JPH04202646A - Heat treating furnace of heat exchanger made of aluminum and production of heat exchanger - Google Patents

Heat treating furnace of heat exchanger made of aluminum and production of heat exchanger

Info

Publication number
JPH04202646A
JPH04202646A JP33660790A JP33660790A JPH04202646A JP H04202646 A JPH04202646 A JP H04202646A JP 33660790 A JP33660790 A JP 33660790A JP 33660790 A JP33660790 A JP 33660790A JP H04202646 A JPH04202646 A JP H04202646A
Authority
JP
Japan
Prior art keywords
chamber
vacuum
heat exchanger
temperature
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33660790A
Other languages
Japanese (ja)
Other versions
JP3277218B2 (en
Inventor
Soichiro Miyazaki
宮崎 総一郎
Masashi Kaneko
雅志 金子
Masaru Nonaka
優 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP33660790A priority Critical patent/JP3277218B2/en
Publication of JPH04202646A publication Critical patent/JPH04202646A/en
Application granted granted Critical
Publication of JP3277218B2 publication Critical patent/JP3277218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To promote age hardening of a fin material and to obtain a heat exchanger high in strength by carrying the core of the heat exchanger to the respective treatment chambers via opening and closing of a partition door by a conveyor line and performing age hardening in a regulation chamber after cooling. CONSTITUTION:The degree of vacuum of a preparatory chamber 25, a degreasing chamber 10, a first preheating chamber 11, a second preheating chamber 12, a vacuum heating chamber 2, a vacuum cooling chamber 3 and a takeout chamber 5 is held at a prescribed degree. The temp. in furnaces of the respective chambers is set at a prescribed value. While successively opening and closing the doors 4a-4h of the respective chambers at every specified time, a carrier 9 is discontinuously moved to the takeout chamber 5 through the respective chambers from the preparatory chamber 25 by a conveyor 8. The vacuum heating furnace 2 is gradually raised in temp. as the carrier is made to the downstream side. Soldering material with which the surface of parts for the core of a heat exchanger is coated is melted. The soldering material is solidified in the vacuum cooling chamber 3 and the intervals of the respective parts are integrally soldered. Then age hardening is promoted in a regulation chamber 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミニューム製熱交換器のろう付及び時効硬
化を促進する熱処理炉及びそのアルミニューム製熱交換
器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat treatment furnace for promoting brazing and age hardening of an aluminum heat exchanger, and a method for manufacturing the aluminum heat exchanger.

〔従来技術及びその問題点〕[Prior art and its problems]

アルミニューム製熱交換器は、−例として並列された多
数のチューブの両端を夫々チューブプレートの貫通孔に
挿通すると共に、各チューブ間にフィンを介装して組み
立てる。このとき互いに接合される少なくとも一方の部
品は、その外表面にろう材が被覆されたものを用いる。
An aluminum heat exchanger is assembled by, for example, inserting both ends of a large number of parallel tubes into through holes in a tube plate, and interposing fins between each tube. At this time, at least one of the parts to be joined to each other has its outer surface coated with a brazing material.

そして、チューブの両端を拡開し、チューブプレートの
孔にチューブ端部を圧着させ熱交換器コアの組立体を形
成する。このようなコアを複数キャリアに収納し、トン
ネル状に各室が直列された真空炉内でろう付し、そのろ
う付後大気に取り出すものである。
Then, both ends of the tube are expanded and the tube ends are crimped into the holes of the tube plate to form a heat exchanger core assembly. A plurality of such cores are housed in a carrier and brazed in a vacuum furnace in which each chamber is connected in series in a tunnel shape, and after the brazing, the cores are taken out to the atmosphere.

〔解決しようとする課題] このような従来型熱処理装置は、ろう付室内が10−3
〜10− ’Torr程度の高真空に維持されるためア
ルミニューム製合金からなる熱交換器コアのうち特に板
圧の薄いフィン材(0,15an〜0.25鵬)中のM
gとZn成分が炉内に多く飛散してしまう。
[Problem to be solved] Such conventional heat treatment equipment has a brazing chamber with a diameter of 10-3.
Since the heat exchanger core is made of an aluminum alloy and is maintained at a high vacuum of ~10-' Torr, the M of the fin material (0.15 an ~ 0.25 ann) with a particularly thin plate thickness is
A large amount of g and Zn components will scatter into the furnace.

これらの残留成分が極めて少ないため、アルミニウム合
金中のMg、Si等の析出に伴う時効硬化を期待できな
い欠点があった。
Since these residual components are extremely small, there is a drawback that age hardening due to precipitation of Mg, Si, etc. in the aluminum alloy cannot be expected.

そのため、ろう付された熱交換器コアの強度が弱い欠点
があった。
Therefore, there was a drawback that the strength of the brazed heat exchanger core was low.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明は上記欠点を取り除くため次の構成をとる
Therefore, the present invention adopts the following configuration in order to eliminate the above-mentioned drawbacks.

本発明の熱処理炉は、アルミニューム合金からなる熱交
換器コア1の部品表面に被覆されたろう材を0.01〜
l Torr程度の低真空の下で溶融させる真空加熱炉
2を有し、該真空加熱炉2の下流に夫々気密な仕切り扉
4f、4g、4hを介して順次真空放冷室3と取出し室
5とを直列に配置する。そして、取出し室5の外側に大
気に開放された放冷空間6を介して内部が設定温度に維
持される保温用の調整室7を設ける。そして、各室を直
列に接続するコンベアライン8が設けられたことを特徴
とする。
The heat treatment furnace of the present invention has a brazing material coated on the surface of the heat exchanger core 1 made of an aluminum alloy.
It has a vacuum heating furnace 2 for melting under a low vacuum of about 1 Torr, and a vacuum cooling chamber 3 and a take-out chamber 5 are successively installed downstream of the vacuum heating furnace 2 through airtight partition doors 4f, 4g, and 4h, respectively. and are placed in series. A heat-retaining adjustment chamber 7 is provided outside the take-out chamber 5 and is maintained at a set temperature via a cooling space 6 open to the atmosphere. A conveyor line 8 connecting the chambers in series is provided.

又、本発明の方法は上記熱処理炉において、前記調整室
7が150〜250°Cに維持された状態で、前記大気
に開放された放冷空間6でコア1の温度が略200°C
以下で室温以上に冷却された時、それが放冷空間6より
前記調整室7に挿入され、該調整室7で20分〜60分
保持されるように構成したものである。
Further, in the method of the present invention, in the heat treatment furnace, the temperature of the core 1 is maintained at about 200°C in the cooling space 6 opened to the atmosphere while the adjustment chamber 7 is maintained at 150 to 250°C.
When it is cooled to room temperature or above, it is inserted into the adjustment chamber 7 from the cooling space 6 and kept in the adjustment chamber 7 for 20 to 60 minutes.

〔作  用〕[For production]

本装置は、高力アルミニューム合金(AI−Zn−Ng
)又は耐蝕アルミニューム合金(A I −Ng−Si
 )により形成された熱交換器コアがコンベアライン8
により真空加熱炉2に収納される。このとき真空加熱炉
2は低真空に維持され、アルミニューム合金中のMgの
飛散を可及的に少なくする。そして、コンベアライン8
により真空放冷室3.取出し室5を介し放冷空間6に取
り出され、そこで一定温度まで冷却すると直ちに調整室
7に収納される。そして、調整室7内でコア1は150
°C〜250°Cで20分〜60分程度保持され、時効
硬化させて調整室7から取り出される。
This device uses high-strength aluminum alloy (AI-Zn-Ng).
) or corrosion-resistant aluminum alloy (AI-Ng-Si
) The heat exchanger core formed by the conveyor line 8
is stored in the vacuum heating furnace 2. At this time, the vacuum heating furnace 2 is maintained at a low vacuum to minimize scattering of Mg in the aluminum alloy. And conveyor line 8
Vacuum cooling chamber 3. It is taken out through the take-out chamber 5 into the cooling space 6, where it is cooled down to a certain temperature and immediately stored in the adjustment chamber 7. Then, in the adjustment chamber 7, the core 1 is 150
It is held at a temperature of 250° C. to 250° C. for about 20 minutes to 60 minutes, aged and hardened, and taken out from the adjustment chamber 7.

〔実 施 例〕〔Example〕

次に図面に基づいて本発明の実施例につき説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は本装置の平面的略図であり、第2図は真空炉に
おける各室の設定温度の一例を示し、第3図は同炉内の
各室の真空度の一例を示す。
FIG. 1 is a schematic plan view of the present apparatus, FIG. 2 shows an example of the set temperature of each chamber in the vacuum furnace, and FIG. 3 shows an example of the degree of vacuum of each chamber in the same furnace.

この熱処理炉は、真空ろう付装置26と放冷空間6と保
温用の調整室7とからなる。そして、真空ろう付装置2
6は真空加熱炉2が細長く形成され、この実施例では九
つのキャリア9が収納できる長さであるが、真空加熱炉
2内には最大上つのキャリア9を一つずつ順次搬出入す
る。
This heat treatment furnace consists of a vacuum brazing device 26, a cooling space 6, and a temperature control chamber 7. And vacuum brazing device 2
Reference numeral 6 indicates that the vacuum heating furnace 2 is long and narrow, and in this embodiment has a length that can accommodate nine carriers 9, and the maximum carriers 9 are carried into and out of the vacuum heating furnace 2 one by one one by one.

なお、真空加熱炉2の中間には扉が存在しない。そして
、真空加熱炉2の上流側に仕切り扉4eを介して第2予
熱室12が設けられ、下流側に仕切り扉4fを介して真
空放冷室3が設けられている。
Note that there is no door in the middle of the vacuum heating furnace 2. A second preheating chamber 12 is provided on the upstream side of the vacuum heating furnace 2 via a partition door 4e, and a vacuum cooling chamber 3 is provided on the downstream side via a partition door 4f.

又、第2予熱室12の上流側には夫々仕切り扉4d、4
c、4bを介して第1予熱室11.脱脂室10.準備室
25が設けられている。さらに、真空放冷室3の下流側
には仕切り扉4gを介して取出し室5が設けられている
Furthermore, partition doors 4d and 4 are provided on the upstream side of the second preheating chamber 12, respectively.
c, the first preheating chamber 11.c via 4b. Degreasing chamber 10. A preparation room 25 is provided. Furthermore, a take-out chamber 5 is provided on the downstream side of the vacuum cooling chamber 3 via a partition door 4g.

この実施例では脱脂室10は六つのキャリア9が収納さ
れる長さを有し、この脱脂室10及び真空加熱炉2を除
き各室部ち、準備室25.第1予熱室11.第2予熱室
12.真空放冷室3.取出し室5の搬送長さはキャリア
9が一つのみ収納できる長さにされている。
In this embodiment, the degreasing chamber 10 has a length that accommodates six carriers 9, and each chamber except the degreasing chamber 10 and the vacuum heating furnace 2, the preparation chamber 25. First preheating chamber 11. Second preheating chamber 12. Vacuum cooling room 3. The transport length of the take-out chamber 5 is set to a length that can accommodate only one carrier 9.

又、準備室25と取出し室5には外熱型のヒータ13が
設けられ、真空放冷室3を除いてそれ以外の各室にはそ
の内面に反射板及びヒータ13が設けられている。さら
に各室の上端には第4図に示す如く一例としてラックア
ンドピニオン型のオーバーヘンドコンヘアーが配置され
ている。
Further, an external heater 13 is provided in the preparation chamber 25 and the take-out chamber 5, and a reflector and a heater 13 are provided on the inner surface of each chamber except for the vacuum cooling chamber 3. Furthermore, as shown in FIG. 4, a rack and pinion type overhand conveyor is arranged at the upper end of each chamber.

そして、第5図に示すような所定長さのハンガ本体15
がそのオーハーヘソドコンベアーにより移動する。
Then, a hanger main body 15 of a predetermined length as shown in FIG.
is moved by the Oharhesodo conveyor.

即ち、ハンガ本体15の上端にラック23が設けられ、
そのラック23に突設されたビン22にスプロケット1
7が歯合する。このスプロケット17は減速機付のモー
タ24により回転及び停止を繰り返し、ハンガ本体15
を断続的に下流側に移動させるものである。このハンガ
本体15には一対のフック20が垂下され、このフック
20にキャリア9の係止部が係脱自在に係合する。なお
、キャリア9には多数のコア1の上端部が吊り下げられ
ている。そして、コア1の平面が進行方向に面すると共
に、その側面が炉の側壁に対面する。
That is, the rack 23 is provided at the upper end of the hanger body 15,
A sprocket 1 is attached to the bin 22 protruding from the rack 23.
7 meshes. This sprocket 17 is repeatedly rotated and stopped by a motor 24 with a reducer, and the hanger body 15
is moved downstream intermittently. A pair of hooks 20 are suspended from the hanger body 15, and a locking portion of the carrier 9 is removably engaged with the hooks 20. Note that the upper ends of a large number of cores 1 are suspended from the carrier 9. The plane of the core 1 faces the direction of travel, and the side surface faces the side wall of the furnace.

そして、ヒータ13からの輻射熱は各コア1間の隙間か
ら侵入し、コアIの平面その他を乱反射しつつコアlに
吸収される。この実施例ではキャリア9はその搬送方向
長さが幅方向長さよりも短く形成されている。
Then, the radiant heat from the heater 13 enters through the gaps between the cores 1, and is absorbed by the core I while being diffusely reflected on the plane of the core I and other surfaces. In this embodiment, the carrier 9 is formed so that its length in the transport direction is shorter than its width direction.

次に、ハンガ本体15には複数のローラ18が設けられ
、それが真空炉上端のレール21に案内される。そして
、各室の上部に適宜間隔で複数のスプロケット17が配
置され、それに歯合するハンガ本体15を順送りに下流
側に搬送するものである。
Next, the hanger body 15 is provided with a plurality of rollers 18, which are guided by a rail 21 at the upper end of the vacuum furnace. A plurality of sprockets 17 are arranged at appropriate intervals in the upper part of each chamber, and the hanger main bodies 15 meshed with the sprockets 17 are sequentially conveyed downstream.

次に、各室には夫々図示しない真空ポンプが連結されて
いる。そして、$両室25及び脱脂室10には図示しな
い油回転ポンプ及びメカニカルブースターが連結され、
10−’Torr程度の真空度に維持できる。又、他の
室にはそれに加えて拡散ポンプが設けられる。この拡散
ポンプを設けた室は10−’〜10−6Torr程度の
より高い真空度を維持できる。又、準備室、取出室には
ドライエアーが、脱脂室、加熱室、放冷室には窒素ガス
を導くバイブラインがバルブを介し連結されている。
Next, a vacuum pump (not shown) is connected to each chamber. An oil rotary pump and a mechanical booster (not shown) are connected to both $ chambers 25 and the degreasing chamber 10,
A degree of vacuum of about 10-' Torr can be maintained. In addition, diffusion pumps are provided in other chambers. A chamber provided with this diffusion pump can maintain a higher degree of vacuum of about 10-' to 10-6 Torr. Further, dry air is connected to the preparation chamber and the extraction chamber, and a vibrate line for introducing nitrogen gas is connected to the degreasing chamber, heating chamber, and cooling chamber through valves.

次に各室の設定温度は一例として第2図に示す如く保持
される。なお、この設定温度は熱交換器の大きさその他
により適宜変更される。例えば、準備室25及び取出し
室5は100°C〜200°C程度に、脱脂室10は3
00°C〜450°Cに、第1予熱室11.第2予熱室
12は350°C〜500°Cに、真空加熱炉2は45
0°C〜650’Cに設定される。
Next, the set temperature of each chamber is maintained as shown in FIG. 2, for example. Note that this set temperature is changed as appropriate depending on the size of the heat exchanger and other factors. For example, the temperature of the preparation room 25 and the extraction room 5 is about 100°C to 200°C, and the temperature of the degreasing room 10 is about 30°C.
00°C to 450°C, the first preheating chamber 11. The second preheating chamber 12 is heated to 350°C to 500°C, and the vacuum heating furnace 2 is heated to 45°C.
It is set at 0°C to 650'C.

なお、真空加熱炉2のヒータは上流側から下流側に沿っ
て複数のヒータに分割され、各ヒータの設定温度は下流
側に向かって上り階段状に高くなり、その終端部におい
て少し下り階段状に順次低くなるように設定されている
The heater of the vacuum heating furnace 2 is divided into a plurality of heaters from the upstream side to the downstream side, and the set temperature of each heater increases in an upward step-like manner toward the downstream side, and increases in a slightly downward step-like manner at the end. It is set so that it becomes lower in sequence.

次に、取出し室5の外側にはファン16及び放冷空間6
が設けられ、そこにトラバース14が配置されている。
Next, a fan 16 and a cooling space 6 are provided outside the extraction chamber 5.
is provided, and a traverse 14 is arranged there.

このトラバース14は、真空ろう付装置26の下流端と
調整室7の上流端とを連結するコンベアである。
This traverse 14 is a conveyor that connects the downstream end of the vacuum brazing device 26 and the upstream end of the adjustment chamber 7.

次に調整室7は、その長手方向両端に仕切り扉4i、4
jが設けられ、細長く形成されている。
Next, the adjustment chamber 7 has partition doors 4i and 4 at both ends in the longitudinal direction.
j is provided and is elongated.

この調整室7内には多数のキャリア9が収納できると共
に、そこに収納されあるいは、その調整室7から取り出
されるキャリア9のタクトタイム即ち、サイクルタイム
は、真空ろう付装置26のそれに一致する。そして、夫
々のコア1が調整室7内に収納される時間が20分〜6
0分程になるような長さに設定されている。調整室7の
内部にはヒータ13が設けられ、内部を150°C〜2
50°Cに維持している。それと共に、調整室7内にも
第4図に示すようなオーハーヘンドコンヘアが設けられ
ている。
A large number of carriers 9 can be stored in the adjustment chamber 7, and the takt time, ie, cycle time, of the carriers 9 stored therein or taken out from the adjustment chamber 7 matches that of the vacuum brazing device 26. Then, the time during which each core 1 is stored in the adjustment chamber 7 is 20 minutes to 6 minutes.
The length is set to approximately 0 minutes. A heater 13 is provided inside the adjustment chamber 7, and the temperature inside the adjustment chamber 7 is 150°C to 2°C.
The temperature is maintained at 50°C. At the same time, an overhand conditioner as shown in FIG. 4 is also provided in the adjustment chamber 7.

なお、放冷空間6の下流部に第6図のように排熱回収装
置27を設け、放冷空間6でキャリア9及びコア1を冷
却する際に発生した熱を回収し、それを調整室7の熱源
の一部として再利用することもできる。
In addition, an exhaust heat recovery device 27 is provided downstream of the cooling space 6 as shown in FIG. 6, and the heat generated when cooling the carrier 9 and the core 1 in the cooling space 6 is recovered and transferred to the adjustment chamber. It can also be reused as part of the heat source.

次に本熱処理炉の使用方法につき述べる。まず準備室2
5.脱脂室10.取出し室5を10−’Torr程度の
低真空に維持すると共に、脱脂室10.第1予熱室11
.第2予熱室12.真空加熱炉2.真空放冷室3を夫々
1O−3Torr〜10−’Torr程度の真空度に保
持する。さらに各室の炉内温度を一例として第2図の如
く設定する。このようなf$備の完了の後に真空加熱炉
2内にドライエアー又は窒素ガスを僅かに供給し、内部
を10−’Torr程度の低真空に維持させる。
Next, we will discuss how to use this heat treatment furnace. First, preparation room 2
5. Degreasing chamber 10. While maintaining the unloading chamber 5 at a low vacuum of about 10-' Torr, the degreasing chamber 10. First preheating chamber 11
.. Second preheating chamber 12. Vacuum heating furnace 2. The vacuum cooling chambers 3 are each maintained at a degree of vacuum of about 10-3 Torr to 10-' Torr. Furthermore, the temperature inside the furnace in each chamber is set as shown in FIG. 2, as an example. After completing such f$ preparation, a small amount of dry air or nitrogen gas is supplied into the vacuum heating furnace 2 to maintain the inside at a low vacuum of about 10-'Torr.

そこで、一定の時間毎に各界48〜4hを順次開閉しつ
つ、キャリア9を準備室25から脱脂室10゜第1予熱
室11.第2予熱室12.真空加熱炉2゜真空放冷室3
.取出し室5へ順次断続的に移動させる。なお、準備室
25内にキャリア9を収納するときには、予め準備室2
5にドライエアーを供給して内部を複圧する。そしてさ
らにリークバルブを一定時間開け、大気圧と炉内の圧力
を等しくしてから仕切り扉4aを開放し、オーツλ−ヘ
ッドコンベアーによりキャリア9を準備室25内に収納
する。そして、仕切り扉4aを閉塞し、油回転真空ポン
プ、メカニカルブースターを順に作動させ、内部を10
−1〜10− ”Torr程度の圧力にする。
Therefore, while sequentially opening and closing each field 48 to 4h at regular intervals, the carrier 9 is moved from the preparation chamber 25 to the degreasing chamber 10° to the first preheating chamber 11. Second preheating chamber 12. Vacuum heating furnace 2゜Vacuum cooling chamber 3
.. It is sequentially and intermittently moved to the take-out chamber 5. Note that when storing the carrier 9 in the preparation room 25, the preparation room 2
Supply dry air to 5 to create double pressure inside. Further, the leak valve is opened for a certain period of time to equalize the atmospheric pressure and the pressure inside the furnace, and then the partition door 4a is opened, and the carrier 9 is stored in the preparation chamber 25 by the oat λ-head conveyor. Then, the partition door 4a is closed, the oil rotary vacuum pump and the mechanical booster are operated in order, and the interior is
-1 to 10- Set the pressure to about 100 Torr.

次いで、準備室25と脱脂室10との境界の仕切り扉4
bを開放し、キャリア9を脱脂室10に収納し、仕切り
扉4bを閉塞する。脱脂室10内ではキャリア9は低速
で下流側に搬送される。この脱脂室10には順次キャリ
アが搬入され、合計穴つ収納される。そして、脱脂室1
0内で各コア1を加熱し、コア1表面の油分を蒸発させ
る。
Next, the partition door 4 at the boundary between the preparation room 25 and the degreasing room 10
b is opened, the carrier 9 is stored in the degreasing chamber 10, and the partition door 4b is closed. Within the degreasing chamber 10, the carrier 9 is transported downstream at low speed. Carriers are sequentially carried into this degreasing chamber 10 and stored in a total of holes. And degreasing room 1
Each core 1 is heated in 0 to evaporate the oil on the surface of the core 1.

次いで、脱脂室10の先端部に達したキャリア9は仕切
り扉4cが開放された後に、第1予熱室11に収納され
、該仕切り扉4cが閉塞される。
Next, the carrier 9 that has reached the tip of the degreasing chamber 10 is stored in the first preheating chamber 11 after the partition door 4c is opened, and the partition door 4c is closed.

次いで、一定の時間毎にキャリア9は第1予熱室11か
ら第2予熱室工2にさらに、第2予熱室12から真空加
熱炉2に移動する。真空加熱炉2内では、脱脂室IOと
同様にキャリア9が低速で下流側に搬送される。
Next, the carrier 9 is moved from the first preheating chamber 11 to the second preheating chamber 2 and from the second preheating chamber 12 to the vacuum heating furnace 2 at regular intervals. In the vacuum heating furnace 2, the carrier 9 is conveyed downstream at low speed similarly to the degreasing chamber IO.

下流側に行くに従って、真空加熱炉2は次第に温度上昇
し、熱交換器コアの部品表面に被覆されたろう材が溶融
する。
The temperature of the vacuum heating furnace 2 gradually rises as it goes downstream, and the brazing material coated on the surface of the heat exchanger core parts melts.

次いで、真空加熱炉2内の先端に達したキャリア9は真
空放冷室3に収納され、溶融したろう材が固化し各部品
間が一体的にろう付されると共に、急冷によりアルミニ
ューム製熱交換器を焼入れした後の時効処理が可能とな
る。
Next, the carrier 9 that has reached the tip inside the vacuum heating furnace 2 is stored in the vacuum cooling chamber 3, where the molten brazing filler metal solidifies and the parts are integrally brazed, and the aluminum is heated by rapid cooling. It is possible to perform aging treatment after hardening the exchanger.

さらにキャリア9は取出し室5を通過し、トラバース1
4により外部に取り出される。そして、ファン16によ
りさらに冷却され、そのコア1の温度が250°C以下
に低下したら、調整室7内に収納される。なお、250
°C以上に長時間保持すると、極めて短時間で硬化する
が、硬化後に再軟化してしまう欠点がある。調整室7に
収納されるサイクルタイムは取出し室5から取り出され
るサイクルタイムと同一である。
Furthermore, the carrier 9 passes through the take-out chamber 5 and the traverse 1
4, it is taken out to the outside. Then, the core 1 is further cooled by the fan 16, and when the temperature of the core 1 drops to 250° C. or less, the core 1 is stored in the adjustment chamber 7. In addition, 250
If held at a temperature above 0.degree. C. for a long time, it will harden in a very short time, but it has the disadvantage that it will soften again after hardening. The cycle time stored in the adjustment chamber 7 is the same as the cycle time taken out from the extraction chamber 5.

又、トラバースには一つのみのキャリア9が収納され、
1タクトタイム内に取出し室から調整室に収納される。
In addition, only one carrier 9 is stored in the traverse,
The product is stored from the unloading chamber to the adjustment chamber within one takt time.

そして、調整室7内に収納されたコアlは内部を低速で
搬送され、或いは断続的に下流側に移動し、調整室7の
下流端に達したキャリア9から外部に取り出される。調
整室7内はヒータ13により150°C〜250°C程
度に保持されるが、最も好ましい温度は200°C程で
ある。又、コアlが調整室7内に収納される時間は20
分〜60分程度であるが、好ましくは30分程である。
The core l stored in the adjustment chamber 7 is transported inside at low speed or intermittently moved downstream, and is taken out from the carrier 9 that has reached the downstream end of the adjustment chamber 7 to the outside. The inside of the adjustment chamber 7 is maintained at about 150°C to 250°C by the heater 13, but the most preferable temperature is about 200°C. Also, the time that the core l is stored in the adjustment chamber 7 is 20
The time is about 60 minutes, preferably about 30 minutes.

なお、これらの数値は合金成分の残留量や冷却速度によ
り多少変動する。そして、この調整室7内で時効硬化が
象、速に促進され、コアの強度が強くなる。
Note that these values vary somewhat depending on the amount of remaining alloy components and the cooling rate. Age hardening is rapidly promoted within this conditioning chamber 7, increasing the strength of the core.

〔発明の効果〕〔Effect of the invention〕

(1)本発明の熱処理炉は、低真空の下でろう付される
コア1が真空加熱炉2.真空放冷室3.取出し室5を通
過後放冷空間6にて急冷され、ついで調整室7により一
定温度に保温されるように構成したから、アルミニュー
ム製熱交換器の特にフィン材の時効硬化を促進し、強度
の高い熱交換器を提供し得る。
(1) In the heat treatment furnace of the present invention, the core 1 to be brazed under low vacuum is in the vacuum heating furnace 2. Vacuum cooling room 3. After passing through the extraction chamber 5, it is rapidly cooled in the cooling space 6, and then kept at a constant temperature in the adjustment chamber 7, which promotes age hardening of the aluminum heat exchanger, especially the fin material, and improves its strength. can provide a high heat exchanger.

実験によれば、本発明によるフィンの硬度は従来のそれ
の2倍の硬度を得た。即ち、通常のアルミニウム製熱交
換器のフィン材は43003(AI−Mn系アルミニウ
ム合金)が用いられ、そのビッカース硬度は35程度で
ある。これに対して、重量比で1.0%Mn−0,9%
54−0.4%Mg−1,5Zn、残A】のアルミニウ
ム合金を本発明の熱処理炉で処理した場合には、ピンカ
ース硬度が約70となった。なお、この炉においてろう
付は後のフィン材の合金成分は0.3%Mg、0.4%
Znが残留し、ろう付は後のビッカース硬度が50程度
であり、それを200°Cで30分加熱して、前記のビ
ッカース硬度70を得た。
According to experiments, the hardness of the fin according to the present invention was twice that of the conventional fin. That is, 43003 (AI-Mn aluminum alloy) is used as the fin material of a typical aluminum heat exchanger, and its Vickers hardness is about 35. On the other hand, the weight ratio is 1.0%Mn-0.9%
When an aluminum alloy containing 54-0.4% Mg-1,5Zn and the balance A was treated in the heat treatment furnace of the present invention, the Pinkers hardness was approximately 70. In this furnace, the alloy composition of the fin material after brazing is 0.3% Mg, 0.4%
Zn remained and the Vickers hardness after brazing was about 50, and it was heated at 200°C for 30 minutes to obtain the aforementioned Vickers hardness of 70.

このようにして硬度が高くなると、熱交換器コアの引っ
張り強度はその硬度に比例して強くなる。それ故、本熱
処理炉を用いれば、従来のフィン材の厚みよりも、薄い
フィン材を使用することができ、熱交換器の軽量化と伝
熱性の向上とを同時に達成することができる。
As the hardness increases in this manner, the tensile strength of the heat exchanger core increases in proportion to the hardness. Therefore, by using this heat treatment furnace, it is possible to use a fin material that is thinner than the thickness of conventional fin materials, and it is possible to simultaneously reduce the weight of the heat exchanger and improve heat conductivity.

(2)又本発明の製造方法によれば、放冷空間6でコア
lが所定温度以下に冷却された後番こ調整室7にそれが
挿入され、一定温度に保持されるから、調整室7の熱効
率が良くなり、結果としてアルミニューム製熱交換器の
製造コストを低下させることができる。それと共に強度
の高い熱交換器を迅速に生産することができる。
(2) Also, according to the manufacturing method of the present invention, after the core l has been cooled down to a predetermined temperature or lower in the cooling space 6, it is inserted into the regulating chamber 7 and kept at a constant temperature. The thermal efficiency of No. 7 is improved, and as a result, the manufacturing cost of the aluminum heat exchanger can be reduced. At the same time, a heat exchanger with high strength can be rapidly produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本熱処理炉の平面的略図であり、第2図は真空
炉における各室の設定温度の一例を示し、第3図同真空
炉の各室の真空度の一例を示す。第4図は炉内コンヘア
の一例を示し、第5図はそのハンガの側面図、第6図は
本熱処理炉の調整室の他の実施例を示す。 1・・・コア      2・・・真空加熱炉3・・・
真空放冷室   4a〜4j・・・仕切り扉5・・・取
出し室    6・・・放冷空間7・・・314整室 
    8・・・コンベアライン9・・・キャリア  
  10・・・脱脂室11・・・第1予熱室   12
・・・第2予熱室13・・・ヒータ      14・
・・トラバース15・・・ハンガ本体   16・・・
ファン17・・・スプロケット  18・・・ローラ1
9・・・炉       20・・・フック21・・・
レール     22・・・ピン23・・・ラック  
   24・・・モータ25・・・準備室     2
6・・・真空ろう付装置27・・・排熱回収装置 代理人  弁理士 窪1) 卓美 第5図 第4図
FIG. 1 is a schematic plan view of the heat treatment furnace, FIG. 2 shows an example of the set temperature of each chamber in the vacuum furnace, and FIG. 3 shows an example of the degree of vacuum in each chamber of the vacuum furnace. FIG. 4 shows an example of an in-furnace conditioner, FIG. 5 is a side view of the hanger, and FIG. 6 shows another embodiment of the adjustment chamber of the heat treatment furnace. 1...Core 2...Vacuum heating furnace 3...
Vacuum cooling room 4a-4j...Partition door 5...Take-out room 6...Cooling space 7...314 room
8...Conveyor line 9...Carrier
10... Degreasing chamber 11... First preheating chamber 12
...Second preheating chamber 13...Heater 14.
...Traverse 15...Hanger body 16...
Fan 17...Sprocket 18...Roller 1
9...Furnace 20...Hook 21...
Rail 22...Pin 23...Rack
24...Motor 25...Preparation room 2
6... Vacuum brazing device 27... Exhaust heat recovery device Representative Patent attorney Kubo 1) Takumi Figure 5 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)アルミニューム合金からなる熱交換器コア1の部
品表面に被覆されたろう材を低真空の下で溶融させる真
空加熱炉2と、該真空加熱炉2の下流に夫々気密な仕切
り扉4f,4g,4hを介して順次直列に配置された真
空放冷室3と、取出し室5とを有し、前記取出し室5の
外側に大気に開放された放冷空間6を介して内部が設定
温度に維持される保温用の調整室7が設けられ、前記各
室を直列に接続するコンベアライン8が設けられたこと
を特徴とするアルミニューム製熱交換器の熱処理炉。
(1) A vacuum heating furnace 2 for melting the brazing filler metal coated on the surface of the heat exchanger core 1 made of aluminum alloy under low vacuum, and an airtight partition door 4f located downstream of the vacuum heating furnace 2. It has a vacuum cooling chamber 3 and a take-out chamber 5 which are arranged in series through 4g and 4h, and the inside is maintained at a set temperature through a cooling space 6 which is open to the atmosphere outside the take-out chamber 5. 1. A heat treatment furnace for an aluminum heat exchanger, characterized in that a temperature adjustment chamber 7 for maintaining temperature is provided, and a conveyor line 8 is provided to connect the respective chambers in series.
(2)アルミニューム合金からなる熱交換器コア1の部
品表面に被覆されたろう材を低真空の下で溶融させる真
空加熱炉2と、該真空加熱炉2の下流に夫々気密に仕切
り扉4f,4g,4hを介して順次直列に配置された真
空放冷室3と、取出し室5とを有し、前記取出し室5の
外側に大気に開放された放冷空間6を介して内部が設定
温度に維持される保温用の調整室7が設けられ、前記各
室を直列に接続するコンベアライン8が設けられ、前記
調整室7が150〜250℃に維持された状態で、前記
大気に開放された放冷空間6でコア1の温度が略200
℃以下で室温以上に冷却された時、それが放冷空間6よ
り前記調整室7に挿入され、該調整室7で20分〜60
分保持されるように構成したアルミニューム製熱交換器
の製造方法。
(2) a vacuum heating furnace 2 for melting the brazing filler metal coated on the surface of the heat exchanger core 1 made of aluminum alloy under low vacuum; and airtight partition doors 4f downstream of the vacuum heating furnace 2; It has a vacuum cooling chamber 3 and a take-out chamber 5 which are arranged in series through 4g and 4h, and the inside is maintained at a set temperature through a cooling space 6 which is open to the atmosphere outside the take-out chamber 5. A temperature control chamber 7 is provided for maintaining heat at a temperature of 150 to 250° C., and a conveyor line 8 is provided to connect the respective chambers in series. The temperature of the core 1 in the cooling space 6 is approximately 200℃.
When it is cooled from below to room temperature, it is inserted into the conditioning chamber 7 from the cooling space 6 and kept in the conditioning chamber 7 for 20 to 60 minutes.
A method of manufacturing an aluminum heat exchanger configured to retain a temperature of 100%.
(3)請求項第1項又は第2項において、熱交換器コア
1のフィン材がAl−Mg−Zn系合金又はAl−Mg
−Si系合金或いはAl−Mg−Zn−Si系合金をベ
ースとしたアルミニューム合金からなるもの。
(3) In claim 1 or 2, the fin material of the heat exchanger core 1 is an Al-Mg-Zn alloy or an Al-Mg
- Made of aluminum alloy based on Si alloy or Al-Mg-Zn-Si alloy.
(4)請求項第2項又は第3項において、前記取出し室
5から前記調整室7に収納される時間が1タクトタイム
以内であるもの。
(4) According to claim 2 or 3, the time from the take-out chamber 5 to the adjustment chamber 7 is within one takt time.
JP33660790A 1990-11-29 1990-11-29 Heat treatment furnace for aluminum heat exchanger and method for manufacturing the heat exchanger Expired - Lifetime JP3277218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33660790A JP3277218B2 (en) 1990-11-29 1990-11-29 Heat treatment furnace for aluminum heat exchanger and method for manufacturing the heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33660790A JP3277218B2 (en) 1990-11-29 1990-11-29 Heat treatment furnace for aluminum heat exchanger and method for manufacturing the heat exchanger

Publications (2)

Publication Number Publication Date
JPH04202646A true JPH04202646A (en) 1992-07-23
JP3277218B2 JP3277218B2 (en) 2002-04-22

Family

ID=18300908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33660790A Expired - Lifetime JP3277218B2 (en) 1990-11-29 1990-11-29 Heat treatment furnace for aluminum heat exchanger and method for manufacturing the heat exchanger

Country Status (1)

Country Link
JP (1) JP3277218B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296526A (en) * 1994-09-14 2007-11-15 Emitec Ges Fuer Emissionstechnologie Mbh Method for producing metal structure
JP2014220283A (en) * 2013-05-01 2014-11-20 アキム株式会社 Thermal treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296526A (en) * 1994-09-14 2007-11-15 Emitec Ges Fuer Emissionstechnologie Mbh Method for producing metal structure
JP2014220283A (en) * 2013-05-01 2014-11-20 アキム株式会社 Thermal treatment apparatus

Also Published As

Publication number Publication date
JP3277218B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
DE3307071C2 (en) Continuous furnace for the heat treatment of metallic workpieces
JPS6116910B2 (en)
JPH04202646A (en) Heat treating furnace of heat exchanger made of aluminum and production of heat exchanger
US4449923A (en) Continuous heat-treating furnace
US4495001A (en) Production of age hardenable aluminum extruded sections
US4664359A (en) Furnace for heat treating light alloy ingots
US4519854A (en) Process and apparatus for heat treatment of steel material such as of soft steel or the like
JPH0456707A (en) Continuous type vacuum furnace
US2290551A (en) Heat treating furnace
JP2601514Y2 (en) Continuous heat treatment furnace
ES2219337T3 (en) RECOGNIZED OVEN.
JP3012879B2 (en) Vacuum brazing equipment for heat exchangers
JP2004309125A (en) Rotary heat treatment furnace
JPH0443286A (en) Continuous baking furnace
US1595123A (en) Means and method for cooling rails
JPH04121586A (en) Heat treatment device
JP2742074B2 (en) Carburizing furnace
US2194612A (en) Apparatus for case hardening glass
JPS63169322A (en) Continuous heat-treating furnace
CN107552565A (en) Heating arrangements and steckel rolling unit before a kind of magnesium alloy strip coil machine
JPS60169514A (en) Heat treating furnace
JPH11230678A (en) Continuous heating furnace
JPH0312140B2 (en)
JPH04121585A (en) Heat treatment device
JPS62131185A (en) Method of rapidly baking ceramic material such as tile and kiln executing said method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

EXPY Cancellation because of completion of term