JPH04201122A - Device for supplying power to movable member - Google Patents

Device for supplying power to movable member

Info

Publication number
JPH04201122A
JPH04201122A JP33041190A JP33041190A JPH04201122A JP H04201122 A JPH04201122 A JP H04201122A JP 33041190 A JP33041190 A JP 33041190A JP 33041190 A JP33041190 A JP 33041190A JP H04201122 A JPH04201122 A JP H04201122A
Authority
JP
Japan
Prior art keywords
power supply
conductive member
movable member
wire electrode
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33041190A
Other languages
Japanese (ja)
Inventor
Takuji Magara
卓司 真柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33041190A priority Critical patent/JPH04201122A/en
Publication of JPH04201122A publication Critical patent/JPH04201122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate mechanical contact of a conductive member with a movable member to prevent them from being worn mechanically by constituting a device in which a magnetic force is generated at a position opposite to a rotating member and, with a magnetic fluid trapped by the magnetic force, supplying power to the movable member through the magnetic fluid. CONSTITUTION:A magnetic force is generated on a conductive member 27 at a position opposite to a rotating member 21 by applying magnetic field to the conductive member 27. A magnetic fluid 29 is trapped by this magnetic force and power is supplied to the rotating member 21 through the conductive member 27 and a magnetic substance 28.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、放電加工装置のワイヤ電極等の可動部材への
給電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power supply device for movable members such as wire electrodes of electrical discharge machining equipment.

[従来の技術] 従来、回転あるいは並進運動などを伴う可動部材に対す
る給電は、固定部材に対する給電と同様に、機械接触に
よっておこなわれていた。第7図は回転部材に対する給
電装置の従来例を示したものであり、(1)は回転シャ
フト部材、(2a)、 (2b)は通電ブラシ、(3)
は電源である。図において、回転シャフト部材(1)は
図示されない回転駆動機構によって矢印H方向に回転さ
れており、通電ブラシ(2a) 、(2b)が回転シャ
フト部材(1)に機械的に接触することにより、電源(
3)がら電流を回転シャフト部材(1)に供給している
[Prior Art] Conventionally, power supply to a movable member that involves rotational or translational movement has been performed by mechanical contact, similar to power supply to a fixed member. FIG. 7 shows a conventional example of a power supply device for a rotating member, in which (1) is a rotating shaft member, (2a) and (2b) are energizing brushes, and (3) is a rotating shaft member.
is the power source. In the figure, the rotating shaft member (1) is rotated in the direction of arrow H by a rotational drive mechanism (not shown), and when the energized brushes (2a) and (2b) mechanically contact the rotating shaft member (1), power supply(
3) supplying current to the rotating shaft member (1);

また第8図は、ワイヤ放電加工装置の従来の給電装置部
分水したものであり、(11)はワイヤ電極、(12)
は被加工物、(13)は加工ノズル、(14a)は上部
ワイヤガイド、(14b)は下部ワイヤガイド、(15
)は加工用電源、(16)は給電ダイスである。図にお
いて、ワイヤ電極(11)は加工中被加工物(12)に
対して、矢印Iに示すように並進方向に走行されつつ、
加工が進行する。電流は給電ダイス(16)を介してワ
イヤ電極(11)に供給される。
Furthermore, Fig. 8 shows a conventional power supply device for wire electrical discharge machining equipment partially hydrated, where (11) is a wire electrode, and (12) is a wire electrode.
is the workpiece, (13) is the processing nozzle, (14a) is the upper wire guide, (14b) is the lower wire guide, (15)
) is a processing power supply, and (16) is a power supply die. In the figure, the wire electrode (11) is being moved in the translational direction as shown by arrow I with respect to the workpiece (12) during machining.
Processing progresses. Current is supplied to the wire electrode (11) via the feeding die (16).

[発明か解決しようとする課題] 従来の供給装置は以上のように、給電部材と可動部材か
機械的に接触しているため、可動部材との摩擦により給
電部材か機械的に摩耗する問題かあり、また、摩擦によ
る発熱によって機械精度への影響が発生したり、故障の
原因となることかあった。さらには、機械摩擦に起因す
る振動などにより給電部材と可動部材の接触か一時的に
悪化することによって、給電が一時的に遮断されたり、
給電部材と可動部材との間に放電や電解が発生して給電
部材・可動部材が異常に消耗するなどの問題があった。
[Problem to be solved by the invention] As described above, in the conventional supply device, the power supply member and the movable member are in mechanical contact, so there is a problem that the power supply member is mechanically worn out due to friction with the movable member. In addition, the heat generated by friction could affect machine accuracy or cause failure. Furthermore, contact between the power supply member and the movable member may temporarily deteriorate due to vibrations caused by mechanical friction, and the power supply may be temporarily cut off.
There has been a problem that discharge or electrolysis occurs between the power supply member and the movable member, resulting in abnormal wear of the power supply member and the movable member.

また、従来のワイヤ放電加工装置も機械的接触によりワ
イヤ電極に給電しており、ワイヤ電極の振動などにより
、給電部材とワイヤ電極の接触が一時的に悪化すること
によって給電か一時的に遮断されて加工か不安定となっ
たり、給電部材とワイヤ電極との間に放電や電解が発生
して給電部材、ワイヤ電極か異常に消耗するなどの問題
かあった。
In addition, conventional wire electrical discharge machining equipment also supplies power to the wire electrode through mechanical contact, and if the contact between the power supply member and the wire electrode temporarily worsens due to vibration of the wire electrode, the power supply may be temporarily cut off. There were problems such as unstable machining and abnormal wear of the power supply member and wire electrode due to discharge or electrolysis occurring between the power supply member and the wire electrode.

通常、ワイヤ放電加工装置の給電部材には超硬なとの硬
質材料か用いられるため、機械的な摩耗は微量であり、
このような消耗は放電加工反力により発生するワイヤ電
極振動にともない、給電部材とワイヤ電極との間に放電
や電解か発生することに起因する、ワイヤ放電加工装置
に特有の問題であった。また、給電部における放電によ
り、ワイヤ電極が断線したり、ワイヤ電極と給電部材か
溶着して加工の続行が不可能となるなどの問題かあった
。さらには、給電か正常に行なわれている場合において
も、通常100〜200時間程度で給電部材が消耗する
ため、定期的に給電部材を交換する必要があった。
Normally, a hard material such as carbide is used for the power supply member of wire electrical discharge machining equipment, so mechanical wear is minimal.
This kind of wear and tear is a problem specific to wire electrical discharge machining equipment, which is caused by electrical discharge or electrolysis occurring between the power supply member and the wire electrode due to the wire electrode vibration caused by the electrical discharge machining reaction force. Further, due to electric discharge in the power feeding section, there were problems such as the wire electrode breaking or the wire electrode and the power feeding member being welded together, making it impossible to continue machining. Furthermore, even when power is being supplied normally, the power supply member usually wears out after about 100 to 200 hours, so it is necessary to periodically replace the power supply member.

こうした、問題を改善する方法として、特開昭63−3
18225号公報に開示されているような導電性液体を
用いる方法が提案されているか、これはワイヤ電極走行
中にこの液体がワイヤ電極に付着し、導電性液体か少し
ずつ減少してしまう欠点があった。
As a method to improve these problems, JP-A-63-3
A method using a conductive liquid as disclosed in Japanese Patent No. 18225 has been proposed, but this method has the disadvantage that the liquid adheres to the wire electrode while the wire electrode is running, and the conductive liquid gradually decreases. there were.

本発明は、上記の課題を解消するためになされたもので
、給電部での放電・電解による電気的な消耗、及び可動
部材との摩擦による機械的な消耗やワイヤ断線等を防止
してい、きわめて安定な給電を行いつる給電装置を得る
ことを目的とする。
The present invention has been made to solve the above problems, and prevents electrical consumption due to discharge and electrolysis in the power feeding section, mechanical consumption due to friction with movable members, wire breakage, etc. The purpose is to obtain a power supply device that provides extremely stable power supply.

[課題を解決するための手段] 第1の発明は、可動部材に近接して設けられ電源部に接
続された導電性部材と、この導電性部材に磁界を加え前
記可動部材との対向部に磁力を発生させる電磁誘導手段
と、前記可動部材と導電性部材の対向部に充填された導
電性の磁性流体とて、可動部材への給電装置を構成した
ものである。
[Means for Solving the Problems] A first invention includes a conductive member provided close to a movable member and connected to a power source, and a magnetic field applied to the conductive member to a portion facing the movable member. An electromagnetic induction means for generating magnetic force and a conductive magnetic fluid filled in a portion where the movable member and the conductive member face each other constitute a power supply device to the movable member.

第2の発明は、第1の発明の可動部材をワイヤ放電加工
装置のワイヤ電極とし、このワイヤ電極への給電装置を
構成したものである。
A second invention uses the movable member of the first invention as a wire electrode of a wire electrical discharge machining apparatus, and constitutes a power supply device for the wire electrode.

第3の発明は、第1の発明又は第2の発明での磁性流体
として、強磁性微粒子を導電性流体中に分散させた混和
流体を用いたものである。
A third invention uses a mixed fluid in which ferromagnetic fine particles are dispersed in a conductive fluid as the magnetic fluid in the first invention or the second invention.

[作 用] 本発明における給電装置は、導電性部材に磁界を加える
ことにより可動部材との対向部に磁力を発生させ、この
磁力により磁性流体を捕捉しつつ、導電性部材及び磁性
流体を介して可動部材に給電を行なう。
[Function] The power supply device of the present invention generates magnetic force in the part facing the movable member by applying a magnetic field to the conductive member, captures the magnetic fluid by this magnetic force, and transmits the magnetic fluid through the conductive member and the magnetic fluid. power is supplied to the movable member.

[発明の実施例] 第1図は第1の発明の第1の実施例を示す構造図で、(
a)は平面図、(b)は側面図である。第1図において
、(21)は回転部材、(3)は通電用電源、(27)
は回転部材(21)に近接して設けられた導電性部材(
ポールピース)、(29)は回転部材(21)と導電性
部材(27)との間に充填された導電性ををする磁性流
体である。磁性流体は、窒化鉄(PexN)や酸化鉄(
PexO)などの強磁性の微粒子(通常平均直径LOn
m)を水銀などの導電性液体中に分散させ、見かけ上等
電性液体が磁性を帯びているようにした固体・液体の混
和流体(コロイド)である。
[Embodiment of the invention] FIG. 1 is a structural diagram showing a first embodiment of the first invention.
A) is a plan view, and (b) is a side view. In Figure 1, (21) is a rotating member, (3) is a power supply for energizing, (27)
is a conductive member (
Pole piece), (29) is a conductive magnetic fluid filled between the rotating member (21) and the conductive member (27). The magnetic fluid is made of iron nitride (PexN) or iron oxide (
PexO) and other ferromagnetic particles (usually with average diameter LOn
It is a solid/liquid mixed fluid (colloid) made by dispersing m) in a conductive liquid such as mercury so that the apparently isoelectric liquid has magnetic properties.

(28)は導電性部材(27)に取り付けられた永久磁
石である。
(28) is a permanent magnet attached to the conductive member (27).

次にこの実施例の動作について説明する。Next, the operation of this embodiment will be explained.

回転部材(21)は図示されない回転駆動機構により矢
印へ方向に回転されているか、回転部材(2I)と導電
性部材(27)の間隙には永久磁石(28)によって誘
導された磁力か発生しているため、回転部材(21)が
回転しても磁性流体(29)は常に回転部材(21)導
電性部材(27)の間に吸着された状態となる。
The rotating member (21) is rotated in the direction of the arrow by a rotation drive mechanism (not shown), or a magnetic force induced by a permanent magnet (28) is generated in the gap between the rotating member (2I) and the conductive member (27). Therefore, even when the rotating member (21) rotates, the magnetic fluid (29) is always attracted between the rotating member (21) and the conductive member (27).

すなわち、導電性部材(27)、磁性流体(29)、及
び回転部材(21)には、図中の矢印Kに示すような磁
束による磁路か形成され、磁力(吸着力)か発生し、磁
性流体(29)が保持されるので7ある。通電用電源(
3)は導電性部材(27)に接続されているため、回転
部材(21)には導電性の磁性流体(29)を通して通
電かおこなわれる。
That is, a magnetic path is formed in the conductive member (27), magnetic fluid (29), and rotating member (21) by magnetic flux as shown by arrow K in the figure, and magnetic force (attractive force) is generated. The number is 7 because the magnetic fluid (29) is held. Power supply for energizing (
3) is connected to the conductive member (27), so that the rotating member (21) is energized through the conductive magnetic fluid (29).

第2図は第1の発明の第2の実施例を示す図であり、(
31)は回転シャフト部材、(3)は通電用電源、(3
7)は回転シャフト部材(31)に近接して設けられた
リング状導電性部材、(29)は回転シャフト部材(3
1)とリング状導電性部材(37)との間に充填された
導電性を有する磁性流体、(38)はリング状導電性部
材(37)に取り付けられたリング状永久磁石である。
FIG. 2 is a diagram showing a second embodiment of the first invention, (
31) is a rotating shaft member, (3) is a power source for energization, (3
7) is a ring-shaped conductive member provided close to the rotating shaft member (31), and (29) is a ring-shaped conductive member provided close to the rotating shaft member (31).
A magnetic fluid having conductivity is filled between 1) and the ring-shaped conductive member (37), and (38) is a ring-shaped permanent magnet attached to the ring-shaped conductive member (37).

次にこの実施例の動作について説明する。Next, the operation of this embodiment will be explained.

回転シャフト部材(31)は図示されない回転駆動機構
により回転されているか、回転シャフト部材(31)と
リング状導電性部材(37)の間隙にはリング状永久磁
石(38)によって誘導された磁力か発生しているため
、第1の実施例と同様に回転シャフト部材(31)か回
転しても磁性流体(29)は常に回転部材(31)とリ
ング状導電性部材(37)の間に吸着された状態となる
。磁性流体(29)には表面張力か存在するため、本実
施例のように磁性流体充填部の表面積か小さい場合、磁
性流体(29)か2極(N極、S極)に分離することは
なく、リング状導電性部材(37)の内壁に一様に磁性
流体(29)を保持せしめることか可能である。通電用
電源(3)はリング状導電性部材(37)に接続されて
いるため、回転シャフト部材(31)には導電性の磁性
流体(29)を通して通電がおこなわれる。
The rotating shaft member (31) is rotated by a rotation drive mechanism (not shown), or there is a magnetic force induced by a ring-shaped permanent magnet (38) in the gap between the rotating shaft member (31) and the ring-shaped conductive member (37). Therefore, as in the first embodiment, even if the rotating shaft member (31) rotates, the magnetic fluid (29) is always attracted between the rotating member (31) and the ring-shaped conductive member (37). The state will be as follows. Since surface tension exists in the magnetic fluid (29), if the surface area of the magnetic fluid filled part is small as in this example, it is difficult to separate the magnetic fluid (29) into two poles (N pole, S pole). Instead, it is possible to uniformly hold the magnetic fluid (29) on the inner wall of the ring-shaped conductive member (37). Since the energizing power source (3) is connected to the ring-shaped conductive member (37), the rotating shaft member (31) is energized through the conductive magnetic fluid (29).

また、第3図は第1の発明の第3の実施例を示す図であ
り、(41)は図中の矢印C,Dに示すように並進移動
を行う平板状部材、(3)は通電用電源、(47)は平
板状部材(41)に近接して設けられた導電性部材、(
29)は平板部材(41)と導電性部材(47)との間
に充填された導電性を有する磁性流体、(48)は導電
性部材(47)に取り付けられた永久磁石である。
Further, FIG. 3 is a diagram showing a third embodiment of the first invention, in which (41) is a flat plate member that moves in translation as shown by arrows C and D in the figure, and (3) is a plate-like member that is energized. (47) is a conductive member provided in close proximity to the flat member (41);
29) is a conductive magnetic fluid filled between the flat plate member (41) and the conductive member (47), and (48) is a permanent magnet attached to the conductive member (47).

次にこの実施例の動作について説明する。Next, the operation of this embodiment will be explained.

平板状部材(41)は図示されない駆動機構により並進
運動されているか平板状部材(41)と導電性部材(4
7)の間隙には永久磁石(48)によって誘導された磁
力か発生しているため、平板状部材(41)が並進移動
しても第1の実施例と同様に磁性流体(29)は常に平
板状部材(41)と導電性部材(47)の間に吸着され
た状態となる。通電用電源(3)は導電性部材(47)
に接続されているため、平板状部材(41)には導電性
の磁性流体(29)を通じて通電かおこなわれる。
The flat member (41) is moved in translation by a drive mechanism (not shown), or the flat member (41) and the conductive member (4
Since the magnetic force induced by the permanent magnet (48) is generated in the gap 7), the magnetic fluid (29) is always It is in a state where it is attracted between the flat member (41) and the conductive member (47). The energizing power source (3) is a conductive member (47)
Since the flat member (41) is connected to the magnetic fluid (29), electricity is applied to the flat plate member (41) through the conductive magnetic fluid (29).

なお、以上に示した各実施例は、電磁誘導手段として永
久磁石を用いた例を示したが、永久磁石の代わりに電磁
石を用いた構成としてもよい。
Although each of the embodiments described above uses a permanent magnet as the electromagnetic induction means, it is also possible to use an electromagnet instead of the permanent magnet.

第4図は第2の発明の第1の実施例を示す構造図である
。図において、(51)はワイヤ電極、(52)は被加
工物、(53)は加工ノズル、(54a)は上部ワイヤ
ガイド、(54b)は下部ワイヤガイド、(55)は加
工用電源、(57)はワイヤ電極(51)に近接してワ
イヤ電極(51)と同軸に設けられたリング状導電性部
材、(29)はワイヤ電極(51)とリング状導電性部
材(57)との間に充填された導電性を有する磁性流体
である。(58)はリング状導電性部材(57)に取り
付けられたリング永久磁石である。
FIG. 4 is a structural diagram showing a first embodiment of the second invention. In the figure, (51) is a wire electrode, (52) is a workpiece, (53) is a processing nozzle, (54a) is an upper wire guide, (54b) is a lower wire guide, (55) is a processing power source, ( 57) is a ring-shaped conductive member provided close to and coaxially with the wire electrode (51), and (29) is between the wire electrode (51) and the ring-shaped conductive member (57). It is a magnetic fluid filled with conductivity. (58) is a ring permanent magnet attached to the ring-shaped conductive member (57).

次にこの実施例の動作について説明する。Next, the operation of this embodiment will be explained.

図において、ワイヤ電極(51)は加工中被加工物(5
2)に対して矢印Eに示すように並進方向に走行されつ
つ、加工が進行する。ワイヤ電極(51)とリング状導
電性部材(57)の間隙には、リング状永久磁石(58
)によって誘導された矢印Mて示す磁路による磁力か発
生しているため、ワイヤ電極(51)が走行しても磁性
流体(29)は常にワイヤ電極(51)とリング状導電
性部材(57)の間に吸着された状態となる。すなわち
、ワイヤ電極(51)を走行させても磁性流体(29)
か減少することはない。加工用電源(55)はリング状
導電性部材(57)に接続されているため、ワイヤ電極
(51)には導電性の磁性流体(29)を通して、加工
に必要な加工用電流か供給されて加工か進行する。
In the figure, the wire electrode (51) is connected to the workpiece (5) during machining.
The machining progresses while traveling in the translational direction as shown by arrow E with respect to 2). A ring-shaped permanent magnet (58
) is generated by the magnetic path shown by the arrow M, so even if the wire electrode (51) runs, the magnetic fluid (29) always connects the wire electrode (51) and the ring-shaped conductive member (57). ) will be in an adsorbed state. That is, even if the wire electrode (51) is run, the magnetic fluid (29)
or will not decrease. Since the machining power source (55) is connected to the ring-shaped conductive member (57), the machining current necessary for machining is supplied to the wire electrode (51) through the conductive magnetic fluid (29). Processing progresses.

なお、本実施例においてはリング状の導電性部材、永久
磁石を用いて同軸状にワイヤ電極を包囲して給電を行な
う例を示したか、片側からポールピースの導電性部材(
57a)及び永久磁石(58a)とを設け、該ポールピ
ース(57a)とワイヤ電極(51)の間に磁性流体(
29)を充填した、第5図のような構成(第2の発明の
第2の実施例)としてもよい。
In addition, in this example, an example is shown in which power is supplied by surrounding the wire electrode coaxially using a ring-shaped conductive member and a permanent magnet, or the conductive member of the pole piece (
57a) and a permanent magnet (58a), and a magnetic fluid (57a) is provided between the pole piece (57a) and the wire electrode (51).
29) as shown in FIG. 5 (second embodiment of the second invention).

第6図は第2の発明の第3の実施例として、電磁石を用
いたワイヤ放電加工装置の給電装置で、第4図及び第5
図と同一符号は、同−又は相当部分を示すものとする。
FIG. 6 shows a power supply device for a wire electrical discharge machining machine using an electromagnet as a third embodiment of the second invention, and FIG.
The same reference numerals as in the figures indicate the same or corresponding parts.

(60)はリング状導電性部材(57)の外周に設けら
れた電磁石コイル、(61)は電磁石コイル(60)に
直流電流を供給する直流電源、(62)は電磁石を0N
10FFするスイッチである。
(60) is an electromagnetic coil provided on the outer periphery of the ring-shaped conductive member (57), (61) is a DC power source that supplies DC current to the electromagnetic coil (60), and (62) is an electromagnet that connects the electromagnet to 0N.
This is a 10FF switch.

次にこの実施例の動作について説明する。Next, the operation of this embodiment will be explained.

ワイヤ電極(51)は加工中被加工物(52)に対して
、矢印Gに示すように並進方向に走行されつつ、加工か
進行する。加工中スイッチ(62)は閉じられ、電磁石
コイル(60)には直流電源(61)より電流か供給さ
れ、電磁石はONとなる。これによって、ワイヤ電極(
51)とリング状導電性部材(57)の間隙には電磁石
コイル(60)によって誘導された磁力か発生し、ワイ
ヤ電極(51)か走行しても磁性流体(29)は常にワ
イヤ電極(51)とリング状導電性部材〈57)の間に
吸着された状態となる。加工用電源(55)はリング状
導電性部材(57)に接続されており、ワイヤ電極(5
1)には導電性の磁性流体(29)を通じて加工に必要
な加工用電流が供給されて加工か進行する。
The wire electrode (51) is moved in the translational direction as shown by arrow G with respect to the workpiece (52) during machining as the machining progresses. During processing, the switch (62) is closed, current is supplied to the electromagnetic coil (60) from the DC power supply (61), and the electromagnet is turned on. This allows the wire electrode (
A magnetic force induced by the electromagnetic coil (60) is generated in the gap between the ring-shaped conductive member (51) and the wire electrode (51), and even if the wire electrode (51) is running, the magnetic fluid (29) is always connected to the wire electrode (51). ) and the ring-shaped conductive member <57). The processing power source (55) is connected to the ring-shaped conductive member (57), and the wire electrode (55) is connected to the ring-shaped conductive member (57).
1) is supplied with a machining current necessary for machining through a conductive magnetic fluid (29), and machining progresses.

なお、第2の発明の各実施例では、給電部をノズル内に
有した例としたか、給電部はノズルの外にあってもよい
。また、第2図中の矢印し、及び第5図中の矢印Nは磁
路を示す。
In each of the embodiments of the second invention, the power feeding section is provided inside the nozzle, or the power feeding section may be located outside the nozzle. Further, arrows in FIG. 2 and arrows N in FIG. 5 indicate magnetic paths.

その外、第1の発明はワイヤ放電加工装置の他、ワイヤ
溶接装置、連続メツキ装置等においても応用か可能とな
るのは言うまでもない。
In addition, it goes without saying that the first invention can be applied not only to wire electrical discharge machining equipment but also to wire welding equipment, continuous plating equipment, and the like.

[発明の効果] 以上のように、第1の発明によれば、可動部材との対向
部に磁力を発生させ、この磁力により磁性流体を捕捉し
つつ、磁性流体を介して可動部材に給電を行なう構成と
したため、導電性部材と可動部材か機械的に接触するこ
とかなくなり、機械的な摩耗が防止でき、また摩擦熱に
よる機械精度への影響や故障の発生も防止できる。さら
に、機械摩擦に起因する振動などによる導電性部材と可
動部材の接触か一時的に悪化することも防止できるため
、給電か一時的に遮断されたり、導電性部材と可動部材
との間に放電や電解が発生して、導電性部材・可動部材
が異常に消耗することもなくなる。従って、長寿命で、
きわめて安定な給電を行い得る給電装置が得られる。
[Effects of the Invention] As described above, according to the first invention, a magnetic force is generated in the portion facing the movable member, and while the magnetic fluid is captured by the magnetic force, power is supplied to the movable member via the magnetic fluid. This structure eliminates mechanical contact between the conductive member and the movable member, prevents mechanical wear, and prevents frictional heat from affecting mechanical accuracy and causing failure. Furthermore, it can also prevent temporary deterioration of contact between the conductive member and the movable member due to vibrations caused by mechanical friction, resulting in temporary interruption of power supply or discharge between the conductive member and the movable member. This also eliminates abnormal wear and tear on the conductive members and movable members due to electrolysis. Therefore, it has a long life and
A power supply device capable of extremely stable power supply is obtained.

第2の発明によれば、導電性部材とワイヤ電極が機械的
な接触ではなく、磁力で保持された流体を介して接続さ
れているので、流体を減少させることなく安定給電かで
きる。すなわち、ワイヤ電極の振動による接触不良で給
電が一時的に遮断されたり、導電性部材とワイヤ電極と
の間の放電や電解による、導電性部材及びワイヤ電極の
異常消耗かなくなる。また、給電部における放電か皆無
となることからワイヤ電極の断線頻度かきわめて低くな
り、最大加工速度か20%程度以上も向上するとともに
、ワイヤ電極と給電部か溶着することかなくなり、安定
した連続自動加工が可能となる。その他、ワイヤ電極の
変形も防止される、給電部の消耗もないため、半永久的
な使用か可能となり、きわめて安定な連続高速加工、連
続自動加工か行い得るワイヤ放電加工装置が得られる。
According to the second invention, since the conductive member and the wire electrode are connected not through mechanical contact but through the fluid held by magnetic force, stable power supply can be achieved without reducing the fluid. That is, power supply is not temporarily cut off due to poor contact due to vibration of the wire electrode, and abnormal wear and tear of the conductive member and the wire electrode due to discharge or electrolysis between the conductive member and the wire electrode is eliminated. In addition, since there is no electrical discharge at the power feeding part, the frequency of wire electrode breakage is extremely low, the maximum machining speed is increased by about 20% or more, and the wire electrode and power feeding part do not weld together, resulting in stable continuity. Automatic processing becomes possible. In addition, since deformation of the wire electrode is prevented and there is no consumption of the power supply section, semi-permanent use is possible, and a wire electrical discharge machining device capable of extremely stable continuous high-speed machining and continuous automatic machining is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の第1の実施例を示す構造図、第2
図は第1の発明の第2の実施例を示す構造図、第3図は
第1の発明の第3の実施例を示す構造図、第4図は第2
の発明の第1の実施例を示す構造図、第5図は第2の発
明の第2の実施例を示す構造図、第6図は第2の発明の
第3の実施例を示す構造図、第7図は従来の給電装置の
構造図、第8図はワイヤ放電加工装置の従来の給電装置
の構造図である。 (3)・・・通電用電源、(21)・・・回転部材、(
27)・・・導電性部材、(28)・・永久磁石、(2
9)・・・磁性流体、(31)・・回転シャフト部材、
(37)・・・リング状導電性部材、(38)・・・リ
ング状永久磁石、(41)・・・平板状部材、(47)
・・・導電性部材、(48)・・・永久磁石、(51)
・・・ワイヤ電極、(58)・・・加エノスル、(55
)・・・加工用電源、(57)・ リング状導電性部材
、(57a)・・・導電性部材、(58)・・・リング
状導電性部材、(58a)・・・永久磁石、(60)・
・・電磁コイル、(61)・・・直流電源、(62)・
・・スイッチ。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人  弁理士 佐々木 宗治 第1図 31、回転シ■フト音い材 37、  リング状導電・袖部林 38、りング状永久檄E 第2図 55、加工用電源 57.リング状導電性罪材 58、りング状永久@石 第4図 57a、4@性部澗 580、泳久甑石 第5図 印、電檄石コイル 61、直流電源 62、スイ・ツナ 第6図 第7図 第8図 手続補正書(自発)
Fig. 1 is a structural diagram showing a first embodiment of the first invention;
The figure is a structural diagram showing a second embodiment of the first invention, FIG. 3 is a structural diagram showing a third embodiment of the first invention, and FIG. 4 is a structural diagram showing a second embodiment of the first invention.
FIG. 5 is a structural diagram showing a second embodiment of the second invention; FIG. 6 is a structural diagram showing a third embodiment of the second invention. , FIG. 7 is a structural diagram of a conventional power supply device, and FIG. 8 is a structural diagram of a conventional power supply device for a wire electrical discharge machining apparatus. (3)...Electrifying power supply, (21)...Rotating member, (
27)... Conductive member, (28)... Permanent magnet, (2
9)...Magnetic fluid, (31)...Rotating shaft member,
(37)...Ring-shaped conductive member, (38)...Ring-shaped permanent magnet, (41)...Flat-shaped member, (47)
... Conductive member, (48) ... Permanent magnet, (51)
...wire electrode, (58) ...added enosul, (55
)... Power source for processing, (57) Ring-shaped conductive member, (57a)... Conductive member, (58)... Ring-shaped conductive member, (58a)... Permanent magnet, ( 60)・
... Electromagnetic coil, (61) ... DC power supply, (62) ...
··switch. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Patent Attorney Muneharu Sasaki Fig. 1 31, Rotating shaft sound material 37, Ring-shaped conductive sleeve part Hayashi 38, Ring-shaped permanent hole E Fig. 2 55, Processing power source 57. Ring-shaped conductive sin material 58, ring-shaped permanent @ stone No. 4 figure 57a, 4 @ gender section 580, Eikyu stone No. 5 mark, electric stone coil 61, DC power supply 62, Sui tuna No. 6 Figure 7 Figure 8 Procedural amendment (voluntary)

Claims (3)

【特許請求の範囲】[Claims] (1)可動部材に近接して設けられ電源部に接続された
導電性部材と、この導電性部材に磁界を加え前記可動部
材との対向部に磁力を発生させる電磁誘導手段と、前記
可動部材と導電性部材の対向部に充填された導電性の磁
性流体とから成ることを特徴とする可動部材への給電装
置。
(1) An electrically conductive member provided close to the movable member and connected to a power source, an electromagnetic induction means that applies a magnetic field to the electrically conductive member and generates magnetic force at a portion facing the movable member, and the movable member 1. A power supply device for a movable member, comprising: and a conductive magnetic fluid filled in an opposing portion of the conductive member.
(2)前記可動部材がワイヤ放電加工装置のワイヤ電極
であることを特徴とする請求項1記載の可動部材への給
電装置。
(2) The power supply device for a movable member according to claim 1, wherein the movable member is a wire electrode of a wire electrical discharge machining device.
(3)前記磁性流体として、強磁性微粒子を導電性流体
中に分散させた混和流体を用いたことを特徴とする請求
項1又は請求項2記載の可動部材への給電装置。
(3) The power supply device for a movable member according to claim 1 or 2, wherein a mixed fluid in which ferromagnetic fine particles are dispersed in a conductive fluid is used as the magnetic fluid.
JP33041190A 1990-11-30 1990-11-30 Device for supplying power to movable member Pending JPH04201122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33041190A JPH04201122A (en) 1990-11-30 1990-11-30 Device for supplying power to movable member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33041190A JPH04201122A (en) 1990-11-30 1990-11-30 Device for supplying power to movable member

Publications (1)

Publication Number Publication Date
JPH04201122A true JPH04201122A (en) 1992-07-22

Family

ID=18232303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33041190A Pending JPH04201122A (en) 1990-11-30 1990-11-30 Device for supplying power to movable member

Country Status (1)

Country Link
JP (1) JPH04201122A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534298A (en) * 2005-04-01 2008-08-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetic electrode guide for EDM
US7982157B2 (en) * 2004-12-15 2011-07-19 Robert Bosch Gmbh Method for machining a workpiece
CN104493321A (en) * 2014-11-17 2015-04-08 宁波聚益工具有限公司 Linear cutting machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982157B2 (en) * 2004-12-15 2011-07-19 Robert Bosch Gmbh Method for machining a workpiece
JP2008534298A (en) * 2005-04-01 2008-08-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetic electrode guide for EDM
CN104493321A (en) * 2014-11-17 2015-04-08 宁波聚益工具有限公司 Linear cutting machine

Similar Documents

Publication Publication Date Title
JP2005012987A (en) Vibrating motor
JPH04201122A (en) Device for supplying power to movable member
US4471197A (en) Method of and arrangement for preventing uncontrolled oscillations of electrode wire in electroerosion machining apparatus
JP3749784B2 (en) TIG welding equipment
RU2453407C2 (en) Method and device for electric contact welding of ferromagnetic powder
JP2003305616A (en) Method and device for electrochemical machining of dynamic pressure groove in dynamic pressure bearing
JP2555631B2 (en) Arc welding torch spatter removal device
KR20020089972A (en) Narrow Gap Welding Torch Built With Electromagnet
KR920006067A (en) Wire cut electric discharge machining device
RU2299795C1 (en) Apparatus for electric-contact welding-on of ferromagnetic powders
JPH01184839A (en) Manufacture of semiconductor device
JPS6111733B2 (en)
JP5202624B2 (en) EDM machine
JPH052829U (en) Conductor of wire electric discharge machine
SU1509205A1 (en) Device for spark-erosion alloying
RU2047252C1 (en) Brush gear
JPS5938444Y2 (en) Electric discharge coating processing equipment
JP2022127446A (en) Fluid polishing device and fluid polishing method
JP2572630Y2 (en) Consumable electrode welding torch
JPH07299662A (en) Wire electric discharge machining method and its device
JPH07106500B2 (en) Wire cut electrical discharge machine
SU841851A1 (en) Current leading tip
JP2006074912A (en) Motor
SU650765A1 (en) Device for electrochemical treatment
JP2002263840A (en) Arc welding method and arc welding machine