JPH04203160A - Floor material with non-slip function - Google Patents

Floor material with non-slip function

Info

Publication number
JPH04203160A
JPH04203160A JP2338432A JP33843290A JPH04203160A JP H04203160 A JPH04203160 A JP H04203160A JP 2338432 A JP2338432 A JP 2338432A JP 33843290 A JP33843290 A JP 33843290A JP H04203160 A JPH04203160 A JP H04203160A
Authority
JP
Japan
Prior art keywords
floor
floor material
heating unit
water
prevent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2338432A
Other languages
Japanese (ja)
Inventor
Yosuke Tajima
陽介 田島
Koji Motoi
孝治 本居
Katsufumi Matsumoto
松本 勝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2338432A priority Critical patent/JPH04203160A/en
Publication of JPH04203160A publication Critical patent/JPH04203160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Floor Finish (AREA)
  • Central Heating Systems (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prevent slipping and expedite drying when the floor of a bath room or the like is wet by providing a floor material where minute recessed parts are formed in the surface, and making a planar heating unit integrated with the reverse surface. CONSTITUTION:Micro-particulates 21 such as alumina short fiber, natural stone pulverized particulates are formed integratedly through a small amount of heat curing resin to form a floor material body 2 provided with a number of surface opening minute holes 23. Next, a heating unit body 32 is provided between insulating layers 31 which are disposed on the upper and the lower, and a planar heating unit 3 is formed where electrodes 33 are disposed on the right and left. Then the heating unit 3 is jointed at the lower surface of the floor material 2 for integration. It is thus possible to prevent slipping when a floor is wet, and prevent it from getting dirty. Besides, it is possible to make it flat for comfortable use because of minute grooves, expedite drying by heating the planar heating unit, and prevent touch feeling of coolness and generation of fungus or the like.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、たとえば、水に濡れやすい場所に使用される
滑り止め機能付きフロア−材に関する。
TECHNICAL FIELD The present invention relates to a floor material with an anti-slip function used, for example, in places that are easily wetted with water.

【従来の技術】[Conventional technology]

従来から水に濡れやすい浴室・、調理室、便所、玄関、
ベランダ、プールサイド、シャワールーム等の場所では
、水により滑ったりすることがないように、たとえば、
実公昭57−15308号公報にみられるような多孔性
のフロア−材が使用されている。 この多孔性のフロア−材は、0.3 mm以上の粒径の
砂等の骨材表面を熱硬化性樹脂で被覆して骨材の接触部
で連結固化することにより形成されていて、骨材間に連
続した透水孔が形成されており、この透水孔によって、
水を表面から裏面へ透過させるようにして、水濡れ時の
滑りを防止するようにしていた。
Bathrooms, galleys, toilets, entrances, and other areas that are traditionally prone to getting wet with water.
In places such as balconies, poolsides, shower rooms, etc., take precautions to prevent slipping due to water.
A porous floor material as shown in Japanese Utility Model Publication No. 15308/1983 is used. This porous floor material is formed by coating the surface of aggregate such as sand with a particle size of 0.3 mm or more with thermosetting resin and connecting and solidifying it at the contact area of the aggregate. Continuous water permeable holes are formed between the materials, and these water permeable holes
It was designed to allow water to pass through from the surface to the back to prevent slipping when wet.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、上記のフロア−材は、単に骨材の接触部で連結
固化して骨材間に間隙を形成しているため透水孔の孔径
が大きい。したがって、透水孔内に水とともに固体の夾
雑物が入り、目詰まりを起こして汚れやすいという問題
点を有していた。 そこで、本発明の発明者らは、微細粉粒体に少量の熱硬
化性樹脂を均一付着させ、減圧包装して加圧成形し、加
熱硬化して得られる多孔性のフロア−材を先に提案して
いる。 このフロア−材は、表面に開口していて裏面までは連通
していない多数の微細孔が形成されておリ、水で濡れて
いても、足の裏等で押圧されると、水が開口から微細孔
内へ逃げ込むため、足の裏とフロア−材表面との間に水
膜がなくなり、滑らない。そして、表面が略平滑で肌触
りがよく、微細孔に透水性がないため汚れにくいと言う
利点も備えた優れた機能を有するものである。 ところが、−旦フロアー材内部の微細孔に入り込んだ水
分が抜けにくい構造となっており、フロア−材表面が乾
燥しにくく、裸足でフロア−材の上に載ったりすると冷
触感があり、冬場などは、不快に感じる場合があると言
う問題点があった。 本発明は、かかる従来技術の有する問題点を解決するこ
とができる新規な滑り止め機能付きフロア−材を提供す
ることを目的としている。
However, in the above-mentioned floor materials, the diameter of the water permeation holes is large because the aggregates are simply connected and solidified at the contact portions to form gaps between the aggregates. Therefore, there is a problem in that solid impurities enter the water permeation hole together with water, causing clogging and staining. Therefore, the inventors of the present invention first developed a porous floor material obtained by uniformly adhering a small amount of thermosetting resin to fine powder, packaging it under reduced pressure, molding it under pressure, and curing it by heating. is suggesting. This floor material has a large number of micropores that open on the surface but do not communicate with the back surface.Even if it is wet with water, when pressed with the soles of your feet, the water will open. Since water escapes into the micropores, there is no water film between the soles of the feet and the surface of the flooring material, preventing slipping. It also has an excellent function with the advantage of having a substantially smooth surface that feels good to the touch, and being resistant to stains because the micropores are not water permeable. However, the structure makes it difficult for moisture that has entered the micropores inside the flooring material to escape, making it difficult for the surface of the flooring material to dry out, making it feel cold to the touch when you stand on the flooring material with bare feet. There was a problem that some people felt uncomfortable. An object of the present invention is to provide a novel floor material with an anti-slip function that can solve the problems of the prior art.

【課題を解決するための手段】[Means to solve the problem]

このような目的を達成するために、本発明は、水を裏面
まで透過させることなく、水膜の形成を防止して滑らな
いようにする微細な凹部が表面に形成された滑り止め機
能付きフロア−材であって、裏面側に面状発熱体が一体
化されていることを特徴とする滑り止め機能付きフロア
−材を要旨としている。
In order to achieve this purpose, the present invention provides a floor with an anti-slip function, in which fine recesses are formed on the surface to prevent the formation of a water film and prevent slipping, without allowing water to penetrate to the back surface. The gist of the present invention is a floor material with an anti-slip function, which is characterized by having a planar heating element integrated on the back side.

【作  用】[For production]

上記構成により、フロア−材表面が水に濡れていても、
足の裏などで水が押圧されると、表面に形成された凹部
に水が入り込みフロア−材と足の裏との間の水膜が無く
なり滑らないようになっている。 そして、裏面側に配置された面状発熱体を発熱させるこ
とにより、フロア−材が加温されるとともに、凹部に入
り込んだ水の蒸発を速めるようになっている。 しかも、四部が微細であるため、表面が略平滑で、足の
裏などに違和感を与えないとともに、汚れ等も溜まらな
いようになっている。
With the above configuration, even if the floor material surface is wet with water,
When water is pressed by the soles of the feet, it enters the recesses formed on the surface, eliminating the water film between the floor material and the soles of the feet, preventing slipping. By generating heat from the planar heating element disposed on the back side, the floor material is heated and the evaporation of water that has entered the recess is accelerated. Moreover, since the four parts are fine, the surface is substantially smooth, so that it does not cause discomfort to the soles of the feet, and does not accumulate dirt or the like.

【実 施 例】【Example】

以下に、本発明を、その実施例を参照しつつ詳しく説明
する。 第1図は本発明にかかる滑り止め機能付きフロア−材の
1実施例を横から見た断面であられしている。 図にみるように、このフロア−材lは、フロア−材木体
2と面状発熱体3とから構成されているフロア−材木体
2は、第2図にみるように、微細粉粒体21が少量の熱
硬化性樹脂を介して一体成形された成形体であって、そ
の表面に開口22を有する微細孔23が多数形成されて
いるとともに、その表面が略平滑に形成されている。 開口22は、その径がlOl!m以上である細孔の割合
が、水銀圧入法で測定した場合(径が150−相当の圧
力から0.006−相当の圧力により測定)に、全細孔
容積中の容積分率であられして30%未満であることが
好ましい。 細孔23の全細孔容積は、0.05 cc/g以上とな
っていることが好ましい。 このフロア−材木体2は、以上のように、微細な開口2
2がその表面に臨んでいるだけであるので、突起物がな
く略平滑で、裸足で載っても違和感がない。しかも、透
水しないため汚れも付きにくい。さらに、水に濡れてい
ても、足を載せたりして表面に圧力が加わると、その水
が開口22を介して微細孔23内に逃げ込むので、フロ
ア−材木体2の表面に水膜がなくなる。したがって、滑
らないと言う効果を奏する。 上記フロー材本体2は、以下のようにして製造される。 すなわち、混線等により予め微細粉粒体21の表面に少
量の熱硬化性樹脂を均一に付着させたのち、この樹脂付
着物を成形型上に均質に敷き詰める。そして、加圧およ
び加熱し樹脂を硬化させて得ることができる。 加圧の方法は、成形ムラのない、孔径の揃った微細孔が
形成されたフロア−材木体2を得られるのであれば、特
に限定されないが、たとえば、樹脂付着物を成形型上に
均質に敷き詰めた後、この成形型上をシート状物で覆い
、この覆われた内部空間を真空脱気して敷き詰められた
微細粉粒体21間の大きな空間を無くし、大気圧の均一
な圧力で締め込み、これをさらにプレスで加圧成形する
方法等が好ましい。 上記方法で用いられるシート状物としては、加熱硬化時
に発生するスチレン蒸気等により溶解しないものが望ま
しく、たとえば、ポリエチレン、ポリプロピレン製のも
の等が挙げられる。 微細粉粒体としては、例えば、ガラスミルドファイバー
、ビニロン繊維、アルミナ短繊維、カーボン短繊維、ウ
オラストナイト、アバタルジャイト、ハイシライト、カ
オリン、クレー、ケイ砂、天然鉱物繊維、天然石粉砕粉
、マイカ、チタン酸カリウム短繊維、ウィスカ等が挙げ
られる。これらはいずれのものも一種のみで、又は二種
以上−緒に使用することができる。 熱硬化性樹脂としては、たとえば、不飽和ポリエステル
樹脂、エポキシ樹脂、フェノール樹脂等が挙げられる。 なお、微細粉粒体の繊維太さ、粒径、形状および熱硬化
性樹脂の粘度を調整することにより、表面開口の径を調
整することが可能である。 面状発熱体3は、上下に配置された絶縁層31の間に発
熱体本体32が設けられていて、この発熱体本体32を
両側から挟むように電極33か設けられており、フロア
−材木体2に接着剤を介して一体化されている。図示し
ていないが、電極33には、導線が連結されている。 絶縁層31は、補強繊維素材が混合された熱硬化性樹脂
から形成されている。 一方、発熱体本体32は、熱硬化性樹脂中に発熱材料の
1例として導電性繊維34が分散されている。 なお、絶縁層31および発熱体本体32を形成する熱硬
化性樹脂としては、たとえば、不飽和ポリエステル樹脂
、フェノール樹脂、エポキシ樹脂、ポリオレフィン樹脂
等が挙げられ、経時的に絶縁性や耐水性が変化せず、あ
る程度の柔軟性のある物が望ましいことから、不飽和ポ
リエステル樹脂、ポリオレフィン樹脂が特に好ましい。 絶縁層31中に含まれる補強繊維素材としては、ガラス
繊維やガラス繊維マット等が挙げられる導電性繊維34
としては、カーボン繊維等の10−2Ω・印以下の体積
固有抵抗を有しているものが好ましく、しかも、繊維長
0.3〜25mのもの、平均直径501rm以下のもの
が特に好ましい。すなわち、繊維長が長すぎると熱硬化
性樹脂中に分散させにくくなり、短すぎると導電性が低
下する傾向がある。また、径が太すぎると導電性密度が
不均一゛になる恐れがある。 また、熱硬化性樹脂に対する導電性繊維34の混合割合
は、均一分散性、導電性等を考慮すると、熱硬化性樹脂
100重量部当たり、0.1重量部〜5重量部程度が好
ましい。 電極33としては、導電性の良好な銅、銅合
金、アルミニウム、鉄などの金属板が使用される。 電
極33は、発熱体本体32を成形時に同時に発熱体本体
32側面に埋め込むようにしてもよいし、発熱体本体3
2を成形したのち導電性接着剤等を介して貼着するよう
にしても構わない。 (実施例1) ウオラストナイト(400メツシユパス)1重量部とエ
ポキシ樹脂4重量部とを混合撹拌し、これを成形型上に
ふるい落として充填したのち、成形型上をポリプロピレ
ンシートで覆い、シートで覆われた内部空間を真空脱気
し、脱気後さらにロールプレスでプレス成形(60kg
/Cr1) L、100℃で加熱硬化させてフロア−材
木体を得た。 不飽和ポリエステル樹脂100重量部にポリエステル・
スチレンモノマー42重量部、増粘剤112重量部、硬
化触媒0.4重量部を混合して組成物Aを得た。 この組成物Aにさらに炭素繊維(繊維長6鵬、繊維径1
2.5fm) 1.4重量部を混合して均一な混合物■
を得た。 また、組成物Aにさらにガラス繊維27重量部を混合し
て均一な混合物■を得た。 そして、混合物■により発熱体本体の形状の成形体を形
成するとともに、この成形体の上下に混合物■よりなる
シート状体を絶縁層として積層し、さらに成形体の両側
面に導線を接続した銅板電極を添着したのち、これを硬
化炉内に導入し加熱硬化により成形して面状発熱体を得
た。 上記製造方法で得られたフロア−材木体の裏面に面状発
熱体を貼着し、2重構造ををするフロア−材を得た。 (実施例2) ハイシライト(100メツシユパス)1重量部と不飽和
ポリエステル樹脂4重量部とを混合撹拌し、これを成形
型上にふるい落として充填したのち、成形型上をポリエ
チレンで覆い、シートで覆われた内部空間を真空脱気し
、脱気後さらにロールプレスでプレス成形(50kg/
c++f) L、80℃で加熱硬化させてフロア−材木
体を得た以外は、実施例1と同様にして2重構造を有す
るフロア−材を得た。 (比較例1) 実施例1と同様のフロア−材木体のみのフロア−材を形
成した。 (比較例2) 実施例2と同様のフロア−材木体のみのフロア−材を形
成した。 上記実施例1,2および比較例1,2で得られたフロア
−材を浴室のフロア−材として使用したところ、実施例
1. 2のフロア−材は、汚れにくく滑りにくいのは勿
論のこと、面状発熱体による加熱でフロア−材木体表面
の凹部に入り込んだ水分が蒸散して水を使用した後に触
れても冷触感かなく、快適なものであった。一方、比較
例1. 2のフロア−材は、汚れにくく滑りにくいもの
であるが、表面の凹部に入った水がなかなか乾きにくく
冷触感があった。 本発明にかかる滑り止め機能付きフロア−材は、上記の
実施例に限定されない。 たとえば、フロア−材木体は、自然石等の親水性材料の
表面にフッ素樹脂やアクリル樹脂等の疏水性材料層を形
成するとともに、この疏水性材料層に親水性材料まで達
する微細な凹部を設けたものでも構わない。このフロア
−材木体は、微細な凹部から親水性材料に水が達するこ
とで水膜が切り表面を滑り難くしている。
The present invention will be explained in detail below with reference to examples thereof. FIG. 1 is a side cross-sectional view of one embodiment of a floor material with an anti-slip function according to the present invention. As shown in the figure, this floor material 1 is composed of a floor material 2 and a planar heating element 3.As shown in FIG. It is a molded body that is integrally molded with a small amount of thermosetting resin interposed therebetween, and has a large number of micropores 23 having openings 22 formed on its surface, and its surface is formed to be substantially smooth. The diameter of the opening 22 is lOl! m or more, when measured by mercury intrusion method (measured from a pressure equivalent to 150 mm diameter to a pressure equivalent to 0.006 mm diameter), it is expressed as a volume fraction of the total pore volume. It is preferably less than 30%. The total pore volume of the pores 23 is preferably 0.05 cc/g or more. As described above, this floor-timber body 2 has minute openings 2.
2 only faces the surface, so it is almost smooth with no protrusions, and you won't feel any discomfort even if you stand on it barefoot. Moreover, since it is impermeable to water, it is difficult to get dirty. Furthermore, even if it is wet with water, when pressure is applied to the surface by placing your feet on it, the water escapes into the micropores 23 through the openings 22, so there is no water film on the surface of the floor-timber body 2. . Therefore, it has the effect of not slipping. The flow material main body 2 is manufactured as follows. That is, after a small amount of thermosetting resin is uniformly adhered to the surface of the fine powder 21 in advance by crosstalk or the like, this resin deposit is uniformly spread over the mold. Then, it can be obtained by applying pressure and heating to harden the resin. The method of pressurization is not particularly limited as long as it is possible to obtain a floor-timber body 2 in which fine pores with uniform diameters are formed without molding unevenness, but for example, the method of pressurization is not particularly limited, but it may be possible to After the mold is spread, the mold is covered with a sheet-like material, and the covered internal space is vacuum degassed to eliminate large spaces between the spread fine particles 21, and the mold is tightened with uniform atmospheric pressure. It is preferable to use a method in which this is further pressure-molded using a press. The sheet-like material used in the above method is preferably one that does not dissolve due to styrene vapor generated during heat curing, and examples thereof include those made of polyethylene and polypropylene. Examples of fine powder include glass milled fiber, vinylon fiber, alumina staple fiber, carbon staple fiber, wollastonite, abatalgite, hysilite, kaolin, clay, silica sand, natural mineral fiber, crushed natural stone powder, and mica. , potassium titanate short fibers, whiskers, etc. Any of these can be used alone or in combination of two or more. Examples of the thermosetting resin include unsaturated polyester resin, epoxy resin, and phenol resin. Note that the diameter of the surface opening can be adjusted by adjusting the fiber thickness, particle size, and shape of the fine powder and the viscosity of the thermosetting resin. In the planar heating element 3, a heating element main body 32 is provided between insulating layers 31 disposed above and below, electrodes 33 are provided so as to sandwich this heating element main body 32 from both sides, and the floor-timber It is integrated into the body 2 via an adhesive. Although not shown, a conductive wire is connected to the electrode 33. The insulating layer 31 is made of thermosetting resin mixed with reinforcing fiber material. On the other hand, the heating element main body 32 includes conductive fibers 34 as an example of a heat generating material dispersed in a thermosetting resin. Note that the thermosetting resin forming the insulating layer 31 and the heating element body 32 includes, for example, unsaturated polyester resin, phenol resin, epoxy resin, polyolefin resin, etc., and the insulation properties and water resistance change over time. Unsaturated polyester resins and polyolefin resins are particularly preferable because it is desirable to have a certain degree of flexibility. Examples of reinforcing fiber materials included in the insulating layer 31 include conductive fibers 34 such as glass fibers and glass fiber mats.
Preferably, those having a volume resistivity of 10<-2 >[Omega].mark or less, such as carbon fiber, are preferred, and those having a fiber length of 0.3 to 25 m and an average diameter of 501 rm or less are particularly preferred. That is, if the fiber length is too long, it becomes difficult to disperse in the thermosetting resin, and if the fiber length is too short, the conductivity tends to decrease. Furthermore, if the diameter is too large, the conductive density may become non-uniform. Further, the mixing ratio of the conductive fibers 34 to the thermosetting resin is preferably about 0.1 parts by weight to about 5 parts by weight per 100 parts by weight of the thermosetting resin, considering uniform dispersibility, conductivity, and the like. As the electrode 33, a metal plate made of copper, copper alloy, aluminum, iron, or the like with good conductivity is used. The electrode 33 may be embedded in the side surface of the heating element body 32 at the same time as the heating element body 32 is molded, or
2 may be molded and then attached using a conductive adhesive or the like. (Example 1) 1 part by weight of wollastonite (400 mesh pass) and 4 parts by weight of epoxy resin were mixed and stirred, and the mixture was sieved onto a mold to fill it.The mold was then covered with a polypropylene sheet and The covered internal space is vacuum degassed, and after being degassed, it is press-formed using a roll press (60 kg).
/Cr1) L, heat-cured at 100°C to obtain a floor-timber body. Add polyester to 100 parts by weight of unsaturated polyester resin.
Composition A was obtained by mixing 42 parts by weight of styrene monomer, 112 parts by weight of thickener, and 0.4 parts by weight of curing catalyst. In addition to this composition A, carbon fiber (fiber length: 6 mm, fiber diameter: 1 mm)
2.5fm) Mix 1.4 parts by weight to make a homogeneous mixture■
I got it. Further, 27 parts by weight of glass fibers were further mixed with Composition A to obtain a homogeneous mixture (2). Then, a molded body in the shape of the heating element body is formed using the mixture (■), and sheet-like bodies made of the mixture (■) are laminated on the top and bottom of this molded body as an insulating layer, and copper plates are further connected to conductive wires on both sides of the molded body. After attaching the electrodes, this was introduced into a curing furnace and molded by heating and curing to obtain a sheet heating element. A planar heating element was adhered to the back side of the floor lumber body obtained by the above manufacturing method to obtain a floor material having a double structure. (Example 2) 1 part by weight of Hisilite (100 mesh pass) and 4 parts by weight of unsaturated polyester resin were mixed and stirred, and the mixture was sieved and filled onto a mold, and then the mold was covered with polyethylene and then covered with a sheet. The internal space was vacuum degassed, and after being degassed, it was further press-formed using a roll press (50kg/
c++f) L. A floor material having a double structure was obtained in the same manner as in Example 1, except that the floor material was cured by heating at 80°C. (Comparative Example 1) A floor material similar to that of Example 1, consisting only of a floor timber body, was formed. (Comparative Example 2) A floor material similar to that in Example 2, consisting only of a floor timber body, was formed. When the floor materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were used as bathroom floor materials, Example 1. The floor material in No. 2 is not only stain-resistant and slip-resistant, but the heating by the planar heating element evaporates moisture that has entered the recesses on the surface of the floor material, making it feel cool to the touch even after using water. It was comfortable. On the other hand, Comparative Example 1. The floor material No. 2 was stain-resistant and non-slip, but water that had entered the recesses on the surface had difficulty drying and had a cold feel. The anti-slip floor material according to the present invention is not limited to the above embodiments. For example, floor lumber is made by forming a layer of hydrophobic material such as fluororesin or acrylic resin on the surface of a hydrophilic material such as natural stone, and at the same time providing minute recesses in this hydrophobic material layer that reach the hydrophilic material. It doesn't matter what you have. In this floor-timber body, water reaches the hydrophilic material through minute recesses, creating a water film that makes the surface difficult to slip on.

【発明の効果】【Effect of the invention】

本発明にかかる滑り止め機能付きフロア−材は、以上の
ように構成されているので、水濡れ時に滑りにく(、し
かも汚れにくい。また、溝が極微細であるので、上に載
った人に略平滑な感じを与え、違和感なく使用できる。 しかも、面状発熱体による加熱によって、すぐに表面が
乾いて冷触感がなく、カビ等の発生も防止することがで
きる。 したがって、浴室、調理室、便所、玄関、ベランダ、プ
ールサイド、シャワールーム等におけるフロア−材とし
て有効に利用できる。
The non-slip floor material according to the present invention is constructed as described above, so it is resistant to slipping when wet (and resistant to staining).Furthermore, the grooves are extremely fine, so it is difficult for people standing on it to slip. It gives a nearly smooth feel to the surface and can be used without any discomfort. Moreover, the heating by the sheet heating element quickly dries the surface without feeling cold to the touch, and prevents the growth of mold, etc. It can be effectively used as a flooring material in rooms, toilets, entrances, balconies, poolsides, shower rooms, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる滑り止め機能付きフロア−材の
1実施例をあられす断面図、第2図はフロア−材木体の
拡大断面斜視図である。 1・・・フロア−材 2・・・フロア−材木体 3・・・面状発熱体
FIG. 1 is a cross-sectional view of an embodiment of a floor material with an anti-slip function according to the present invention, and FIG. 2 is an enlarged sectional perspective view of the floor material. 1... Floor material 2... Floor material 3... Planar heating element

Claims (1)

【特許請求の範囲】[Claims] (1)水を裏面まで透過させることなく、水膜の形成を
防止して滑らないようにする微細な凹部が表面に多数形
成された滑り止め機能付きフロアー材であって、裏面側
に面状発熱体が一体化されていることを特徴とする滑り
止め機能付きフロアー材。
(1) A flooring material with an anti-slip function that prevents water from penetrating to the back surface and has many fine recesses formed on the surface to prevent the formation of water films and prevent slipping. A floor material with an anti-slip function that features an integrated heating element.
JP2338432A 1990-11-30 1990-11-30 Floor material with non-slip function Pending JPH04203160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2338432A JPH04203160A (en) 1990-11-30 1990-11-30 Floor material with non-slip function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2338432A JPH04203160A (en) 1990-11-30 1990-11-30 Floor material with non-slip function

Publications (1)

Publication Number Publication Date
JPH04203160A true JPH04203160A (en) 1992-07-23

Family

ID=18318098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2338432A Pending JPH04203160A (en) 1990-11-30 1990-11-30 Floor material with non-slip function

Country Status (1)

Country Link
JP (1) JPH04203160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004915U (en) * 1994-06-03 1994-12-06 ヤシマ工業株式会社 Anti-slip flooring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004915U (en) * 1994-06-03 1994-12-06 ヤシマ工業株式会社 Anti-slip flooring

Similar Documents

Publication Publication Date Title
FI69828C (en) STYV ORGANIC SKUMPRODUKT FOER ANVAENDNING SOM ISOLERINGSMATERIAL OCH ELDSKYDDANDE MATERIAL FOERFARANDE FOER DESS FRAMSTAELLNING OCH I FOERFARANDET ANVAENDBAR AEMNE
JPH04203160A (en) Floor material with non-slip function
DK155536B (en) PROCEDURE FOR MANUFACTURING ELECTRIC CONDUCTIVE FLOORING
JPH0517271A (en) Building material having glazed foaming layer
GB2223520A (en) Insulated roofing panel
JPH03108527A (en) Manufacture of porous material
JPH04203158A (en) Non-slip floor material and manufacture thereof
CN216616640U (en) Anti-static ceramic tile
KR20020081004A (en) indoor flooring method using loess as main material
JPH04203159A (en) Floor material with non-slip function
KR100233753B1 (en) The method for manufacturing biochips-inserted functional floor interior
JP2608919B2 (en) Reinforced plastic flooring
KR20110071900A (en) Insulation wallpaper and a method for manufacturing wallpaper using thereof
JPH04209770A (en) Porous material and its production
CA1198473A (en) Static dissipative mat
JPH074265Y2 (en) Permeable flooring
JPH02178461A (en) Floor material
JP2849125B2 (en) Method of manufacturing flooring material
JP2692885B2 (en) Floor material manufacturing method
JPH0227059A (en) Floor material
JPH0446074A (en) Porous material
TW298562B (en) Manufacturing method and products for a pedal
JPS62110992A (en) Production of floorings
KR20230173242A (en) Heating block
JP5852204B1 (en) Manufacturing method of bathroom cushion