、広巾の膜体を
テープ状、または短冊状に切断してもよい。ま
た、本発明の耐熱難燃性膜体は、他の材料、例え
ば発泡体、マツト或はネツトなどと組合せて用い
られてもよい。本発明の耐熱難燃性膜体は、保護
すべき材料、例えば、電線などに被覆又は巻きつ
けられてもよい。 〔実施例〕 本発明の耐熱難燃性膜体を実施例により更に説
明する。 実施例1〜5および比較例1〜2 比較例においては、下記組織の布帛を基布とし
て用いた。 比較例1の布帛 布帛A:ガラス繊維使用 DE1501/23.3S/54本/25.4mm×51本/25.4mmトルコ
朱子織 比較例2の布帛 布帛B:ポリエステル紡績糸平織物 20S/1×20S/1/92×55 実施例1の布帛(布帛1): 布帛Aのガラス繊維布帛において、25.4mmに1
本の割合でガラス繊維糸をポリエステルフイラメ
ント1000d/148fの糸条により代替した。 実施例2の布帛(布帛2): 布帛Aの組織をガラス繊維糸条10本、ポリエス
テル糸条1本の順に並べて布帛とした。 実施例3の布帛(布帛3): 布帛Aの組織において、ガラス繊維糸条2本/
ポリエステル糸条1本/ガラス繊維糸条2本/芳
香族ポリアミド繊維(ケブラー)糸条(1000d/
148f)1本の順に並べて布帛とした。 実施例4の布帛(布帛4): 布帛Aの組織においてガラス繊維糸条と、ケブ
ラー糸条とを交互に並べて構成した。 実施例5の布帛(布帛5): 布帛Aの組織においてガラス繊維糸条2本、ケ
ブラー糸条8本の順に並べて構成した。 以上の各基布を下記の樹脂組成物で処理した。 成 分 重量部 PVC 〔浸漬法:ペースト使用 カレンダー法:ストレート使用〕 100 D.O.P(可塑剤) 70 ホウ酸バリウム(減煙剤) 20 チタン酸カリウム(難燃剤) 70 水酸化アルミニウム(難燃剤) 100 硫酸バリウム(難燃剤) 200 Ba−Zn系安定剤 2 シアニンブルー(顔料) 3 (註:チタン酸カリウムとして大塚化学(株)製、テ
イスモD(商標)を使用した。) 上記樹脂組成物のペーストをトリクレンで希釈
しこの希釈液を浸漬法により基布に含浸被覆し、
150℃で2分間乾燥して希釈剤を飛散せしめたの
ち、185℃で1分間熱処理し、基布に対し樹脂を
70g/m2の割合に固着せしめた。次に、ストレー
トPVCを用い、上記と同じ樹脂組成物からなる
フイルムをカレンダーで作成し、これを樹脂含浸
固着基布片面に貼着し、基布に保持される全樹脂
量を200g/m2とした。得られた各種膜体の性能
を評価した結果を第2表に示す。
Preferably, it is selected from the group of aromatic residues shown below. These aromatic residues halogen, alkyl groups,
It may also contain inert substituents such as nitro groups. Generally, the aromatic polyamide has the following formula: More preferred are those having the repeating unit represented by as a main component. The elongation at break of these heat-resistant organic synthetic fibers is generally 10% or less, and they also exhibit high strength. Therefore, high-strength membranes are required not only from the standpoint of heat resistance but also from the standpoint of improving the strength utilization rate of the membrane. It is extremely preferable to obtain In addition to the above, heat-resistant organic synthetic fibers include those with a melting point or decomposition point of 300℃ or higher,
Fluorine fibers and other fibers can also be used. The weight ratio of inorganic fiber to organic fiber in the base fabric of the present invention is within the range of 10:90 to 99.5:0.5. If the content of inorganic fibers is less than 10% by weight, the resulting membrane will have insufficient flame retardancy, and if the content of organic fibers is less than 0.5% by weight, the flexural strength of the resulting membrane will be insufficient. becomes. Further, it is preferable that the organic fiber contains at least 25% by weight of the heat-resistant organic synthetic fiber, more preferably the content is 30 to 100% by weight, and 50% by weight.
Even more preferably it is 100% by weight. Further, in order to promote adhesion between the base fabric and the heat-resistant and flame-retardant coating layer and other properties, the organic fibers may contain low heat-resistant fibers having a melting point or decomposition point lower than 300°C. In this case, there are no particular limitations on the low heat resistant fibers to be mixed. However, the mixing ratio of the low heat resistant fibers to be mixed is preferably 70% or less, more preferably 50% or less, based on the combined weight of the fibers in the base fabric. Mixing ratio of inorganic fiber and organic fiber is 99.5:0.5~
When the ratio is within the range of 70:30, the flame retardance of the resulting membrane is significantly superior. The organic fibers are preferably selected from heat-resistant organic synthetic fibers, but are not limited thereto. When the mixing weight ratio of inorganic fibers and organic fibers is in the range of 70:30 to 10:90, the resulting membrane has good flame retardancy, and when the weight ratio is in the range of 50:50 to 10:90. Therefore, when the mixing ratio of organic fibers increases, it is preferable to use heat-resistant organic synthetic fibers as the organic fibers and increase the ratio of the amount used. If it is small, it is more preferable that 100% of the organic fibers be heat-resistant organic synthetic fibers. The heat-resistant and flame-retardant coating layer may be formed by blending the compounding agents described later with the polyvinyl chloride resin. In the present invention, the polyvinyl chloride resin used to form the heat-resistant and flame-retardant coating layer is, for example,
Vinyl chloride homopolymers, vinyl chloride copolymers, vinyl chloride-vinyl acetate copolymers, vinyl chloride-ethylene copolymers, and copolymers obtained by grafting vinyl chloride onto vinyl chloride-ethylene-vinyl acetate copolymers. Examples include polymers. The vinyl chloride resin applied to the present invention includes, for example, smoke reducing agents such as borates and zinc compounds, and flame retardants such as aluminum hydroxide, barium sulfate, and antimony trioxide, as well as commonly used plasticizers, Stabilizers, flame retardants, fillers, pigments and other additives may also be added. Borates used in smoke reducing agents include calcium borate, magnesium borate, barium borate, etc., zinc compounds include zinc oxide, zinc carbonate, etc., and iron compounds include ferrous oxalate. , ferrous fumarate, black iron oxide, etc. are suitable. Examples of plasticizers include phthalic acid esters such as dioctyl phthalate, diisodecyl phthalate and dibutyl phthalate, aliphatic dibasic acid esters such as dioctyl adipate and dioctyl sebacate, or epoxidized soybean oil and epoxidized linseed oil. A plasticizer or the like is used. In addition, flame retardants include chlorinated paraffin, aliphatic,
Cycloaliphatic or aromatic halogen compounds, tricresyl phosphate, tris-2,3-dibromopropyl phosphate, tris-2,3-dichloropropyl phosphate, etc. are used as fillers. , calcium carbonate, silica, aluminum silicate, etc. are suitable. The vinyl chloride resin composition to be applied to the base fabric is preferably a paste, a film, etc., and the paste is prepared by diluting the resin composition with a nonflammable organic solvent and impregnating it, or applying it by knife coating, roll coating, etc. However, the film is mainly applied using a calendar machine. Normally, after impregnating and applying paste and fixing it, a film is attached to one or both sides of the base fabric, and the total amount of resin applied to the base fabric is regulated to 100 to 300 g/m 2 . The paste is uniformly impregnated or applied to the base fabric, and after completely permeating into the yarn, it is dried at about 100°C to 150°C for about 1 to 5 minutes, and then heat-treated in a high temperature atmosphere of 150°C to 200°C. and gelatinized. Further, the same resin composition film is usually attached to one or both sides of the base fabric. Film is 0.04~0.20
It has a uniform thickness of about mm, and is attached to the base fabric by heating and pressurizing it using a calendar machine. The weight of the resin composition fixed to the entire base fabric is preferably in the range of 100 to 300 g/m 2 . Below 100g/ m2 ,
It is difficult to completely cover the base fabric, and
If it exceeds g/m 2 , there is a danger that the resin content will be excessive with respect to the base fabric, resulting in smoke generation and an increase in calorific value during combustion. The heat-resistant and flame-retardant film obtained in this way has low smoke emission and calorific value during combustion, and meets JIS-A-1322.
(1975), the smoke emission coefficient is 120 or less, some are 60 or less, and some are 30 or less in the surface test according to the "Flame Retardant Test Method for Building Interior Materials and Construction Methods". Further, since the base fabric is uniformly covered with a continuous film, a film body that can withstand water pressure of at least 1500 mm of water column and has appropriate strength and good heat resistance and flame retardancy can be obtained. The flame retardant property determination and waterproof test of the membrane body according to the present invention are conducted as follows. (a) Flame retardancy determination Base material test and surface test are conducted based on the flame retardancy test method shown in JIS-A-1321 (1975). (Enforcement Ordinance of the Building Standards Act, semi-flammable, flame retardant, surface test, Ministry of Construction Public Notice No. 3415). The specimen in the surface test has no melting, cracking, deformation, or generation of toxic gas, afterflame time is less than 30 seconds, exhaust temperature curve does not exceed the standard temperature curve, and smoke emission coefficient (CA) per unit area. It was judged. (b) Waterproofing JIS-L-1079 Chemical Fiber Fabric Test Method
Using method 5.24.1.A, the water level (mm) was measured when water droplets came out from three locations on the back side of the test piece. The heat-resistant and flame-retardant coating layer is formed from the above-mentioned polyvinyl chloride resin and a heat-resistant inorganic additive, and the heat-resistant and flame-retardant coating layer preferably accounts for 1 to 300%, more preferably 1 to 300%, based on the weight of the polyvinyl chloride resin. 10~250
% of inorganic additives, such as silica-based additives, alkali titanate-based additives, asbestos fibers, mica and other inorganic heat-resistant materials, high refractive index inorganic compounds, or
It may also contain an endothermic inorganic compound or the like. Inorganic additives serve to reinforce the polyvinyl chloride layer, and include alkali titanate, as well as other inorganic additives such as titanium oxide, mica,
It may contain various inorganic substances such as alumina, talc, glass fiber powder, rock wool fine fibers, silica powder, and clay. When it is desired to impart surface smoothness to the resulting sheet, inorganic additives are generally used so as not to impair the surface smoothness of the sheet.
It is preferable to use a fine powder with a diameter of 50 μm or less. Alkali titanate is used by being blended with polyvinyl chloride fat, and is used to ensure that the membrane of the present invention maintains sufficient flame retardant properties. The alkali titanate will be explained in more detail. Alkali titanate has the general formula M 2 O・nTiO 2
mH 2 O (in the formula, M represents an alkali metal such as Li, Ma, K, etc., n represents a positive real number of 8 or less, m is 0
Or represents a positive real number less than or equal to 1. ), and more specifically, an alkali titanate with a salt-type structure represented by LiTiO 4 Li 2 TiO 3 (0<n<1, m=0), Na 2 Ti 7 O 16 , K 2 Ti 6 O 15 , K 2 Ti 8 O 17 (0<8, m=
0) with a tunnel structure, such as alkali titanate. Among these, potassium hexatitanate and its hydrate represented by the general formula K 2 O・6TiO 2 mH 2 O (in the formula, m is the same as above) are:
This is suitable because it greatly improves the fire resistance and heat insulation properties of the final object. Not only potassium hexatitanate but also alkali titanates are generally in the form of powder or fibrous microcrystals, but among these, those with a fiber length of 5 μm or more
An aspect ratio of 20 or more, especially 100 or more brings about favorable results in improving the strength of the heat-resistant sheet of the present invention. In addition, fibrous potassium titanate has a high specific heat and excellent heat insulation performance, and is particularly preferable for realizing the performance of the heat-resistant and flame-retardant membrane of the present invention. The alkali titanate described above can be used as is, but in order to achieve a better reinforcing effect, it is necessary to add a silane coupling agent, such as a silane coupling agent, in an amount of about 0.05 to 1.0% by weight based on potassium titanate. It is preferable to use fibers whose surfaces have been treated with a silane coupling agent such as γ-aminopropyltriethoxysilane or γ-glycidoxypropyrotrimethoxysilane. Furthermore, the heat-resistant and flame-retardant coating layer of the present invention may contain a high refractive index inorganic compound or an endothermic inorganic compound. High refractive index inorganic compounds have excellent shielding performance against radiant heat, and when endothermic inorganic compounds come into direct contact with slag during welding or fusing, they are heated at this contact surface, and an endothermic reaction occurs during decomposition, lowering the temperature of the slag. lower. Therefore, the above-mentioned inorganic compound can suppress the collapse or penetration failure of the coating layer of the present invention, and can further protect the membrane base material. High refractive index inorganic compounds useful in the present invention have a refractive index of
Any material with a specific gravity of 1.5 or more is acceptable, but those with a specific gravity of 2.8 or more are particularly preferred, and examples thereof include the following. (1) Dolomite (dolomite) specific gravity 2.8-2.9, refractive index 1.50-1.68 Magnesite (rhizoite) 〃3.0-3.1, 〃 1.51-1.72 Aragonite − 〃2.9-3.0, 〃 1.63-1.68 Apatite (apatite) 3.1-3.2, 1.68-1.64 Spinel 3.5-3.6, 1.72-1.73 Corundum − Specific gravity 3.9-4.0, 1.76-1.77 Zircon − 3.90-4.10, Refractive index 1.79-1.81 Silicon carbide − Powder of crushed natural or synthetic minerals such as 〃3.17~3.19, 〃1.65~2.68. (2) Fine powders or granules of frits or high refractive glasses or fused phosphorous or other similar solid solutions obtained as solid solutions of phosphate and snakestone;
Fibrous materials or foams, etc. In addition, endothermic inorganic compounds include calcined gypsum, alum, calcium carbonate, aluminum hydroxide, hydrosalcite-based aluminum silicate, etc., crystal water release type, carbon dioxide release type, decomposition endothermic type, and phase change type. Examples include type inorganic compounds. By mixing and dispersing the alkali titanate and optionally the high refractive index inorganic compound and/or the endothermic inorganic compound in the polyvinyl chloride resin, a preferred coating mixture for the membrane structure according to the invention is obtained. All known means can be used to adjust the mixing and dispersion. In addition, the above coating mixture contains dispersants and defoaming agents to homogeneously disperse each component, colorants to adjust color and mechanical strength, resin powder, flame retardants, metal powder, etc. Various fillers can be freely mixed. In addition, copper powder, nickel powder,
Mixing metal powder such as brass powder or aluminum powder is preferable from the viewpoint of improving the surface heat reflection effect and the penetration suppressing effect. The surface of the base fabric can be coated with a heat-resistant and flame-retardant film layer by applying the coating mixture to the surface of the base fabric by spraying, brushing, roll coating, etc., or by molding the coating mixture. There is a method in which a coated film is adhered to the surface of a base fabric, or a method in which the base fabric is immersed in a coating mixture to be impregnated. The blending ratio of polyvinyl chloride resin, alkali titanate, high refractive index inorganic compound, and/or endothermic inorganic compound, etc. varies depending on the type and particle size of the polyvinyl chloride resin and inorganic compound used, but in general, alkali titanate and When the content of the high refractive index inorganic compound and/or the endothermic inorganic compound increases, the heat resistance and flame retardance of the resulting coating layer improves. However, if the content of polyvinyl chloride resin is too low, the strength of the coating layer will be insufficient, resulting in cracks in the coating layer or peeling of the coating layer from the base fabric when used as a heat-resistant and flame-retardant membrane. Such disadvantages arise. Therefore, in the present invention, the amount of alkali titanate blended with respect to 100 parts by weight of polyvinyl chloride resin (hereinafter referred to as parts by weight) is preferably 1 to 200 parts, and 30 to 100 parts. It is more preferable that there be. Furthermore, if high refractive index inorganic compounds and/or endothermic inorganic compounds are added to these,
Up to 400 parts can be added by replacing it with an alkali titanate corresponding to the same weight to 1/4 of the weight, but a range of 10 to 300 parts is usually preferred. Note that part or all of these high refractive index inorganic compounds and endothermic inorganic compounds can be replaced with commonly used inorganic pigments, inorganic extender fillers, inorganic powders that impart flame retardancy, etc. The amount used is preferably 400 parts or less, more preferably 300 parts or less per 100 parts of polyvinyl chloride resin. A flame retardant may be used in combination to enhance the effects of the present invention. The flame retardants used here are not particularly limited, but include, for example, phosphate ester type, organic halogen compound type,
Organic flame retardants such as phosphazene compound type, crystal water releasing type such as calcined gypsum, alum, calcium carbonate, aluminum hydroxide, hydrotalcite aluminum silicate, carbon dioxide gas releasing type, decomposition endothermic type and phase conversion type. There are inorganic flame retardants such as endothermic decomposition type inorganic compounds made of inorganic compounds and antimony compounds. In order to improve the adhesion and durability between the base fabric and the coating layer, an adhesive substance may be interposed between the two. In this case, there is no need to interpose the layer thicker than to improve adhesive strength. Adhesive substances are not used for film formation; therefore substances known as adhesives can be used. for example,
Acrylates containing amino groups, imino groups, ethyleneimine residues, alkylene diamine residues, acrylates containing aziridinyl groups, amino ester-modified vinyl polymers - aromatic epoxy adhesives, amino nitrogen-containing methacrylate polymers, other adhesives may be used together. Also polyamideimide,
It is also possible to arbitrarily select a resin of the same quality as the resin constituting the fiber base fabric, such as polyimide, or an RFL modified substance. There are no particular limitations on the weight or thickness of the coating layer, but
Generally 10-1000g/ m2 , preferably 50-300g/m2
A weight of m 2 is preferred. In the heat-resistant and flame-retardant film body of the present invention, the heat-resistant and flame-retardant coating layer may be formed only on one side, but may be formed on both sides to compensate for the low weather resistance of the base fabric. Depending on the situation, double-sided formation may be an essential condition. Depending on the performance required for the membrane, the other side may be made of natural rubber, neoprene rubber, chloroprene rubber, silicone rubber, fluorine rubber, Hypalon or other synthetic rubber, ethylene-vinyl acetate copolymer (EVA) resin, acrylic Resin, silicone resin, fluororesin, urethane resin, polyester resin and other synthetic resins can also be used. In this case, these resins need to be flame retardant. The heat-resistant and flame-retardant film body of the present invention may be formed into a tape shape or a strip shape, or a wide film body may be cut into a tape shape or a strip shape. Furthermore, the heat-resistant and flame-retardant film of the present invention may be used in combination with other materials, such as foam, mat, or net. The heat-resistant and flame-retardant membrane of the present invention may be coated or wrapped around a material to be protected, such as an electric wire. [Example] The heat-resistant and flame-retardant film body of the present invention will be further explained with reference to Examples. Examples 1 to 5 and Comparative Examples 1 to 2 In the comparative examples, fabrics with the following structures were used as base fabrics. Fabric of Comparative Example 1 Fabric A: Glass fiber used DE1501/23.3S/54 pieces/25.4mm x 51 pieces/25.4mm Turkish satin woven fabric Fabric of Comparative Example 2 Fabric B: Polyester spun yarn plain woven fabric 20S/1 x 20S/1 /92×55 Fabric of Example 1 (Fabric 1): In the glass fiber fabric of Fabric A, 1 in 25.4 mm
The glass fiber yarn was replaced with a polyester filament 1000d/148f yarn in a proportion of 100%. Fabric of Example 2 (Fabric 2): A fabric was prepared by arranging the structure of Fabric A in the order of 10 glass fiber threads and 1 polyester thread. Fabric of Example 3 (Fabric 3): In the structure of Fabric A, 2 glass fiber threads/
1 polyester thread / 2 glass fiber threads / Aromatic polyamide fiber (Kevlar) thread (1000d/
148f) They were lined up one by one and made into cloth. Fabric of Example 4 (Fabric 4): In the structure of Fabric A, glass fiber threads and Kevlar threads were arranged alternately. Fabric of Example 5 (Fabric 5): In the structure of Fabric A, two glass fiber threads and eight Kevlar threads were arranged in this order. Each of the above base fabrics was treated with the following resin composition. Ingredients Part by weight PVC [Immersion method: paste method Calendar method: straight method] 100 DOP (plasticizer) 70 Barium borate (smoke reducer) 20 Potassium titanate (flame retardant) 70 Aluminum hydroxide (flame retardant) 100 Sulfuric acid Barium (flame retardant) 200 Ba-Zn stabilizer 2 Cyanine blue (pigment) 3 (Note: Teismo D (trademark) manufactured by Otsuka Chemical Co., Ltd. was used as potassium titanate.) Paste of the above resin composition Dilute with trichloride, impregnate and coat the base fabric with this diluted solution by dipping method,
After drying at 150°C for 2 minutes to scatter the diluent, heat treatment at 185°C for 1 minute to spread the resin onto the base fabric.
It was fixed at a rate of 70 g/m 2 . Next, a film made of the same resin composition as above was created using a calendar using straight PVC, and this was attached to one side of the resin-impregnated fixed base fabric, so that the total amount of resin retained on the base fabric was 200 g/m 2 And so. Table 2 shows the results of evaluating the performance of the various membrane bodies obtained.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明に係る耐熱難燃性膜体は、良好な耐熱難
燃性を示し、しかも、軽量で強靭であつて、耐繰
り返えし折り曲げ性や、縫製性、特に縫合部のミ
シン目の裂断防止においてもすぐれている。この
ため、本発明の耐熱難燃性膜体は、耐火服、火災
が予想される体育館、倉庫、マーケツト、遊技
場、工場、駐車場、各種宿泊施設等の建築材料、
内装材料に、さらに、テント、日除け、ブライン
ド、シート類、間仕切等の素材その他の折り曲
げ、振動、はためきなどをはげしく受ける用途に
適している。
The heat-resistant and flame-retardant film body according to the present invention exhibits good heat-resistant and flame-retardant properties, is lightweight and strong, and has excellent resistance to repeated folding and sewing properties, especially tearing of perforations at seams. It is also excellent in preventing breakage. Therefore, the heat-resistant and flame-retardant film body of the present invention can be used in fire-resistant clothing, building materials for gymnasiums, warehouses, markets, playgrounds, factories, parking lots, various accommodation facilities, etc. where fire is expected.
It is suitable for interior materials, as well as for materials such as tents, awnings, blinds, sheets, partitions, and other applications that are subject to severe bending, vibration, flapping, etc.

Claims (1)

【特許請求の範囲】 1 無機繊維と、有機繊維とを含んでなる基布
と、この基布の少なくとも1面上に形成され、か
つポリ塩化ビニル樹脂と、耐熱性無機添加剤とを
含んでなる耐熱難燃被覆層とを有し、 前記基布中の無機繊維の有機繊維に対する混用
重量比が10:90〜99.5:0.5の範囲内にあり、か
つ 前記無機添加剤がチタン酸アルカリを含む、 ことを特徴とする耐熱難燃性膜体。 2 前記無機繊維が石綿繊維、セラミツク繊維、
シリカ繊維、ガラス繊維、カーボン繊維および金
属繊維から選ばれる、特許請求の範囲第1項記載
の膜体。 3 前記有機繊維が300℃以上の融点、又は、加
熱分解点を有する耐熱性有機合成繊維を含む、特
許請求の範囲第1項記載の膜体。 4 前記有機繊維が少なくとも25重量%の前記耐
熱性有機合成繊維を含む、特許請求の範囲第3項
記載の膜体。 5 前記耐熱難燃被覆層中の前記無機添加剤の含
有率が、ポリ塩化ビニル樹脂重量に対し1〜300
%の範囲内にある、特許請求の範囲第1項記載の
膜体。 6 前記チタン酸アルカリが、六チタン酸カリウ
ムおよびその水和物から選ばれる、特許請求の範
囲第1項記載の膜体。 7 前記耐熱難燃被覆層中における前記チタン酸
アルカリの含有率が前記ポリ塩化ビニル樹脂重量
に対し、1〜200%の範囲内にある、特許請求の
範囲第1項記載の膜体。 8 前記耐熱難燃被覆層が、更に、高屈折率無機
化合物、又は吸熱型無機化合物を含有する、特許
請求の範囲第1項記載の膜体。
[Scope of Claims] 1. A base fabric comprising inorganic fibers and organic fibers, and a base fabric formed on at least one surface of the base fabric, and containing a polyvinyl chloride resin and a heat-resistant inorganic additive. a heat-resistant and flame-retardant coating layer, the weight ratio of inorganic fibers to organic fibers in the base fabric is within the range of 10:90 to 99.5:0.5, and the inorganic additive contains an alkali titanate. , A heat-resistant and flame-retardant membrane body characterized by: 2 The inorganic fiber is asbestos fiber, ceramic fiber,
The membrane body according to claim 1, which is selected from silica fibers, glass fibers, carbon fibers and metal fibers. 3. The membrane body according to claim 1, wherein the organic fiber includes a heat-resistant organic synthetic fiber having a melting point of 300° C. or higher or a thermal decomposition point. 4. The membrane of claim 3, wherein the organic fibers contain at least 25% by weight of the heat-resistant organic synthetic fibers. 5 The content rate of the inorganic additive in the heat-resistant and flame-retardant coating layer is 1 to 300% based on the weight of the polyvinyl chloride resin.
%, the membrane body according to claim 1. 6. The membrane body according to claim 1, wherein the alkali titanate is selected from potassium hexatitanate and hydrates thereof. 7. The membrane body according to claim 1, wherein the content of the alkali titanate in the heat-resistant and flame-retardant coating layer is within the range of 1 to 200% based on the weight of the polyvinyl chloride resin. 8. The film body according to claim 1, wherein the heat-resistant and flame-retardant coating layer further contains a high refractive index inorganic compound or an endothermic inorganic compound.
JP6856785A 1985-04-02 1985-04-02 Heat-resistant flame-retardant film body Granted JPS61227047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6856785A JPS61227047A (en) 1985-04-02 1985-04-02 Heat-resistant flame-retardant film body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6856785A JPS61227047A (en) 1985-04-02 1985-04-02 Heat-resistant flame-retardant film body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3120358A Division JPH0712645B2 (en) 1991-05-24 1991-05-24 Heat resistant flame retardant film

Publications (2)

Publication Number Publication Date
JPS61227047A JPS61227047A (en) 1986-10-09
JPH0420385B2 true JPH0420385B2 (en) 1992-04-02

Family

ID=13377468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6856785A Granted JPS61227047A (en) 1985-04-02 1985-04-02 Heat-resistant flame-retardant film body

Country Status (1)

Country Link
JP (1) JPS61227047A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554582A (en) * 1979-04-24 1980-01-14 Saburo Uemura Detector for magnetic scale

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554582A (en) * 1979-04-24 1980-01-14 Saburo Uemura Detector for magnetic scale

Also Published As

Publication number Publication date
JPS61227047A (en) 1986-10-09

Similar Documents

Publication Publication Date Title
CA2560054C (en) Fire resistant composite material and fabrics made therefrom
US5102726A (en) Flexible composite laminate comprising a textile substrate, cementitious layer and sealing layer
US20100319134A1 (en) Fire Resistant Composite Material And Fabrics Made Therefrom
MXPA06010728A (en) Fire resistant composite material and fabrics made therefrom.
JP2000063841A (en) Fire retardant for mesh sheet and flameproof mesh sheet using this
JP2003073973A (en) Waterproof nonflammable sheet
US4542067A (en) Flameproofed water-repellent woven or knitted sheet coated with silicone containing fibrous potassium titanate
JPH0455387B2 (en)
JP2812671B2 (en) Heat-resistant and flame-retardant film
JPH0420385B2 (en)
JPH0436063B2 (en)
JPS61185443A (en) Flame-retardant sheet material
JPH04226342A (en) Heat-resistant, flame-retardant film member
JPH0455107B2 (en)
JPH0515178B2 (en)
JPH0737125B2 (en) Heat resistant sheet with excellent bending resistance
JP2001348756A (en) Meshlike sheet
JPH07216748A (en) Heat resistant sheet
JP2514062Y2 (en) Heat resistant sheet
JPS61162347A (en) Heat-resistant sheet
JPH04226346A (en) Heat-resistant sheet
JPH0612923Y2 (en) Flame retardant heat resistant sheet
JPH0570938U (en) Heat resistant sheet
JPS61160247A (en) Heat-resistant sheet
JPH01298280A (en) Production of flame-retardant fabric and flame-retardant fabric

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term