JPH04201696A - Aircraft diagnosis system - Google Patents

Aircraft diagnosis system

Info

Publication number
JPH04201696A
JPH04201696A JP2330788A JP33078890A JPH04201696A JP H04201696 A JPH04201696 A JP H04201696A JP 2330788 A JP2330788 A JP 2330788A JP 33078890 A JP33078890 A JP 33078890A JP H04201696 A JPH04201696 A JP H04201696A
Authority
JP
Japan
Prior art keywords
sensor
aircraft
data processing
diagnosis
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2330788A
Other languages
Japanese (ja)
Inventor
Tomio Yasui
安井 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2330788A priority Critical patent/JPH04201696A/en
Publication of JPH04201696A publication Critical patent/JPH04201696A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To obtain a quick and accurate automatic diagnosis system by moving a diagnosis sensor along the predetermined section of an aircraft according to a signal from a control panel, detecting information on the soundness or the like of a body structure, processing and analyzing the information with a data processing and analyzing device for diagnosis and evaluation, and then outputting the data of a remaining lifetime or the like. CONSTITUTION:The sensor 7 moves along the required inspection section of the body external surface of an aircraft 1, with the travel of a sensor operation base 23 and a carriage 22, while the holography or thermo viewer of the sensor 7 is operating. Output signals from the sensor 7 are sent to a data processing and analyzing device 3, and displayed in the form of data after processed. Furthermore, the aforesaid signals are sent to a diagnosis and evaluation device 4, and diagnosed and processed for display. According to the aforesaid construction, even remaining lifetime (remaining lifetime prediction) can be estimated, in addition to the quantitative evaluation of inspection and servicing necessity and the extent thereof or the like, even for various aircrafts having different sizes and shapes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は航空機の機体構造、装備及びエンジンを迅速、
適確に診断評価する航空機診断システムに関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a quick and easy way to improve the structure, equipment, and engine of an aircraft.
This invention relates to an aircraft diagnostic system that accurately diagnoses and evaluates.

(従来の技術) 従来は航空機の機体構造、装備の点検、整備(主に重整
g1)は機体装着状態では不可能であり分解点検し、整
備している。又、エンジンについては点検、診断項目に
も関係するが、機体より下ろして点検、整備しているの
で工期、コストの点で問題があり機体の連続計画に大き
な影響を与えて−いる。
(Prior Art) Conventionally, inspection and maintenance (mainly heavy maintenance G1) of an aircraft's fuselage structure and equipment was impossible while the aircraft was attached to the aircraft, and maintenance was performed by disassembling and inspecting the equipment. In addition, the engine is also related to inspection and diagnosis items, but since the engine is inspected and maintained by being removed from the aircraft, there are problems in terms of construction time and cost, which has a large impact on the aircraft continuity plan.

〔発明が解決しようとする課題] 航空機の定期点検、整備は機体の飛行安全上、極めて重
要な業務である。この点検、整備に関しては航空機運軌
法又は機体メーカの整備基準等から飛行時間等により、
A(又はT)、B、’C及びDチエツクの各整備を行っ
ている。この整備はAからDになる程点検整備項目のエ
リアが増大する。
[Problems to be Solved by the Invention] Periodic inspection and maintenance of aircraft is extremely important work for flight safety of the aircraft. Regarding this inspection and maintenance, it depends on the flight time etc. based on the Aircraft Trajectory Act or the maintenance standards of the aircraft manufacturer.
A (or T), B, 'C and D checks are being maintained. In this maintenance, the area of inspection and maintenance items increases from A to D.

特にDチエツクでは機体をかなり分解するほか、エンジ
ンを機体より下ろして点検、整備しなくてはならない。
In particular, D-Check requires disassembling the aircraft and removing the engine from the aircraft for inspection and maintenance.

従って、二〇〇又はDチエツクでの点検整備費用や工期
が大きく、飛行機整備屋としては、迅速、適確な自動診
断システム装置の開発が強く求められている。
Therefore, inspection and maintenance costs and construction times for 200 or D checks are large, and there is a strong need for aircraft maintenance shops to develop a quick and accurate automatic diagnosis system.

(課題を解決するための手段] 本発明は上記課題を解決するため次の手段を講する。(Means for solving problems) The present invention takes the following measures to solve the above problems.

すなわち、軌空機診断システムとして、診断用センサと
、同センサを支持し上下左右前後移動可能なセンサ操作
手段と、上記診断用センサの信号を受け処理解析するデ
ータ処理解析装置と、同データ処理解析装置のデータを
受け診断評価処理する診断評価装置と、上記診断用セン
サ、上記センサ操作手段、上記データ処理解析装置、お
よび上記診断評価装置へ信号を送りそれぞれを制御する
制御盤とを設i才る。
In other words, the orbital vehicle diagnostic system includes a diagnostic sensor, a sensor operating means that supports the sensor and is movable up, down, left, right, forward and backward, a data processing and analysis device that receives and processes and analyzes the signals of the diagnostic sensor, and a data processing A diagnostic evaluation device that receives data from the analysis device and performs diagnostic evaluation processing, and a control panel that sends signals to the diagnostic sensor, the sensor operating means, the data processing analysis device, and the diagnostic evaluation device and controls each of them is installed. Be talented.

〔作用〕[Effect]

上記手段により、制御盤の信号でセンサ操作手段が移動
し、診断用センサ(送受信部)を航空−の所定の個所に
沿って動かす0診断用センサにより機体構造、装備の健
全性、エンジン性能等の情報が検出され、データ処理解
析装置へ送られ処理解析される。そのデータは診断評価
装置へ送られ診断評価処理され、修理内容、部品交換の
要否、残存寿命等を出力する。
With the above means, the sensor operation means moves in response to a signal from the control panel, and the diagnostic sensor (transmission/reception unit) is moved along a predetermined point on the aircraft. The information is detected and sent to a data processing and analysis device for processing and analysis. The data is sent to the diagnostic evaluation device, where it undergoes diagnostic evaluation processing, and outputs information such as the details of the repair, whether or not parts need to be replaced, and the remaining service life.

以上のようにして、自動的に航空機が診断されるように
なる。
In the manner described above, the aircraft will be automatically diagnosed.

〔実施例〕〔Example〕

本発明の一実施例を第1図から第7図により説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 to 7.

第1図(a)にて、検査対象の航空機1のそばに、セン
サ操作手段が配置される。センサ操作手段は台車22と
、台車22に取付けられ、上下および左右に移動可能で
かつ上端に診断用センサ(送受信部)7を持つ操作台7
を有する。
In FIG. 1(a), sensor operating means is placed near the aircraft 1 to be inspected. The sensor operating means includes a trolley 22 and an operating table 7 that is attached to the trolley 22 and is movable up and down and left and right, and has a diagnostic sensor (transmission/reception unit) 7 at the upper end.
has.

診断用センサ7としてはレーザホログラフィ、サーモビ
エア、レーザ超音波探傷、超音波探傷、中性子ラジオグ
ラフィ、AE (アコ−ステイクエミッション)ならび
に光、音、熱および放射線等のセンサを有する。
The diagnostic sensor 7 includes laser holography, thermovia, laser ultrasonic flaw detection, ultrasonic flaw detection, neutron radiography, AE (acoustic emission), and light, sound, heat, and radiation sensors.

台車22にはデータ処理解析装置3、診断評価装置4.
1IJII盤6が搭載されている。また、第5図に示す
ように、センサ7の出力はデータ処理解析装置3、診断
評価装置4へ送られる。また制御盤6の出力は台車22
、センサ操作台23、センサ7、データ処理解析装置3
、診断評価装置4へ送られる。
The trolley 22 includes a data processing analysis device 3, a diagnostic evaluation device 4.
1IJII board 6 is installed. Further, as shown in FIG. 5, the output of the sensor 7 is sent to a data processing analysis device 3 and a diagnostic evaluation device 4. In addition, the output of the control panel 6 is
, sensor operation table 23, sensor 7, data processing analysis device 3
, is sent to the diagnostic evaluation device 4.

以上の構成において、機体外板検査を行う場合、同モー
ドを選ぶと、制御盤6からの信号でセンサ7のレーザホ
ログラフィまたはサーモビエアが作動しながらセンサ操
作台23および台車22の移動により、航空機1の機体
外面の要点検部位に沿って移動する。センサ7の出力は
データ処理解析装置3へ送られ処理解析され、例えば同
図(b)に示すようにデータ表示される0図中aは欠陥
部を示す。
In the above configuration, when inspecting the outer skin of the aircraft, if the same mode is selected, the laser holography or thermovia of the sensor 7 is activated by the signal from the control panel 6, and the sensor operation table 23 and the trolley 22 are moved. Move along the areas requiring inspection on the exterior of the aircraft. The output of the sensor 7 is sent to the data processing and analysis device 3, where it is processed and analyzed, and the data is displayed, for example, as shown in FIG.

さらにこれらの信号は診断評価装置4へ送られ診断評価
処理され、例えば同図(c)に示すように表示される。
Furthermore, these signals are sent to the diagnostic evaluation device 4 where they are subjected to diagnostic evaluation processing and displayed, for example, as shown in FIG. 4(c).

き裂、はく離検査の場合、同モードを選ぶと、制御盤6
からの信号で、センサ7のレーザ超音波探傷または超音
波探傷が作動し、上記のように要点検部位を移動する(
第2図(a))、センサ7からの情報はデータ処理解析
装置3へ送られデータ処理解析され、例えば同図Cb)
または(c)のようにデータ表示される0図中すはき裂
、Cはファスナ、dはフィンティング、eは接着不良部
を示す、接着不良部eの断面を第4図に示す0図中25
はスキン、26はハニカムコア、fはコアの潰れ、破壊
、gはミストコロージッン、hは水滴、iはスキンのは
く離を示す。
When inspecting cracks and peeling, if you select this mode, the control panel 6
The laser ultrasonic flaw detection or ultrasonic flaw detection of the sensor 7 is activated by the signal from the sensor 7, and the inspection area is moved as described above (
Figure 2 (a)), the information from the sensor 7 is sent to the data processing and analysis device 3 for data processing and analysis, for example, Figure 2 (Cb))
Or, data is displayed as shown in (c) in Figure 0, where C is a fastener, d is a finning, and e is a defective bonding area. Figure 4 shows the cross section of the defective bonding area e. middle school 25
26 is the skin, 26 is the honeycomb core, f is the crushing or destruction of the core, g is the mist colloid, h is the water droplet, and i is the peeling of the skin.

これらの情報は診断評価装置4へ送られ診断評価処理さ
れ、例えば第3図(a)、 (b)のように表示される
This information is sent to the diagnostic evaluation device 4, where it undergoes diagnostic evaluation processing and is displayed, for example, as shown in FIGS. 3(a) and 3(b).

腐食検査の場合、同モードを選ぶと、制御盤6からの信
号で、センサ7の中性子ラジオグラフィまたはX線ラジ
オグラフィが作動し、上記のように要点検部位を移動す
る(第5図(a))、センサ7からの情報はデータ処理
解析装置3へ送られデータ処理され、例えば同図(b)
または(c)のようにデータ表示される0図中jは水分
腐食部、kは腐食部、27は外板、28は桁材、29は
ファスナを示す。
In the case of corrosion inspection, when the same mode is selected, the neutron radiography or )), the information from the sensor 7 is sent to the data processing analysis device 3 and data processed, for example, as shown in FIG.
Or, data is displayed as shown in (c). In the figure, j indicates a water-corroded portion, k indicates a corroded portion, 27 indicates an outer plate, 28 indicates a girder material, and 29 indicates a fastener.

これらの情報は診断評価装置4へ送られ診断評価処理さ
れ、例えば第6図(a)、 (b)のように表示される
These pieces of information are sent to the diagnostic evaluation device 4, subjected to diagnostic evaluation processing, and displayed, for example, as shown in FIGS. 6(a) and 6(b).

以上のようにして、大きさ、機体形状の異なる各種航空
機に対しても、点検整備の必要性及びその程度等を定量
的に評価するのみならず、残存寿命(余寿命予測)まで
推定する。
In the manner described above, not only the necessity and extent of inspection and maintenance are quantitatively evaluated for various aircraft with different sizes and body shapes, but also the remaining lifespan (remaining lifespan prediction) is estimated.

これによって、従来の航空機型整備時(Dチエツク又は
IRAN )における点検、整備の迅速化が図れるのみ
ならず、機体構造、装備及びエンジン等容対象部位の損
傷程度に応じた適材適所の整備や修理が適確かつ効率的
に実施できる。
This not only speeds up inspection and maintenance during conventional aircraft type maintenance (D-check or IRAN), but also allows for maintenance and repair using the right people in the right places depending on the degree of damage to the aircraft structure, equipment, engine, etc. can be carried out appropriately and efficiently.

従って、整備費用の節減と工期の短縮化につながると同
時に機体装備、エンジンのシステマテイックな保全管理
が可能となる。
Therefore, it is possible to reduce maintenance costs and shorten the construction period, while at the same time enabling systematic maintenance management of aircraft equipment and engines.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、この発明によれば、大きさ、機
体形状の異なる各種航空機に対しても点検整備の必要性
及びその程度等を定量的に評価するのみならず、残存寿
命(余寿命予測)まで推定できるようになる。
As explained above, according to the present invention, it is possible to not only quantitatively evaluate the necessity and extent of inspection and maintenance for various aircraft of different sizes and shapes, but also to evaluate the remaining life (remaining life). prediction).

【図面の簡単な説明】[Brief explanation of the drawing]

ゝ 第1図(a)は本発明の一実施例の構成斜視図、同
図(b)、 (c)は作用説明図′、第2図(a)、 
(b)、 (c)は同実施例の作用説明図、第3図(a
)、 (b)は同実施例の作用説明図、第4図は同実施
例の作用説明図、第5図軸)、 (b)、 (c)は同
実施例の作用説明図、第6図(a)、 (b)は同実施
例の作用説明図、第7図は同実施例の構成ブロック図で
ある。 l・・・航空機(被検機体) 3・・・データ処理解析装置
ゝ Fig. 1(a) is a perspective view of the configuration of an embodiment of the present invention, Fig. 1(b) and (c) are action explanatory views, Fig. 2(a),
(b) and (c) are action explanatory diagrams of the same embodiment, and Fig. 3 (a)
), (b) is an explanatory diagram of the action of the same embodiment, FIG. 4 is an explanatory diagram of the action of the same embodiment, and FIG. Figures (a) and (b) are action explanatory diagrams of the same embodiment, and Fig. 7 is a block diagram of the configuration of the same embodiment. l... Aircraft (tested aircraft) 3... Data processing analysis device

Claims (1)

【特許請求の範囲】[Claims] 診断用センサと、同センサを支持し上下左右前後移動可
能なセンサ操作手段と、上記診断用センサの信号を受け
処理解析するデータ処理解析装置と、同データ処理解析
装置のデータを受け診断評価処理する診断評価装置と、
上記診断用センサ、上記センサ操作手段、上記データ処
理解析装置、および上記診断評価装置へ信号を送りそれ
ぞれを制御する制御盤とを備えてなることを特徴とする
航空機診断システム。
A diagnostic sensor, a sensor operating means that supports the sensor and is movable up, down, left, right, forward and back, a data processing and analysis device that receives and processes and analyzes signals from the diagnostic sensor, and a data processing and analysis device that receives and processes data from the data processing and analysis device. a diagnostic evaluation device for
An aircraft diagnostic system comprising: the diagnostic sensor, the sensor operating means, the data processing and analysis device, and a control panel that sends signals to and controls each of the diagnostic evaluation devices.
JP2330788A 1990-11-30 1990-11-30 Aircraft diagnosis system Pending JPH04201696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2330788A JPH04201696A (en) 1990-11-30 1990-11-30 Aircraft diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2330788A JPH04201696A (en) 1990-11-30 1990-11-30 Aircraft diagnosis system

Publications (1)

Publication Number Publication Date
JPH04201696A true JPH04201696A (en) 1992-07-22

Family

ID=18236556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2330788A Pending JPH04201696A (en) 1990-11-30 1990-11-30 Aircraft diagnosis system

Country Status (1)

Country Link
JP (1) JPH04201696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183172A (en) * 2006-01-06 2007-07-19 Toshiba Corp Method and apparatus for inspecting airframe
JP2012121562A (en) * 2010-12-06 2012-06-28 Boeing Co:The Rapid rework analysis system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183172A (en) * 2006-01-06 2007-07-19 Toshiba Corp Method and apparatus for inspecting airframe
JP2012121562A (en) * 2010-12-06 2012-06-28 Boeing Co:The Rapid rework analysis system
US9508047B2 (en) 2010-12-06 2016-11-29 The Boeing Company Rapid rework analysis system

Similar Documents

Publication Publication Date Title
Yashiro et al. An NDT technique for composite structures using visualized Lamb-wave propagation
EP2162807B1 (en) System and method for automated inspection of large-scale part
US9519844B1 (en) Infrared thermographic methods for wrinkle characterization in composite structures
EP3531123B1 (en) Laser ultrasound scanning for visualizing damage or irregularities
US10126273B2 (en) Inspection of structures
CA2821682A1 (en) Novel systems and methods for non-destructive inspection of airplanes
EP2269051A2 (en) Imaging an anomaly using backscattered waves
JPH04201696A (en) Aircraft diagnosis system
Bar-Cohen In-Service NDE of Aerospace Structures--Emerging Technologies and Challenges at the End of the 2nd Millennium
JP2010019776A (en) Automatic welding/inspection system, inspection robot device, and welding/inspection robot device
Gray et al. A novel approach for the autonomous inspection and repair of aircraft composite structures
Georgeson Trends in R&D for nondestructive evaluation of in-service aircraft
Drury et al. Measuring human detection performance in aircraft visual inspection
JPH0875706A (en) Body inspection apparatus
Chapman et al. Artificial intelligence in the eddy current inspection of aircraft engine components: Materials Evaluation, Vol. 49, No. 9, pp. 1090–1094 (Sep. 1991)
Forsyth et al. Automation of enhanced visual NDT techniques
Alcaide et al. Damage detection on Aerospace structures using PAMELA SHM System
Nöthen Applications of NDT 4.0 Cases in Automotive Industry
Favro et al. Thermal-wave imaging of corrosion and disbonds in aircraft structures
Safai Nondestructive evaluation of aircraft fuselage panels with electronic shearography
Komorowski et al. Application of diffracto sight to the nondestructive inspection of aircraft structures
Giurgiutiu et al. Multifunctional vehicle structural health monitoring opportunities with piezoelectric wafer active sensors
EP3862277B1 (en) Composite laminate damage detection method using an in-situ thermal gradient and expansion differences across the damage
Roach et al. Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft
Pieczonka et al. Nondestructive testing of composite patch repairs