JPH04202755A - Oxidation of steel material - Google Patents

Oxidation of steel material

Info

Publication number
JPH04202755A
JPH04202755A JP33966290A JP33966290A JPH04202755A JP H04202755 A JPH04202755 A JP H04202755A JP 33966290 A JP33966290 A JP 33966290A JP 33966290 A JP33966290 A JP 33966290A JP H04202755 A JPH04202755 A JP H04202755A
Authority
JP
Japan
Prior art keywords
steel material
gas
furnace
steel
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33966290A
Other languages
Japanese (ja)
Other versions
JP2868895B2 (en
Inventor
Akira Yoshino
明 吉野
Masaaki Tawara
正昭 田原
Haruo Senbokutani
仙北谷 春男
Kenzo Kitano
北野 憲三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP33966290A priority Critical patent/JP2868895B2/en
Publication of JPH04202755A publication Critical patent/JPH04202755A/en
Application granted granted Critical
Publication of JP2868895B2 publication Critical patent/JP2868895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To form a homogeneous oxide film on the surface of a steel material by holding a steel material in a fluorine type gas atmosphere to form a fluoride film on the surface and then forming a protective oxide film on the surface by means of heating in an oxidizing gas atmosphere. CONSTITUTION:An oxidizing gas is brought into contact with the surface of a steel material 10 to form a protective oxide film on the steel material 10 surface. At this time, the steel material 10 is placed in a container 11 in a heat treatment furnace 1 and heated by means of heaters 3. Fluorine series gas is introduced from a cylinder 16 into the furnace 1. The steel material 10 is held in the fluorine series gas atmosphere to form a fluoride film on the surface. Subsequently, The inside of the furnace 1 is replaced with an oxidizing gas introduced from a cylinder 15 and then the steel material 10 is heated, by which a protective oxide film is formed on the surface of the steel material 10. By this method, all the stages relating to the oxidation treatment can be performed by dry process, and this oxidation treatment can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鋼材表面に酸化処理を施すに先立つて、フ
ッ素系ガスを用いて鋼材の表面を浄化および活性化させ
ることにより、酸化処理に関する全工程を乾式下で行う
鋼材の酸化方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to oxidation treatment by purifying and activating the surface of a steel material using a fluorine-based gas before oxidizing the surface of the steel material. This relates to a steel oxidation method in which all processes are carried out under dry conditions.

(従来の技術〕 各種先端産業の技術革新に伴い、各分野において使用さ
れる鋼材やガス供給系配管の内壁からの脱水分、各種脱
ガス、パーティクル等の汚染成分は、後の処理工程の雰
囲気を汚染し、各種製品の品質、収率に大きな悪影響を
及ぼす。そのため、このような分野に使用される上記鋼
材やガス供給系配管には、上記汚染成分が発生または滞
留しないように、脱脂洗浄、電解研磨または化学研磨を
施行したのち、人為的に酸化浴に浸漬する等のウェット
処理で鋼材およびガス供給系配管の表面に酸化膜“を形
成することが行われている。
(Conventional technology) With technological innovations in various cutting-edge industries, contaminants such as dehydration, various types of degassing, and particles from the steel materials used in various fields and the inner walls of gas supply system piping are being removed from the atmosphere of subsequent processing steps. The steel materials and gas supply piping used in these fields must be degreased and cleaned to prevent the generation or accumulation of the above-mentioned contaminants. After performing electrolytic polishing or chemical polishing, an oxide film is formed on the surfaces of steel materials and gas supply piping by artificial wet treatment such as immersion in an oxidation bath.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このようなウェット処理での酸化方法は
、水分等を多量に用いるものであるため、上記酸化膜を
形成したのち、洗浄乾燥等の工程を径間しなければなら
ず、多大の労力を必要とし、またこの洗浄乾燥処理に多
くの費用がかかるのが実情である。
However, since this wet oxidation method uses a large amount of water, etc., after the oxide film is formed, cleaning and drying steps must be performed, which requires a lot of effort. The reality is that this washing and drying process requires a lot of money.

この発明は、このような事情に鑑みなされたもので、処
理のコスト高を招くことなく、鋼材の表面に均質な酸化
皮膜を形成することのできる鋼材の酸化方法の提供をそ
の目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for oxidizing a steel material that can form a homogeneous oxide film on the surface of the steel material without increasing processing costs.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、この発明の鋼材の酸化方法
は、鋼材の表面に酸化性ガスを接触させ、鋼材の表面に
保護酸化膜を形成する鋼材の酸化方法であって、鋼材を
フッ素系ガス雰囲気中に保持して鋼材の表面にフッ化膜
を生成し、ついで酸化性ガス雰囲気中で加熱して鋼材の
表面に保護酸化膜を形成するという構成をとる。
In order to achieve the above object, the method for oxidizing steel materials of the present invention is a method for oxidizing steel materials in which the surface of the steel material is brought into contact with an oxidizing gas to form a protective oxide film on the surface of the steel material. The steel material is held in a gas atmosphere to form a fluoride film on the surface of the steel material, and then heated in an oxidizing gas atmosphere to form a protective oxide film on the surface of the steel material.

[作用〕 すなわち、本発明者らは、鋼材の表面に酸化皮膜を形成
するに際して、従来のようなウェット処理工程ではな(
、乾式下で鋼材表面に酸化膜を形成する方法の開発を目
的として一連の研究を重ねた。その結果、鋼材を炉中に
入れ加熱して昇温させ、その状態で炉中にフッ素系ガス
を導入して鋼材の表面を上記フッ素系ガスと接触させる
と、活性化したフッ素原子が鋼材表面に付着した残存油
脂類等と反応して揮発成分となってガス化し上記残存油
脂類が脱脂除去されると同時に、鋼材表面の、自然酸化
物がフッ化膜に変化して鋼材の表面がフッ化膜で被覆保
護された状態となる。そして、このフッ化膜は、後工程
の酸化処理の際、400〜600°C程度の温度に昇温
させる際に、水素ガス等の還元性ガスの導入または微量
の水分の存在によって、破壊除去される。これにより、
浄化され活性化した金属素地が現れる。そして、この後
、炉内ガスをN2ガス等の不活性ガスで充分置換したの
ち、酸化性ガスを導入すると、上記活性化した金属素地
に酸化性ガス中の酸素原子が作用し、鋼材表面に酸化皮
膜を形成する。この一連の工程により、鋼材表面の脱脂
、洗浄等の前処理工程から酸化工程まで一貫して水分等
を含むウェット処理によることなく、乾式下で行うこと
ができるようになることを見出しこの発明に到達した。
[Function] In other words, the present inventors did not use a conventional wet treatment process to form an oxide film on the surface of steel materials (
, conducted a series of research aimed at developing a method to form an oxide film on the surface of steel materials under dry conditions. As a result, when a steel material is placed in a furnace and heated to raise its temperature, and in that state a fluorine-based gas is introduced into the furnace and the surface of the steel material comes into contact with the fluorine-based gas, activated fluorine atoms are transferred to the surface of the steel material. It reacts with the remaining oils and fats attached to the steel material to become volatile components and gasify, and at the same time, the remaining oils and fats are degreased and removed, and at the same time, natural oxides on the surface of the steel material change to a fluoride film, making the surface of the steel material fluoride. It becomes covered and protected with a chemical film. This fluoride film is destroyed and removed by introducing a reducing gas such as hydrogen gas or by the presence of a trace amount of moisture when the temperature is raised to about 400 to 600°C during the oxidation treatment in the post-process. be done. This results in
A purified and activated metal matrix appears. After this, when the gas in the furnace is sufficiently replaced with an inert gas such as N2 gas and an oxidizing gas is introduced, the oxygen atoms in the oxidizing gas act on the activated metal base, and the surface of the steel material is Forms an oxide film. It was discovered that through this series of steps, it is possible to carry out the entire process from the pre-treatment process such as degreasing and cleaning of the steel surface to the oxidation process in a dry manner without the need for wet treatment containing moisture etc., resulting in this invention. Reached.

したがって、この発明によれば、酸化処理に関する全工
程を乾式下で行いその簡素化を実現できるようになる。
Therefore, according to the present invention, all the steps related to oxidation treatment can be carried out under dry conditions, and the process can be simplified.

つぎに、この発明について詳しく説明する。Next, this invention will be explained in detail.

この発明の鋼材の酸化方法では、フッ素系ガスを用いて
鋼材の表面を前処理したのち、酸化性ガスを用いて酸化
皮膜を形成する。
In the method for oxidizing steel material of the present invention, the surface of the steel material is pretreated using a fluorine-based gas, and then an oxide film is formed using an oxidizing gas.

上記フッ素系ガスは、F2.NF、、BF:l。The above fluorine gas is F2. NF,,BF:l.

CF、およびSF、の単独もしくは混合物からなるフッ
素源成分をN2等の不活性ガス中に含有させたガスのこ
とである。上記F、、、NF、、BP。
It is a gas in which a fluorine source component consisting of CF and SF, singly or as a mixture, is contained in an inert gas such as N2. The above F,,,NF,,BP.

、CF、は常温で気体であり、S F bは常温で液体
である。そして、これらは単独でもしくは併せてN7等
の不活性ガス中に混合され、不活性ガスとともに、この
発明におけるフッ素系ガスを構成する。上記フッ素系ガ
スのなかでも、取扱性1反応性および構成元素がガス状
である等の観点からNF、を用いるのが最も好適であり
実用的である、このようなフッ素系ガスでは、効果の点
から、NF、等のフッ素源ガスが0.1〜3%(重量基
準、以下間し)の濃度に設定される。好ましいのは0.
5〜2%である。
, CF, is a gas at room temperature, and S F b is a liquid at room temperature. These are mixed alone or together in an inert gas such as N7, and together with the inert gas constitute the fluorine-based gas in the present invention. Among the above-mentioned fluorine-based gases, it is most suitable and practical to use NF from the viewpoints of ease of handling, reactivity, and gaseous constituent elements. From this point, a fluorine source gas such as NF is set at a concentration of 0.1 to 3% (by weight, hereinafter). Preferably 0.
It is 5-2%.

上記酸化性ガスとしては、特に限定するものではな〈従
来公知のもの、例えば空気、純酸素、−酸化窒素等があ
げられ、単独でもしくは併せて用いられる。
The above-mentioned oxidizing gas is not particularly limited, and includes conventionally known gases such as air, pure oxygen, and nitrogen oxide, which may be used alone or in combination.

この発明の対象となる鋼材としては、炭素鋼。The steel material to which this invention applies is carbon steel.

ステンレス鋼等の各種の鋼材があげられる。そして、こ
れら鋼材の形状等は特に限定するものではなく、板やコ
イルの状態であっても加工された捻子等の形状になって
いても差し支えはない。
Examples include various steel materials such as stainless steel. The shapes of these steel materials are not particularly limited, and may be in the form of plates, coils, or processed screws.

この発明では、上記鋼材を例えばつぎのようにして前処
理する。すなわち、加熱炉中に上記鋼材を入れ加熱して
鋼材を650〜750°C1好適には750°Cの温度
に昇温させる。つぎに、その状態で加熱炉中にフッ素系
ガスを導入し、上記網材を上記温度においてフッ素系ガ
ス雰囲気中に士数分ないし数十分程度保持する。上記フ
ッ素系ガス雰囲気下での保持時間は鋼材の種類、ワーク
(処理物)の形状寸法、加熱温度等に応じて好適な時間
を選択する。これにより鋼材表面の不働態膜がフッ化膜
に変化する。この一連の工程は、例えば本熱加工処理が
酸化処理の場合、図面に示すような熱処理炉1を用いて
行われる。この炉1はピット炉であり、外殻2と内容器
4との間の空間にヒーター3が設けられている。5はガ
ス導入管であり、ボンベ15.16から流量計17.バ
ルブ18を経由してガスが供給される。7はモーター、
8はそのモーターで駆動されるファンである。11は鋼
材の金網製コンテナであり、このコンテナ内に鋼材10
が入れられ炉1内に装填される。図において、6は排気
管、13はその真空ポンプ、14は除害装置である。
In the present invention, the above-mentioned steel material is pretreated, for example, in the following manner. That is, the steel material is placed in a heating furnace and heated to raise the temperature of the steel material to 650 to 750°C, preferably 750°C. Next, in this state, a fluorine-based gas is introduced into the heating furnace, and the mesh material is maintained in the fluorine-based gas atmosphere at the above temperature for about 10 minutes to several tens of minutes. A suitable holding time in the fluorine gas atmosphere is selected depending on the type of steel material, the shape and dimensions of the workpiece (workpiece), heating temperature, etc. This changes the passive film on the surface of the steel material into a fluoride film. This series of steps is performed using a heat treatment furnace 1 as shown in the drawings, for example, when the main heat treatment is an oxidation treatment. This furnace 1 is a pit furnace, and a heater 3 is provided in a space between an outer shell 2 and an inner container 4. 5 is a gas introduction pipe, which connects the cylinder 15.16 to the flow meter 17. Gas is supplied via valve 18. 7 is the motor,
8 is a fan driven by the motor. Reference numeral 11 denotes a steel wire mesh container, and the steel material 10 is placed inside this container.
is loaded into the furnace 1. In the figure, 6 is an exhaust pipe, 13 is its vacuum pump, and 14 is an abatement device.

この熱処理炉lにおいて、前処理は、つぎのようにして
行われる。すなわち、炉1内に図示のように鋼材10を
装填し、その状態で鋼材10をヒーター3によって加熱
し、所定の温度に昇温させる。ついで、ボンへ15から
、例えばNF3とN2とからなるフッ素系ガスを炉1内
に導入する。この場合、フッ素系ガスは加熱時間中流入
を続けてもよいし、封じ込めておいてもよい。これによ
り、フッ素系ガスのNF3は250°C以上の温度で活
性基のFを発生し、二〇Fと鋼材10表面の加工助剤等
の残存油脂類、例えば(−Cx−Hy)m等の一般式で
表される有機化合物とが反応して揮発成分CF4.HF
となってガス化し、残存油脂類が脱脂除去される。さら
に、このFが鋼材10表面のFe、Cr素地あるいはこ
れら自然酸化物と迅速に反応して、例えば下記の式に示
すような、鋼材10表面にFeFz、FeFa、CrF
z、CrFa等の化合物を鋼材10の表面組織中に含む
非常に薄いフッ化膜が形成される。
In this heat treatment furnace I, pretreatment is performed as follows. That is, the steel material 10 is loaded into the furnace 1 as shown in the figure, and in this state, the steel material 10 is heated by the heater 3 to raise the temperature to a predetermined temperature. Next, a fluorine-based gas consisting of, for example, NF3 and N2 is introduced into the furnace 1 from the cylinder 15. In this case, the fluorine-based gas may continue to flow during the heating time, or may be sealed. As a result, the fluorine-based gas NF3 generates F as an active group at a temperature of 250°C or higher, and 20F and residual oils and fats such as processing aids on the surface of the steel material 10, such as (-Cx-Hy)m, etc. reacts with an organic compound represented by the general formula to form a volatile component CF4. HF
The remaining oils and fats are removed by degreasing. Furthermore, this F reacts quickly with Fe, Cr base material or these natural oxides on the surface of the steel material 10, and for example, FeFz, FeFa, CrF, etc. are formed on the surface of the steel material 10 as shown in the following formula.
A very thin fluoride film containing compounds such as Z and CrFa in the surface structure of the steel material 10 is formed.

FeO+  2F   −+   FeFz  +1/
202Crz o3+  4F  −+2CrF2+3
/202上記反応により鋼材10の表面の構成元素また
はこれらの自然酸化皮膜はフッ化皮膜に変換される。す
なわち、これにより、鋼材10の表面に付着していた加
工助剤等が除去されると同時に、鋼材10の表面にフッ
化膜が形成される。その結果、鋼材10の表面がフッ化
膜で被覆保護された状態となる。つぎに、上記炉1にお
いて、上記のような鋼材10の前処理を行った後、フッ
化膜を除去して酸化処理を行う。すなわち、炉1内のフ
ッ素系ガスを排気管6から真空排気した後、ヒーター3
による加熱で、鋼材10を400〜600 ’Cの温度
に昇温させる。この昇温工程中に、H2等の還元性ガス
の導入または微量に存在する水分によって還元除去ない
しは破壊され活性な金属素地が形成される。この反応を
下記の式に示す。
FeO+ 2F −+ FeFz +1/
202Crz o3+ 4F -+2CrF2+3
/202 By the above reaction, the constituent elements on the surface of the steel material 10 or their natural oxide film are converted into a fluoride film. That is, as a result, processing aids and the like adhering to the surface of the steel material 10 are removed, and at the same time, a fluoride film is formed on the surface of the steel material 10. As a result, the surface of the steel material 10 is coated and protected with a fluoride film. Next, in the furnace 1, after the steel material 10 is pretreated as described above, the fluoride film is removed and an oxidation treatment is performed. That is, after evacuating the fluorine gas in the furnace 1 through the exhaust pipe 6, the heater 3
The steel material 10 is heated to a temperature of 400 to 600'C. During this temperature raising process, an active metal matrix is formed by being reduced and removed or destroyed by the introduction of a reducing gas such as H2 or by the presence of a trace amount of moisture. This reaction is shown in the formula below.

CrF、十H2−+  C,r  +  2HFFeF
z  十  H2→  Fe   +  2HFついで
、上記工程後、炉l内をN2ガス等の不活性ガスで充分
置換したのち、ボンベ16から、酸化性ガス、例えば酸
素ガスないしは空気を炉l内に導入する。これによって
、フッ化膜の除去により浄化活性化されている鋼材IO
の表面に均一な酸化膜が形成される。
CrF, 10H2-+ C,r + 2HFFeF
z 10 H2 → Fe + 2HF Next, after the above steps, the inside of the furnace 1 is sufficiently replaced with an inert gas such as N2 gas, and then an oxidizing gas, such as oxygen gas or air, is introduced into the furnace 1 from the cylinder 16. . This allows the steel IO to be purified and activated by removing the fluoride film.
A uniform oxide film is formed on the surface.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の鋼材の酸化方法は、鋼材をフ
ッ素系ガス雰囲気下に加熱状態で保持することにより、
活性なフッ素原子を鋼材に作用させ、鋼材の表面に付着
している加工助剤等の残存油脂を破壊除去すると同時に
、その表面にフッ化膜を形成させ、このフッ化膜で鋼材
表面を被覆保護する。そして、上記フッ化膜をH2等の
還元性ガスで分解除去し、鋼材表面を素地の状態で露呈
させると同時に活性化された状態にし、その状態で酸素
ガス等の酸化性ガスを上記鋼材表面を接触させ酸化皮膜
を形成させる。すなわち、この発明では、鋼材の前処理
から酸化処理までの全工程を水を用いることなく、完全
なドライ工程で行うものであり、それによって酸化処理
に関する全工程の簡略化を実現できるようになる。
As described above, the method for oxidizing steel materials of the present invention involves holding the steel materials in a heated state in a fluorine-based gas atmosphere.
Active fluorine atoms are applied to the steel material to destroy and remove residual oils and fats such as processing aids adhering to the surface of the steel material, and at the same time, a fluoride film is formed on the surface, and the surface of the steel material is covered with this fluoride film. Protect. Then, the fluoride film is decomposed and removed using a reducing gas such as H2, exposing the steel surface in its original state and simultaneously making it in an activated state, and in that state, oxidizing gas such as oxygen gas is applied to the steel surface. to form an oxide film. In other words, in this invention, all processes from pretreatment of steel materials to oxidation treatment are performed in a completely dry process without using water, thereby making it possible to simplify all processes related to oxidation treatment. .

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

〔実施例1〕 (前処理) sus3os系(ステンレス鋼)のタッピング捻子(試
料)を形成した後、トリクロロエチレンで蒸気洗浄した
。つぎに、これを、図に示す炉1内に入れて加熱し75
0°Cに昇温さセた。そして、その状態で、NF、から
なるフッ素系ガスを炉1内に入れ20分間保持した。そ
の後、上記試料の一部を取り出し表面層を調べた結果、
表面全体にフッ化膜が形成されていることがわかった。
[Example 1] (Pretreatment) After forming a tapping screw (sample) of sus3os type (stainless steel), it was steam-cleaned with trichlorethylene. Next, this is placed in the furnace 1 shown in the figure and heated 75
The temperature was raised to 0°C. In this state, a fluorine-based gas consisting of NF was put into the furnace 1 and held for 20 minutes. After that, a part of the sample was taken out and the surface layer was examined.
It was found that a fluoride film was formed on the entire surface.

(酸化処理) つぎに、炉1内に残った試料の残部を加熱し500°C
に昇温させ、その状態で、純酸素からなる酸化性ガスを
炉1内に導入して2時間酸化処理を行った。この酸化処
理後、試料を空冷して炉1から取り出した。
(Oxidation treatment) Next, the remainder of the sample remaining in furnace 1 was heated to 500°C.
In this state, an oxidizing gas consisting of pure oxygen was introduced into the furnace 1 to perform oxidation treatment for 2 hours. After this oxidation treatment, the sample was air cooled and taken out from the furnace 1.

得られた試料の表面には、酸化膜が均一に形成されてい
た。
An oxide film was uniformly formed on the surface of the obtained sample.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明に用いる処理炉の一例の断面図である。 The drawing is a sectional view of an example of a processing furnace used in the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)鋼材の表面に酸化性ガスを接触させ、鋼材の表面
に保護酸化膜を形成する鋼材の酸化方法であつて、鋼材
をフッ素系ガス雰囲気中に保持して鋼材の表面にフッ化
膜を生成し、ついで酸化性ガス雰囲気中で加熱して鋼材
の表面に保護酸化膜を形成することを特徴とする鋼材の
酸化方法。
(1) A steel oxidation method in which an oxidizing gas is brought into contact with the surface of the steel material to form a protective oxide film on the surface of the steel material, in which the steel material is held in a fluorine-based gas atmosphere and a fluoride film is formed on the surface of the steel material. A method for oxidizing a steel material, the method comprising: generating a protective oxide film on the surface of the steel material by heating in an oxidizing gas atmosphere.
(2)フッ素系ガスが、F_2,NF_3,BF_3,
CF_4およびSF_6からなる群から選ばれた少なく
とも一つのガスである請求項(1)記載の鋼材の酸化方
法。
(2) Fluorine gas is F_2, NF_3, BF_3,
The method for oxidizing steel materials according to claim 1, wherein the oxidizing gas is at least one gas selected from the group consisting of CF_4 and SF_6.
(3)酸化性ガスが、空気、純酸素および一酸化窒素か
らなる群から選ばれた少なくとも一つの気体である請求
項(1)または(2)記載の鋼材の酸化方法。
(3) The method for oxidizing steel materials according to claim (1) or (2), wherein the oxidizing gas is at least one gas selected from the group consisting of air, pure oxygen, and nitrogen monoxide.
JP33966290A 1990-11-30 1990-11-30 How to oxidize steel Expired - Fee Related JP2868895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33966290A JP2868895B2 (en) 1990-11-30 1990-11-30 How to oxidize steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33966290A JP2868895B2 (en) 1990-11-30 1990-11-30 How to oxidize steel

Publications (2)

Publication Number Publication Date
JPH04202755A true JPH04202755A (en) 1992-07-23
JP2868895B2 JP2868895B2 (en) 1999-03-10

Family

ID=18329621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33966290A Expired - Fee Related JP2868895B2 (en) 1990-11-30 1990-11-30 How to oxidize steel

Country Status (1)

Country Link
JP (1) JP2868895B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744471A2 (en) * 1995-05-25 1996-11-27 Daido Hoxan Inc. Method of nitriding steel
EP0902101A1 (en) * 1997-09-12 1999-03-17 Showa Denko Kabushiki Kaisha Metallic material or film having fluorinated surface layer, and fluorination process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744471A2 (en) * 1995-05-25 1996-11-27 Daido Hoxan Inc. Method of nitriding steel
EP0744471A3 (en) * 1995-05-25 1999-02-10 Daido Hoxan Inc. Method of nitriding steel
EP0902101A1 (en) * 1997-09-12 1999-03-17 Showa Denko Kabushiki Kaisha Metallic material or film having fluorinated surface layer, and fluorination process

Also Published As

Publication number Publication date
JP2868895B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JP2501925B2 (en) Pretreatment method for metal materials
JPH089766B2 (en) Steel nitriding method
JPH03193864A (en) Nitriding furnace device
KR100263958B1 (en) Nitrogen trifluoride-oxygen thermal cleaning process
US5112030A (en) Heat treat furnace for fluorinating steel material
JPH04202755A (en) Oxidation of steel material
US10450668B2 (en) Development of a passivated stainless steel surface
US4919157A (en) Method of cleaning metal components for cathode ray tubes
JPS6370428A (en) Plasma treating apparatus
JP3393519B2 (en) Method and apparatus for cleaning metal workpieces
JP2956347B2 (en) Semiconductor substrate cleaning method
JP2881111B2 (en) Steel nitriding method
JPH0193412A (en) Method for chemically cleaning boron or compound thereof
JPH04247862A (en) Production of colored metallic sheet
JP2925876B2 (en) Metal surface oxidation treatment method
JP2506227B2 (en) Steel nitriding method and heat treatment furnace used therefor
JP2002305190A (en) Heat treating apparatus and method for cleaning the same
JP3255998B2 (en) Surface treatment method and surface treatment device
JP3471507B2 (en) Metal surface treatment
JPS6319592B2 (en)
CN1032263C (en) Motor rotary shaft and manufacturing method thereof
JP2001098355A (en) Method for nitriding metallic material
JP2009084602A (en) Method for forming surface oxide film on stainless steel
WO1995018880A1 (en) Method and apparatus for solid surface treatment, and apparatus for forming passivation film, and process apparatus
JPH05335256A (en) Semiconductor manufacturing device and its cleaning method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees