JPH0420098B2 - - Google Patents

Info

Publication number
JPH0420098B2
JPH0420098B2 JP57104190A JP10419082A JPH0420098B2 JP H0420098 B2 JPH0420098 B2 JP H0420098B2 JP 57104190 A JP57104190 A JP 57104190A JP 10419082 A JP10419082 A JP 10419082A JP H0420098 B2 JPH0420098 B2 JP H0420098B2
Authority
JP
Japan
Prior art keywords
film
steel
chain
nickel
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57104190A
Other languages
Japanese (ja)
Other versions
JPS58221045A (en
Inventor
Munenobu Honda
Kinji Tsuda
Morimasa Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elephant Chain Block Co Ltd
Original Assignee
Elephant Chain Block Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elephant Chain Block Co Ltd filed Critical Elephant Chain Block Co Ltd
Priority to JP10419082A priority Critical patent/JPS58221045A/en
Publication of JPS58221045A publication Critical patent/JPS58221045A/en
Publication of JPH0420098B2 publication Critical patent/JPH0420098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、リンクチエン、詳しくは主としてチ
エンブロツクに用いるリンクチエンに関する。 (従来の技術) 一般に、チエンブロツクに用いるリンクチエン
は、安全上引張強度は定格荷重の5倍以上に定め
られており、また、発錆が少なく、耐摩耗性に優
れていることが必要とされている。 所で、引張強度については、リンクチエンを構
成する鋼素材を例えばSMn21などのエスマンガ
ン鋼や、Ni−Cr−Mo鋼など靭性が良く引張破断
強度の優れたものを選択することにより、定格荷
重の5倍以上のものが得られるし、また、前記鋼
の表面にニツケルや亜鉛を電気メツキしたり、カ
ニゼンメツキ(化学メツキ)を施したりすること
により、塩水噴霧試験にも合格する発錆の少ない
ものが得られるのであるが、耐摩耗性については
問題があつた。 即ち、前記したメツキにより鋼表面に皮膜を形
成しても、耐摩耗性について殆ど効果がないので
あり、また、耐摩耗性を付与するために侵炭焼入
れしても、限界があり、ましてや、調質リンクチ
エンにおける耐摩耗性は侵炭リンクチエンに比較
して更に劣り、耐久性に問題があつた。 しかして、従来においては、前記リンクチエン
を用いる場合、潤滑油を用い、絶えず注油して耐
摩耗性の弱点を補填しているのである。 (発明が解決しようとする問題点) 所が、往々にして前記リンクチエンへの潤滑油
の注油を忘れるなどして潤滑不足が生じ、そのた
め目標の耐久期間が短縮されてしまう問題があ
り、オイルレスリンクチエンが古くから強く要望
されているのである。 本発明の目的は、侵炭リンクチエンは勿論、調
質リンクチエンであつても、鋼素材の組成を改変
せずに、換言すると市販の鋼を用いながら、耐摩
耗性が優れ注油の必要のないオイルレスリンクチ
エンを提供しようとするものである。 (問題点を解決するための手段) 本発明は、表面硬度570(HV)以上の硬さをも
ち、内部硬度36〜50(HRC)の硬さをもつ鋼の表
面に、膜厚が3μを越え、前記鋼の表面硬度より
柔かくクツシヨン性を有する銅皮膜から成る下地
皮膜を形成し、該下地皮膜の表面に、潤滑性及び
耐摩耗性を有するフツ素系高分子、弗化黒鉛、シ
リコンカーバイト、二酸化モリブデンなどの微粒
子を分散したニツケルメツキ液による電気メツキ
により、前記微粒子がニツケルと共に析出してい
る膜厚8μ〜35μの外層皮膜を形成したことを特徴
とするものである。 (作用) 上記構成により、リンクチエンにおいて要求さ
れる引張強度が充分得られる鋼素材を用いなが
ら、この鋼素材の表面に前記外層皮膜を膜厚が
3μを越える前記下地下皮膜によりよく馴染ませ
て強固に密着形成させると共に、前記鋼素材と外
層皮膜との間にクツシヨン性及び熱絶縁性を与
え、これによつてリンクチエンの苛酷な使用条件
下においても前記外層皮膜の剥離及び外層皮膜に
発生する摩擦熱の鋼表面への熱伝導を防止でき、
この結果、前記外層皮膜により耐食性を低下させ
ることなく潤滑性及び耐摩耗性を長期間に亘つて
著るしく向上させることができ、かつ、摺動抵抗
も最小限度に抑制し得るものである。 本発明リンクチエンに用いる鋼素材は、
SMn21やSMn21Cなどのマンガン鋼又は、
SEC1524、1527に規格されたマンガン鋼の単体若
しくはボロン鋼を、例えば0.005重量%添加した
もの、或いはNi−Cr−Mo鋼などで、表面硬度
570(HV)以上の硬さをもつものであつて、チエ
ン等級グレードT(8)(ISO規格3077−1980、
JISB8812−1981)以上のものが適当である。尚、
侵炭リンクチエンは、侵炭、焼入れ、焼もどしマ
ルテンサイト組織とし、調質リンクチエンは、焼
入れ、焼もどしマルテンサイト組織とするのであ
る。 また、前記微粒子としてフツ素系高分子及び弗
化黒鉛用いる場合には、該微粒子に対し強く吸着
するカチオン活性剤や非イオン活性剤或いはカチ
オン性を有する両性界面活性剤と共に、前記ニツ
ケルメツキ液に分散させるのである。 前記した活性剤を用いるのは、前記微粒子の表
面を正に帯電させ、電気メツキにより前記微粒子
をニツケルイオンと共に容易に析出させるためで
ある。尚、前記ポリテトラフルオロエチレンを用
いる場合には、C−F結合をもつ活性剤がよい。
また前記フツ素系高分子物などの微粒子の粒径
は、直径0.3μm〜3μmが適当である。 (実施例) 次に本発明リンクチエンの実施例を説明する。 実施例 1 鋼素材としてSMn21を用い、この素材を9.5φ
に線引き後、曲げ加工して溶接し、リンク状のチ
エン素子を形成する。 そして、このチエン素子を脱脂、酸洗いし、再
び脱脂した後、青化銅を用いた銅メツキ液で約5
分間電気メツキし、膜厚が3μを越え、5μ以下の
前記鋼の表面硬度より柔かくクツシヨン性を有す
る銅皮膜を形成するのであり、然る後ニツケルを
噴霧するフラツシユニツケルを約5分間行ない、
前記銅皮膜の外面にニツケル皮膜を形成するので
ある。 前記銅皮膜及びニツケル皮膜は、前記鋼素材の
表面に後記する皮膜を馴染ませ、その密着性を良
好にすると共にクツシヨン作用により皮膜の剥離
を防止するための下地皮膜である。 次に、硫酸ニツケル280g/、塩化ニツケル
45g/及びホウ酸40g/、サツカリン2g/
から成るニツケルメツキ液中に、予めポリテト
ラフルオロエチレンの微粒子と、カチオン活性剤
とを混合した混合物を50g/撹拌しつゝ徐々に
加えて、前記メツキ液を調製し、このメツキ液を
用いて、溶液40〜60℃、通常は50℃、電流密度
4A/dm2の条件下で、前記チエン素子にメツキ
を施し、前記微粒子をニツケルと共に析出してい
る膜厚8μ〜35μの外層皮膜を形成するのである。 前記メツキは、前記チエン素子を治具に支持
し、前記チエン素子を移動させながら行なうので
あつて、前記治具は前記メツキ液の液面から上げ
てもよいが、液面下に浸漬する方が、短時間で膜
厚8μ〜35μの前記外層皮膜を形成できる。 以上説明した実施例は、微粒子としてポリテト
ラフルオロエチレンの微粉末を用いたが、その他
弗化黒鉛、シリコンカーバイト、二硫化モリブデ
ンなどを用いることができる。 これらの微粒子も、前記ポリテトラフルオロエ
チレンで代表されるフツ素系高分子を用いる場合
と同様、50g/を用いるのであつて、膜厚も15
〜35μとするのである。尚、前記ニツケルメツキ
液として、スルフアミン酸ニツケルを用いること
もできる。 しかして、以上の如く形成するリンクチエンで
外層皮膜の膜厚を15μ、20μ、25μ、30μ及び35μと
したリンクチエンの耐摩耗性を調べてみたとこ
ろ、第1表の如き結果が得られた。
(Industrial Application Field) The present invention relates to a link chain, and more particularly, to a link chain mainly used for chain blocks. (Prior art) In general, link chains used in chain blocks are required to have a tensile strength of at least 5 times the rated load for safety reasons, and to have low rust and excellent wear resistance. has been done. By the way, regarding the tensile strength, the rated load can be improved by selecting the steel material that makes up the link chain, such as esmanganese steel such as SMn21, or Ni-Cr-Mo steel, which has good toughness and excellent tensile strength. Furthermore, by electroplating the surface of the steel with nickel or zinc or applying chemical plating, it can pass the salt spray test and cause less rust. However, there were problems with wear resistance. That is, even if a film is formed on the steel surface by the plating described above, it has almost no effect on wear resistance, and even if carburized and quenched to impart wear resistance, there is a limit, and even more The wear resistance of tempered link chains was even worse than that of carburized link chains, and there were problems with durability. Conventionally, when using the link chain, lubricating oil is used and constantly lubricated to compensate for the weak points in wear resistance. (Problems to be Solved by the Invention) However, there is a problem in that the link chain is often forgotten to be lubricated with lubricating oil, resulting in insufficient lubrication, which shortens the target durability period. Reslink chains have been strongly requested for a long time. The purpose of the present invention is to provide not only carburized link chains but also heat-treated link chains without changing the composition of the steel material, in other words, while using commercially available steel, it has excellent wear resistance and does not require lubrication. The aim is to provide an oil-free link chain. (Means for Solving the Problems) The present invention provides a film with a thickness of 3μ on the surface of steel having a surface hardness of 570 (HV) or more and an internal hardness of 36 to 50 (HRC). A base film consisting of a copper film having cushioning properties that is softer than the surface hardness of the steel is formed on the surface of the base film, and a fluorine-based polymer, fluorinated graphite, and silicone caramel which have lubricity and wear resistance are coated on the surface of the base film. It is characterized in that by electroplating with a nickel plating solution in which fine particles such as bits, molybdenum dioxide, etc. are dispersed, an outer layer film having a thickness of 8 to 35 micrometers in which the fine particles are deposited together with nickel is formed. (Function) With the above configuration, while using a steel material that can sufficiently obtain the tensile strength required for the link chain, the outer layer film can be applied to the surface of the steel material in a film thickness.
The underlying film, which has a thickness of over 3 μm, blends in well and forms a strong adhesion, and provides cushioning and thermal insulation properties between the steel material and the outer film, thereby making it possible to withstand the harsh conditions of use of the link chain. Also, peeling of the outer layer film and heat conduction of frictional heat generated in the outer layer film to the steel surface can be prevented,
As a result, the outer layer film can significantly improve lubricity and wear resistance over a long period of time without reducing corrosion resistance, and can also suppress sliding resistance to a minimum. The steel material used for the link chain of the present invention is
Manganese steel such as SMn21 and SMn21C or
Manganese steel standardized to SEC1524, 1527, or boron steel added with 0.005% by weight, or Ni-Cr-Mo steel, etc., with surface hardness.
570 (HV) or higher hardness, chain grade grade T(8) (ISO standard 3077-1980,
JISB8812-1981) or above are suitable. still,
The carburized link chain has a martensitic structure that has been carburized, quenched, and tempered, and the tempered link chain has a martensitic structure that has been quenched and tempered. In addition, when a fluorine-based polymer and fluorinated graphite are used as the fine particles, they are dispersed in the Nickelmetsuki liquid together with a cationic activator, a nonionic activator, or a cationic amphoteric surfactant that strongly adsorbs to the fine particles. Let it happen. The reason for using the above-mentioned activator is to positively charge the surface of the fine particles so that the fine particles can be easily deposited together with nickel ions by electroplating. In addition, when using the polytetrafluoroethylene mentioned above, an activator having a C-F bond is preferable.
Further, the particle size of the fine particles of the fluorine-based polymer is suitably 0.3 μm to 3 μm in diameter. (Example) Next, an example of the link chain of the present invention will be described. Example 1 SMn21 is used as the steel material, and this material is 9.5φ
After drawing the wire, it is bent and welded to form a link-shaped chain element. After degreasing, pickling, and degreasing again, this chain element is coated with a copper plating solution using copper cyanide for about 50 minutes.
Electroplating is performed for 5 minutes to form a copper film with a thickness of more than 3 μm, which is softer and has more cushioning properties than the surface hardness of the steel, which is less than 5 μm. After that, a flash unit is sprayed with nickel for about 5 minutes.
A nickel film is formed on the outer surface of the copper film. The copper coating and the nickel coating are base coatings that allow the coating described later to blend into the surface of the steel material, improve its adhesion, and prevent the coating from peeling off due to its cushioning action. Next, nickel sulfate 280g/, nickel chloride
45g/and boric acid 40g/, saccharin 2g/
The plating solution is prepared by gradually adding 50 g of a mixture of polytetrafluoroethylene fine particles and a cationic activator into the nickel plating solution with stirring, and using this plating solution, Solution 40-60℃, usually 50℃, current density
The chain element is plated under conditions of 4 A/dm 2 to form an outer layer film having a thickness of 8 to 35 microns in which the fine particles are precipitated together with nickel. The plating is carried out by supporting the chain element on a jig and moving the chain element. Although the jig may be raised above the level of the plating liquid, it is preferable to immerse it below the liquid level. However, the outer layer film having a thickness of 8 μ to 35 μ can be formed in a short time. In the embodiments described above, fine powder of polytetrafluoroethylene was used as the fine particles, but other materials such as graphite fluoride, silicon carbide, molybdenum disulfide, etc. can also be used. As in the case of using fluorine-based polymers such as polytetrafluoroethylene, these fine particles are used in an amount of 50 g/1, and the film thickness is also 15
It is set to ~35μ. Incidentally, nickel sulfamate can also be used as the nickel plating liquid. When we investigated the abrasion resistance of the link chains formed as described above with the outer film thicknesses of 15μ, 20μ, 25μ, 30μ, and 35μ, we obtained the results shown in Table 1. .

【表】 第1表において、回数は1.5屯仕様の電動チエ
ンブロツクを用い、該チエンブロツクに試料〜
のリンクチエンをセツトして、該チエンに定格
荷重1.5屯の荷物を吊下げ、巻上スピード8m/
分で、高さ1mに荷上げた後、原位置に荷下ろし
するのを1回とし、そしてチエンゲージを用いて
摩耗度を測定し、前記チエンゲージが通過する5
%摩耗までの回数を測定したもので、各試料〜
における回数は、それぞれ同一条件で製造した
テスト体と平均値である。 又、第1表に示したものは微粒子としてポリテ
トラフルオロエチレンの微粉末を用いた実施例に
よるものであるが、弗化黒鉛、シリコンカーバイ
ト及び二硫化モリブテンを用いた場合でも、同等
の効果が得られる。 第1表に示した試験結果の平均値をグラフ化す
ると第1図の如くなるのであつて、第1図から明
らかな通り外層皮膜の膜厚が8μより薄い場合に
は、充分な効果が得られないが、15μ以上とする
ことにより前記回数を飛躍的に増大できる。尚、
外層皮膜の膜厚を35μより厚くした場合では、そ
の耐摩耗性の向上が少ないばかりか、逆に剥離現
象が生ずる。従つて、外層皮膜の膜厚は15〜35μ
とするのである。因みに、従来のリンクチエンで
は、通常2500〜5000回で5%摩耗が生ずる。 又、膜厚25μとしたものを用いて、チエンに作
用する応力と回数との関係を調べてみたところ、
第2図の如き結果が得られた。 第2図に示したものは、通常10〜12Kg/mmの応
力範囲で用いる750Kg乃至1屯仕様のチエンブロ
ツクに対応したもので、チエンにかゝる応力が10
Kg/mmの場合は70000回、12Kg/mmでも50000回の
耐久度が得られるのである。 従つて、チエンにかゝる応力が10Kg/mmより少
ない場合、更にその耐久度を向上できることが明
白である。 尚、第2図において一点鎖線で示したものは、
ニツケルを電解メツキ又は無電解メツキし、膜厚
30μのニツケルメツキ膜を形成したもので、応力
が10〜12Kg/mmの範囲では、5000回以下で5%摩
耗が生ずる。 又、チエン素材としてステンレス鋼(svs304)
を用いた場合、耐久性に優れるが、メツキなしの
場合と同様、2000〜30000回以下で5%摩耗が生
ずる。 また、リン酸マンガン皮膜を50μ形成する場合
には、10〜12Kg/mmの範囲における5%摩耗の回
数を、10000〜20000回にできるが、耐食性に劣
る。 次に、本発明の耐摩耗性と、耐食性とを従来品
と比較すると、第2表の通りである。 第2表において◎は非常に良い、△はやゝ良
い、○は普通、△は悪い、×は非常に悪いを示し
ている。
[Table] In Table 1, an electric chain block with a 1.5 ton capacity is used, and the sample is
A link chain is set, a load with a rated load of 1.5 tons is suspended from the chain, and the hoisting speed is 8 m/
After lifting the load to a height of 1 m and unloading it to the original position, the degree of wear was measured using a chain gauge.
This is a measurement of the number of times until % wear, and each sample ~
The numbers in are the average values of test specimens manufactured under the same conditions. In addition, although the results shown in Table 1 are based on examples using fine powder of polytetrafluoroethylene as the fine particles, the same effect can be obtained even when graphite fluoride, silicon carbide, and molybdenum disulfide are used. is obtained. Figure 1 shows a graph of the average values of the test results shown in Table 1.As is clear from Figure 1, when the thickness of the outer layer film is less than 8μ, a sufficient effect can be obtained. However, by making it 15μ or more, the number of times can be increased dramatically. still,
When the thickness of the outer layer film is made thicker than 35 μm, not only the improvement in wear resistance is small but also a peeling phenomenon occurs. Therefore, the thickness of the outer layer film is 15 to 35μ.
That is to say. By the way, conventional link chains usually experience 5% wear after 2,500 to 5,000 cycles. In addition, when we investigated the relationship between the stress acting on the chain and the number of times using a film with a thickness of 25 μm, we found that
The results shown in Figure 2 were obtained. The one shown in Figure 2 corresponds to a 750Kg to 1 ton specification chain block that is normally used in a stress range of 10 to 12Kg/mm.
In the case of Kg/mm, the durability is 70,000 times, and even with 12Kg/mm, the durability is 50,000 times. Therefore, it is clear that if the stress applied to the chain is less than 10 kg/mm, its durability can be further improved. In addition, what is indicated by a dashed line in Fig. 2 is
Nickel is electroplated or electroless plated, and the film thickness is
A nickel plating film of 30 μm is formed, and if the stress is in the range of 10 to 12 kg/mm, 5% wear will occur after 5000 cycles or less. Also, stainless steel (svs304) is used as the chain material.
When using plating, it has excellent durability, but as with the case without plating, 5% wear occurs after 2000 to 30000 times or less. Further, when forming a 50μ manganese phosphate film, the number of times of 5% wear in the range of 10 to 12 kg/mm can be 10,000 to 20,000 times, but the corrosion resistance is poor. Next, Table 2 shows a comparison of the wear resistance and corrosion resistance of the present invention with those of conventional products. In Table 2, ◎ means very good, △ means very good, ○ means average, △ means bad, and × means very bad.

【表】【table】

【表】 尚、以上説明した実施例は、電動チエンブロツ
クのロードチエンとして用いるリンクチエンであ
つて、侵炭焼入れしたものであるが、手動チエン
ブロツクのロードチエンに用いる調質チエンでも
同様に適用できる。 (発明の効果) 以上の如く本発明は、表面硬度570(HV)以上
の硬さをもち、内部硬度36〜50(HRC)の硬さを
もつ鋼の表面に、膜厚が3μを越え、前記鋼の表
面硬度より柔かくクツシヨン性を有する銅皮膜か
ら成る下地皮膜を形成し、該下地皮膜の表面に、
潤滑性及び耐摩耗性を有するフツ素系高分子、弗
化黒鉛、シリコンカーバイト、二酸化モリブデン
などの微粒子を分散したニツケルメツキ液による
電気メツキにより、前記微粒子がニツケルと共に
析出している膜厚8μ〜35μの外層皮膜を形成した
ことを特徴とするものであるから、単にニツケル
メツキや亜鉛メツキなどにより皮膜を形成してい
た従来のリンクチエンに比較し、耐食性を低下さ
せることなく著るしくその耐摩耗性を向上でき、
かつ、摺動抵抗も最小限に抑制できるのであつ
て、特に耐摩耗性に問題があつた電動チエンブロ
ツクのロードチエンとして好適なものとすること
ができるのである。 しかも、前記リンクチエンの素材である鋼の表
面に、前記外層皮膜を形成するに際し、予め鋼の
表面に、膜厚が3μを越え、前記鋼の硬度より柔
かいクツシヨン性を有する銅皮膜から成る下地皮
膜を形成して、該下地皮膜の表面に前記外層皮膜
を形成するようにしたから、該外層皮膜を前記下
地皮膜を介して鋼の表面によく馴染ませて強固に
密着形成することができると同時に前記外層皮膜
にクツシヨン性を与えられるのであつて、この結
果、外層皮膜の膜厚を8μ〜35μと厚くしても剥離
の問題を少なくできるし、しかも、外層皮膜の表
面から前記鋼の表面への熱伝導を外層皮膜及び下
地皮膜の膜厚により少なくすることができ、これ
によりリンクチエンを使用する場合各リンクの連
結部において摩擦熱が生じても、この熱が鋼の表
面に伝導されて鋼表面の組成に悪影響を与えたり
するを防止できるのである。この結果、前記微粒
子がニツケルと共に析出している膜厚8μ〜35μの
外層皮膜により潤滑性及び耐摩耗性を長時間に亘
つて著るしく向上でき、かつ摺動抵抗を最小限に
抑制できるのである。
[Table] The examples described above are link chains that are carburized and quenched to be used as road chains for electric chain blocks, but they can also be applied to tempered chains used for road chains for manual chain blocks. can. (Effects of the Invention) As described above, the present invention has a surface hardness of 570 (HV) or more and an internal hardness of 36 to 50 (HRC) with a film thickness of more than 3μ. A base film made of a copper film having cushioning properties that is softer than the surface hardness of the steel is formed, and on the surface of the base film,
By electroplating with a nickel plating liquid in which fine particles of fluorine-based polymer, fluorinated graphite, silicon carbide, molybdenum dioxide, etc., which have lubricity and wear resistance are dispersed, a film thickness of 8 μm or more in which the fine particles are precipitated together with nickel is formed. Since it is characterized by the formation of a 35μ outer layer film, it has significantly improved wear resistance without reducing corrosion resistance, compared to conventional link chains that have a film formed simply by nickel plating or zinc plating. You can improve your sexuality,
In addition, sliding resistance can be minimized, making it particularly suitable as a road chain for electric chain blocks that have had problems with wear resistance. In addition, when forming the outer layer film on the surface of the steel that is the material of the link chain, a base layer is formed on the surface of the steel in advance, which is made of a copper film with a thickness exceeding 3 μm and having cushioning properties softer than the hardness of the steel. Since a film is formed and the outer layer film is formed on the surface of the base film, the outer layer film can be well adapted to the surface of the steel through the base film to form a strong adhesion. At the same time, cushioning properties can be imparted to the outer layer coating, and as a result, even if the outer layer coating is made as thick as 8μ to 35μ, the problem of peeling can be reduced. The heat conduction to the steel can be reduced by the thickness of the outer layer film and the base film, so even if frictional heat is generated at the joints of each link when using a link chain, this heat is not conducted to the steel surface. This prevents any adverse effects on the composition of the steel surface. As a result, the lubricity and wear resistance can be significantly improved over a long period of time, and the sliding resistance can be suppressed to a minimum due to the outer layer film with a thickness of 8μ to 35μ in which the fine particles are precipitated together with nickel. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明リンクチエンにおける皮膜の膜
厚と5%摩耗回数との関係を示すグラフ、第2図
はチエンに作用する応力と5%摩耗回数との関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the film thickness of the film and the number of times of 5% wear in the link chain of the present invention, and FIG. 2 is a graph showing the relationship between the stress acting on the chain and the number of times of 5% wear.

Claims (1)

【特許請求の範囲】[Claims] 1 表面硬度570(HV)以上の硬さをもち、内部
硬度36〜50(HRC)の硬さをもつ鋼の表面に、膜
厚が3μを越え、前記鋼の表面硬度より柔かくク
ツシヨン性を有する銅皮膜から成る下地皮膜を形
成し、該下地皮膜の表面に、潤滑性及び耐摩耗性
を有するフツ素系高分子、弗化黒鉛、シリコンカ
ーバイト、二酸化モリブデンなどの微粒子を分散
したニツケルメツキ液による電気メツキにより、
前記微粒子がニツケルと共に析出している膜厚
8μ〜35μの外層皮膜を形成したことを特徴とする
リンクチエン。
1. On the surface of steel with a surface hardness of 570 (HV) or more and an internal hardness of 36 to 50 (HRC), the film thickness exceeds 3 μ and has cushioning properties that are softer than the surface hardness of the steel. A base film consisting of a copper film is formed, and a nickel plating liquid is used in which fine particles of fluorine-based polymer, fluorinated graphite, silicon carbide, molybdenum dioxide, etc., which have lubricity and wear resistance are dispersed on the surface of the base film. By electroplating,
Film thickness where the fine particles are deposited together with nickel
A link chain characterized by forming an outer layer film of 8μ to 35μ.
JP10419082A 1982-06-16 1982-06-16 Link chain Granted JPS58221045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10419082A JPS58221045A (en) 1982-06-16 1982-06-16 Link chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10419082A JPS58221045A (en) 1982-06-16 1982-06-16 Link chain

Publications (2)

Publication Number Publication Date
JPS58221045A JPS58221045A (en) 1983-12-22
JPH0420098B2 true JPH0420098B2 (en) 1992-03-31

Family

ID=14374062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10419082A Granted JPS58221045A (en) 1982-06-16 1982-06-16 Link chain

Country Status (1)

Country Link
JP (1) JPS58221045A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503046A (en) * 2012-04-27 2013-12-18 Renold Plc Applying graphene coatings to iron or aluminium substrates
JP2014108839A (en) * 2012-11-30 2014-06-12 Kito Corp Chain block and load chain

Also Published As

Publication number Publication date
JPS58221045A (en) 1983-12-22

Similar Documents

Publication Publication Date Title
AU606804B2 (en) Lubricating resin coated steel strips having improved formability and corrosion resistance
US5525246A (en) Sliding-Bearing Material
US3787294A (en) Process for producing a solid lubricant self-supplying-type co-deposited metal film
US6305847B1 (en) Sliding bearing
CN109477170A (en) Unleaded aluminium material for sliding bearing with functional surface
US9029302B2 (en) Sliding member
US4411742A (en) Electrolytic codeposition of zinc and graphite and resulting product
US5783308A (en) Ceramic reinforced fluoropolymer
US20100096850A1 (en) Nanostructured alloy coated threaded metal surfaces and methods of producing same
WO1989003739A1 (en) Mechanically plated coatings containing lubricant particles
JPH05230670A (en) Multilayer composite sliding material excellent in seizing resistance
EP3910048A1 (en) Composition and threaded pipe joint provided with lubricant coating layer comprising said composition
US3644105A (en) Multilayer bearing
Oluyori et al. Performance evaluation effect of Nb 2 O 5 particulate on the microstructural, wear and anti-corrosion resistance of Zn–Nb 2 O 5 coatings on mild steel for marine application
JPH0420098B2 (en)
JP7553221B2 (en) Pipe threaded joint and method for manufacturing pipe threaded joint
US5632880A (en) Process for galvanic chromium plating
JP4332319B2 (en) Method of coating a workpiece with bearing metal and workpiece processed by this method
JP2826902B2 (en) Method for producing galvanized steel sheet with excellent press formability and chemical conversion properties
JPS58108299A (en) Aluminum alloy bearing
JP2003056566A (en) Slide bearing
US3132927A (en) Wear-resistant material
Bhalla et al. Friction and wear characteristics of electrodeposited copper composites
JP3295660B2 (en) Plain bearing
Fazel et al. Influence of Gr and MoS2 Particles on High Temperature Tribological Properties of Ni-SiC Composite Coating