JPH04200286A - Signal detecting method in brushless dc linear motor - Google Patents

Signal detecting method in brushless dc linear motor

Info

Publication number
JPH04200286A
JPH04200286A JP2333356A JP33335690A JPH04200286A JP H04200286 A JPH04200286 A JP H04200286A JP 2333356 A JP2333356 A JP 2333356A JP 33335690 A JP33335690 A JP 33335690A JP H04200286 A JPH04200286 A JP H04200286A
Authority
JP
Japan
Prior art keywords
flat coil
permanent magnet
magnetic flux
hall element
magnetic detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2333356A
Other languages
Japanese (ja)
Other versions
JP2622775B2 (en
Inventor
Takanari Fujii
藤井 隆也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2333356A priority Critical patent/JP2622775B2/en
Publication of JPH04200286A publication Critical patent/JPH04200286A/en
Application granted granted Critical
Publication of JP2622775B2 publication Critical patent/JP2622775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Linear Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To permit the correct detection of the position of a movable piece and a speed signal by a method wherein the row of magnetic detecting element in a series, in which the direction of the flux of the permanent magnet of an operating polarity coincides with the direction of flux generated in a flat coil itself by the conduction of electric current, is selected in accordance with the moving direction of a linear motor to detect it as the position of the movable piece or the speed signal. CONSTITUTION:When a permanent magnet 22 approaches a Hall element 16a in the non-conducting condition of a flat coil 11 upon moving a movable piece 20 into a direction F, for example, the vertical component of flux on the Hall element 16a becomes equal to the vertical component of flux generated from the permanent magnet 22 because the flat coil 11 itself is in the non-conducting condition and flux is not generated. Accordingly, the Hall element 16a is made ON. Next, when the permanent magnet 22 approaches the Hall element 16b under the non-conducting condition under non-conducting condition of the flat coil 11, the vertical component of the flux on the Hall element 16b becomes equal to the vertical component of the flux from the permanent magnet 22. Accordingly, the Hall element 16b is made ON.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ブラシレス直流リニアモータにおける信号検
出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a signal detection method in a brushless DC linear motor.

「従来の技術及びその問題点」 従来より、可動磁石型リニアモータにおいては、例えば
第4図(a)及び第4図(b)に示すように一対の磁気
検出素子40.41による磁石位置検出信号を外部に取
出し、これを図中破線で示すように移動する可動子42
の位置または速度信号として利用していた。この磁気検
出素子40.41は、固定子として一列に配した複数個
の扁平コイル44の前後の巻線部44aの中心にそれぞ
れ配置され、永久磁石45とヨーク46より構成された
可動子42の磁石位置を検出するものである。そして、
磁気検出素子40.41は、それにかかる垂直方向の磁
束密度が特定値BSより大きくなった場合に動作する。
"Prior art and its problems" Conventionally, in a moving magnet type linear motor, magnet position has been detected by a pair of magnetic detection elements 40, 41, as shown in FIGS. 4(a) and 4(b), for example. A movable element 42 that takes out a signal to the outside and moves it as shown by the broken line in the figure.
It was used as a position or speed signal. The magnetic detection elements 40, 41 are arranged at the centers of the front and rear winding portions 44a of a plurality of flat coils 44 arranged in a row as a stator, and are connected to a movable element 42 composed of a permanent magnet 45 and a yoke 46. It detects the magnet position. and,
The magnetic detection elements 40, 41 operate when the vertical magnetic flux density applied thereto becomes larger than a specific value BS.

しかしながら、扁平コイル44への電流を第5図(a)
で示すような1方向に通電した時の図示X線上では、扁
平コイル44自体に生ずる磁束(扁平コイル44に対し
て垂直方向)の方向と大きさを矢印で現すと第5図(b
)のような分布となり、その時、磁気検出素子40.4
1上における磁束の値はOとはならず、0となる点50
は磁気検出素子40.41上より外側に位置する。そし
て、扁平コイル44上で磁束がOとなる点を結んだ磁束
0ライン51は第5図(C)に二点鎖線で示すようにな
る。そこで、それぞれの磁気検出素子40゜41上に永
久磁石45がある場合について各磁気検出素子40.4
1にかかる垂直方向の磁束に着目すると、まず、第6図
(a)に示す永久磁石45の移動方向Fに対して前側の
磁気検出素子40上において、永久磁石45から生ずる
磁束と、F方向に推力を発生するために第4図(a)の
1.方向への通電により扁平コイル44自体に生ずる磁
束のそれぞれの垂直方向成分B、及びBcは同一方向で
あり、扁平コイル44への通電による磁気検出素子40
上の磁束の垂直方向成分BTはBMにBcが加わるため
、磁気検出素子40は安定に動作する。次に、第6図(
b)に示す永久磁石45の移動方向Fに対して後側の磁
気検出素子41上において、永久磁石45から生ずる磁
束と、F方向に推力を発生するために第4図(a)のI
2方向への通電により扁平コイル44自体に生ずる磁束
のそれぞれの垂直方向成分B、とBCが逆方向であり、
扁平コイル44への通電による磁気検出素子41上の磁
束の垂直方向成分B丁はlB丁1=lB、1−IBcl
となりB、が特定値Bsを下まわるため、磁気検出素子
41はチャタリングを発生する。従って、可動子42の
移動方向に対して後側の磁気検出素子41による磁石位
置検出信号がチャタリングの影響を受けるため、正確な
可動子42の位置または速度信号の検出が困難になると
いう問題点があった。
However, the current flowing to the flat coil 44 as shown in FIG. 5(a)
On the illustrated X-ray when current is applied in one direction as shown in FIG.
), and at that time, the magnetic detection element 40.4
The value of magnetic flux on 1 is not 0, but is 0 at point 50
is located on the outer side of the magnetic detection element 40.41. A zero magnetic flux line 51 connecting the points where the magnetic flux becomes O on the flat coil 44 is shown by a two-dot chain line in FIG. 5(C). Therefore, in the case where there is a permanent magnet 45 on each magnetic detection element 40.4, each magnetic detection element 40.4
1, first, on the magnetic detection element 40 on the front side with respect to the moving direction F of the permanent magnet 45 shown in FIG. 6(a), the magnetic flux generated from the permanent magnet 45 and the direction F 1 in Fig. 4(a) in order to generate thrust. The vertical components B and Bc of the magnetic flux generated in the flat coil 44 itself due to the energization in the direction are in the same direction, and the magnetic detection element 40 due to the energization to the flat coil 44 is in the same direction.
Since the vertical component BT of the magnetic flux above has Bc added to BM, the magnetic detection element 40 operates stably. Next, see Figure 6 (
On the magnetic detection element 41 on the rear side with respect to the moving direction F of the permanent magnet 45 shown in b), the magnetic flux generated from the permanent magnet 45 and the I of FIG.
The respective vertical components B and BC of the magnetic flux generated in the flat coil 44 itself due to energization in two directions are in opposite directions,
The vertical component B of the magnetic flux on the magnetic detection element 41 due to energization of the flat coil 44 is 1B1=1B, 1-IBcl
Since B is less than the specific value Bs, the magnetic detection element 41 generates chattering. Therefore, since the magnet position detection signal from the magnetic detection element 41 on the rear side with respect to the moving direction of the movable element 42 is affected by chattering, there is a problem in that it becomes difficult to accurately detect the position or speed signal of the movable element 42. was there.

「発明が解決しようとする課題」 本発明は上記の問題点を解決するためなされたものであ
り、その目的とするところは、正確な可動子の位置また
は速度信号の検出が可能となるブラシレス直流リニアモ
ータにおける信号検出方法を提供することにある。
"Problems to be Solved by the Invention" The present invention was made to solve the above problems, and its purpose is to provide a brushless direct current that enables accurate detection of the position or speed signal of the movable element. An object of the present invention is to provide a signal detection method in a linear motor.

「課題を解決するための手段」 前記目的を達成するための具体的手段は、第1図に示す
ように、ガイドレール(1)内の空間に長手方向に配列
した複数個の扁平コイル(11)、およびこれら扁平コ
イル(11)の空心部をはさんだ長手方向前後の巻線部
(lla、1lb)にそれぞれ配設された磁気検出素子
(16a、16b)を有する固定子(10)と、該固定
子(10)に対して表裏両面から永久磁石(22)を対
応させるように配置した可動子(20)とを備え、前記
扁平コイル(11)の永久磁石(22)に対する相対位
置を前記磁気検出素子(16a、16b)で検出して前
記可動子(20)が一定方向に移動するように前記扁平
コイル(11)への通電方向を切換える可動磁石型のブ
ラシレス直流リニアモータにおいて、前記磁気検出素子
(16a、16b)を前記複数個の扁平コイル(11)
の前側列と後側列の2系統に分離するとともに、移動方
向に応じて、動作する極性の永久磁石(22)の磁束と
通電により扁平コイル(11)自体に生ずる磁束の方向
が合致する系統の磁気検出素子列を選択し、その動作信
号を位置または速度信号として検出することを特徴とす
るブラシレス直流リニアモータにおける信号検出方法が
提供される。
"Means for Solving the Problems" As shown in FIG. ), and a stator (10) having magnetic detection elements (16a, 16b) respectively disposed in the front and rear winding parts (lla, 1lb) in the longitudinal direction sandwiching the air core part of these flat coils (11), A movable element (20) is provided with a permanent magnet (22) arranged so as to correspond to the stator (10) from both sides, and the relative position of the flat coil (11) with respect to the permanent magnet (22) is adjusted as described above. In a movable magnet type brushless DC linear motor that detects with magnetic detection elements (16a, 16b) and switches the direction of energization to the flat coil (11) so that the movable element (20) moves in a fixed direction, the magnetic The detection elements (16a, 16b) are connected to the plurality of flat coils (11).
The system is divided into two systems, a front row and a rear row, and the direction of the magnetic flux generated in the flat coil (11) itself by energization matches the magnetic flux of the operating polarity permanent magnet (22) depending on the direction of movement. A signal detection method for a brushless DC linear motor is provided, which is characterized by selecting a magnetic detection element array of 1 and detecting its operation signal as a position or speed signal.

「作用」 上記のように構成されたブラシレス直流リニアモータに
おける信号検出方法では、磁気検出素子(16a、16
b)を扁平コイル(11)の前側列と後側列の2系統に
分離し、可動子(20)の移動方向に応じて、動作する
極性の永久磁石(22)の磁束と扁平コイル(11)自
体に生ずる磁束の方向が合致する磁気検出素子列を選択
するので、選択された磁気検出素子列の動作信号を正確
な可動子(20)の位置または速度信号として検出する
ことができる。
"Operation" In the signal detection method in the brushless DC linear motor configured as described above, magnetic detection elements (16a, 16
b) is separated into two systems, the front row and the rear row of flat coils (11), and the magnetic flux of the permanent magnet (22) of the operating polarity and the flat coil (11 ) selects a magnetic sensing element array whose direction of magnetic flux generated coincides with the magnetic sensing element array, so the operation signal of the selected magnetic sensing element array can be detected as an accurate position or speed signal of the movable element (20).

「実施例」 本発明の実施例について図面を参照し説明する。"Example" Embodiments of the present invention will be described with reference to the drawings.

本発明のブラシレス直流リニアモータにおける信号検出
方法は可動磁石型リニアモータの正確な位置または速度
信号検出を可能とした点に主な特徴があり、可動磁石型
リニアモータは、第1図の断面図に示されるようにガイ
ドレール1の内部に配置されている固定子10と可動子
20とにより構成される。ガイドレール1はアルミ等の
型材であって、下面を開放した断面略n形に形成する。
The main feature of the signal detection method for a brushless DC linear motor of the present invention is that it enables accurate position or speed signal detection of a moving magnet type linear motor. As shown in FIG. 2, it is composed of a stator 10 and a movable element 20, which are arranged inside a guide rail 1. The guide rail 1 is a shaped material made of aluminum or the like, and is formed to have an approximately n-shaped cross section with an open bottom surface.

固定子10は、扁平コイル11をガイドレール1の長さ
に相当する個数縦列させる。各扁平コイル11はアルミ
等の型材からなる固定部材12゜13により密閉状に包
囲して保持し、上端に水平の回路基板14を設けて全体
形状をT字状に形成する。回路基板14上には、電子制
御回路15を各扁平コイル11毎に配置して第3図に示
すように所定の結線を行う。また各扁平コイル11には
それぞれ、磁気検出素子である一対のホール素子16a
、16bを第2図で示すように配設する。
The stator 10 has flat coils 11 arranged in tandem in a number corresponding to the length of the guide rail 1. Each flat coil 11 is hermetically surrounded and held by fixing members 12 and 13 made of a shaped material such as aluminum, and a horizontal circuit board 14 is provided at the upper end to form a T-shape overall. On the circuit board 14, an electronic control circuit 15 is arranged for each flat coil 11, and predetermined connections are made as shown in FIG. Each flat coil 11 is also provided with a pair of Hall elements 16a, which are magnetic detection elements.
, 16b are arranged as shown in FIG.

このように構成した固定子10は、前記ガイドレール1
の空間に装入し、扁平コイル11の縦列部をガイドレー
ル1の空間の中央部に位置させる。
The stator 10 configured in this way has the guide rail 1
The flat coil 11 is placed in the space of the guide rail 1, and the longitudinal part of the flat coil 11 is positioned in the center of the space of the guide rail 1.

可動子20は、断面略U字形に形成したヨークを可動子
ボデー21に兼用して、その相対向する内面に永久磁石
22.22を長手方向に複数個配置して磁気回路を形成
する。永久磁石22.22は互いに隣り合うもの及び向
かい合うものは逆極性とし、向かい合う永久磁石22.
22間に−様な磁界を形成する。可動子ボデー21の両
性側には、走行ローラ31を取り付けて可動子20の移
動を自在とする。このように構成した可動子20は、ガ
イドレール1に装入する。この時、ヨーク内面に相対向
して配置した永久磁石22.22の磁石ギャップ間に固
定子10の扁平コイル11が位置する。尚、可動子20
に配置される永久磁石22の個数は、必要な推力により
決定される。
The movable element 20 has a yoke formed in a substantially U-shape in cross section that also serves as a movable element body 21, and a plurality of permanent magnets 22, 22 are arranged in the longitudinal direction on the opposing inner surfaces thereof to form a magnetic circuit. The permanent magnets 22.22 that are adjacent to each other and those that face each other have opposite polarity, and the permanent magnets 22.22 that face each other have opposite polarities.
22 to form a -like magnetic field. Traveling rollers 31 are attached to both sides of the movable body 21 to allow the movable body 20 to move freely. The movable element 20 configured in this manner is inserted into the guide rail 1. At this time, the flat coil 11 of the stator 10 is located between the magnet gaps of the permanent magnets 22 and 22 that are arranged opposite to each other on the inner surface of the yoke. Furthermore, mover 20
The number of permanent magnets 22 arranged in is determined by the required thrust.

第2図は、扁平コイル11に配置される一対のホール素
子15a、16bの位置関係及び接続を示したものであ
る。
FIG. 2 shows the positional relationship and connection of a pair of Hall elements 15a and 16b arranged in the flat coil 11.

各扁平コイル11は、可動子20の移動方向Fに対して
前後のコイル巻線部11a、llbの中央に空心部を設
け、扁平コイル11相互間は所定の間隔を置いて配置さ
れる。ホール素子16a。
Each flat coil 11 has an air core section in the center of the front and rear coil winding parts 11a, llb with respect to the moving direction F of the movable element 20, and the flat coils 11 are arranged at a predetermined interval. Hall element 16a.

16bは、前後のコイル巻線部11a、llbの中心位
置に配置される。
16b is arranged at the center position of the front and rear coil winding parts 11a and llb.

そして、ホール素子16a、16bの検出信号は、外部
信号として前側のコイル巻線部11aに配置されたホー
ル素子16a列を接続して形成されるn系統と、後側の
コイル巻線部11bに配置されたホール素子16b列を
接続して形成されるm系統の2系統に分離する。
The detection signals of the Hall elements 16a and 16b are sent as external signals to n systems formed by connecting the rows of Hall elements 16a arranged in the front coil winding part 11a and to the rear coil winding part 11b. The arrays of Hall elements 16b arranged are separated into two systems of m systems formed by connecting them.

第3図は、本実施例の全体構成を示す概略ブロック図で
あり、各扁平コイル11のホール素子16a、16bに
は電子制御回路15が結線される。電子制御回路15は
扁平コイル通電電流方向制御用トランジスタブリッジ2
と方向選択スイッチ3,4から構成される。扁平コイル
通電電流方向制御用トランジスタブリッジ2は、4つの
トランジスタTr、、Tr2.Trs及びTr、で構成
される。方向選択スイッチ3,4は扁平コイル11へ通
電する電流方向を切替えるものであり、方向選択スイッ
チ3の接点3aと方向選択スイッチ4の接点4bはトラ
ンジスタTr、、Tr、に接続され、方向選択スイッチ
3の接点3bと方向選択スイッチ4の接点4aはトラン
ジスタTr2.Tr3に接続される。方向選択スイッチ
3の切片3c側はホール素子16aに接続され、方向選
択スイッチ4の切片4c側はホール素子16bに接続さ
れる。第2図に示すように形成されたn系統は方向選択
スイッチ3.4と連動する信号列切替スイッチ5の接点
5a側に接続され、m系統は信号列切替スイッチ5の接
点5b側に接続される。信号列切替スイッチ5の切片5
c側は周波数−速度変換器6に接続される。周波数−速
度変換器6の出力は目標値に応じて電流値コントローラ
7へ送られる。電流値コントローラ7は、パワー電源回
路(図示しない)から電源が供給され、目標値に応じて
送られる周波数−速度変換器6の出力に基づき扁平コイ
ル11への通電をコントロールする。
FIG. 3 is a schematic block diagram showing the overall configuration of this embodiment, and an electronic control circuit 15 is connected to the Hall elements 16a, 16b of each flat coil 11. The electronic control circuit 15 includes a transistor bridge 2 for controlling the direction of current flowing through the flat coil.
and direction selection switches 3 and 4. The flat coil current direction control transistor bridge 2 includes four transistors Tr, Tr2 . It is composed of Trs and Tr. The direction selection switches 3 and 4 are for switching the direction of current flowing to the flat coil 11, and the contact 3a of the direction selection switch 3 and the contact 4b of the direction selection switch 4 are connected to transistors Tr, Tr, and the direction selection switch The contact 3b of the direction selection switch 4 and the contact 4a of the direction selection switch 4 are connected to the transistor Tr2. Connected to Tr3. The section 3c side of the direction selection switch 3 is connected to the Hall element 16a, and the section 4c side of the direction selection switch 4 is connected to the Hall element 16b. The n system formed as shown in FIG. 2 is connected to the contact 5a side of the signal train changeover switch 5 which is interlocked with the direction selection switch 3.4, and the m system is connected to the contact 5b side of the signal train changeover switch 5. Ru. Intercept 5 of signal train selector switch 5
The c side is connected to a frequency-speed converter 6. The output of the frequency-speed converter 6 is sent to the current value controller 7 according to the target value. The current value controller 7 is supplied with power from a power supply circuit (not shown) and controls energization to the flat coil 11 based on the output of the frequency-speed converter 6 sent in accordance with a target value.

「作動」 上記の構成に基づき作動について説明する。"Operation" The operation will be explained based on the above configuration.

第2図において、図示F方向に可動子20を移動させる
時は、方向選択スイッチ3.4の接点3a、4a側が選
択され、同時に信号列切替スイッチ5は接点5aに切替
られる。そして、例えば扁平コイル11が非通電状態で
永久磁石22がホール素子16aに近づいた場合、ホー
ル素子16a上の磁束の垂直方向成分BTは、扁平コイ
ル11自体が非通電状態で磁束を発生しないため永久磁
石22から生ずる磁束の垂直方向成分BMと等しくなる
。そのため、BTは特定値Bsより大きくなりホール素
子16aがONする。そこで、コイル通電電流方向制御
用トランジスタブリッジ2のトランジスタTry、Tr
4がONされ、扁平コイル11にはパワー電源回路より
電流値コントローラ7を介して第2図の11方向へ通電
され、フレミングの左手の法則に基づき可動子20には
F方向の推力が発生する。扁平コイル11に通電される
と、扁平コイル11自体に磁束が発生するが、その磁束
のホール素子16a上の垂直方向成分Bcはホール素子
16a上の永久磁石22から生ずる磁束の垂直・方向成
分BMと同一方向であり、ホール素子16aは安定に動
作する。
In FIG. 2, when moving the movable element 20 in the direction F shown in the figure, the contacts 3a and 4a of the direction selection switch 3.4 are selected, and at the same time, the signal train changeover switch 5 is switched to the contact 5a. For example, when the flat coil 11 is in a de-energized state and the permanent magnet 22 approaches the Hall element 16a, the vertical component BT of the magnetic flux on the Hall element 16a is because the flat coil 11 itself does not generate magnetic flux in the de-energized state. It is equal to the vertical component BM of the magnetic flux generated from the permanent magnet 22. Therefore, BT becomes larger than the specific value Bs, and the Hall element 16a is turned on. Therefore, the transistors Try and Tr of the transistor bridge 2 for controlling the direction of current flowing through the coil are
4 is turned on, the flat coil 11 is energized from the power supply circuit through the current value controller 7 in the direction 11 in FIG. 2, and thrust in the F direction is generated in the mover 20 based on Fleming's left hand rule . When the flat coil 11 is energized, magnetic flux is generated in the flat coil 11 itself, and the vertical component Bc of the magnetic flux on the Hall element 16a is the vertical/directional component BM of the magnetic flux generated from the permanent magnet 22 on the Hall element 16a. The Hall element 16a operates stably.

次に、扁平コイル11が非通電状態で永久磁石22がホ
ール素子16bに近づいた場合、ホール素子16b上の
磁束の垂直方向成分8丁は、扁平コイル11自体が非通
電状態で磁束を発生しないため永久磁石22から生ずる
磁束の垂直方向成分BMと等しくなる。そのため、BT
は特定値Bsより大きくなりホール素子16bがONす
る。そこで、コイル通電電流方向制御用トランジスタブ
リッジ2のトランジスタTr2.Tr、がONされ、扁
平コイル11にはパワー電源回路より電流値コントロー
ラ7を介して今度は第2図の12方向へ通電される。従
って、可動子20には前述の場合と同様にF方向の推力
が発生し、可動子20が同方向に移動を続ける。扁平コ
イル11に通電されると、扁平コイル11自体に磁束が
発生し、その磁束のホール素子16b上の垂直方向成分
Bcはホール素子16b上の永久磁石22から生ずる磁
束の垂直方向成分BMと逆方向となり、ホール素子16
bはチャタリングを発生する。
Next, when the flat coil 11 is in a de-energized state and the permanent magnet 22 approaches the Hall element 16b, the eight vertical components of the magnetic flux on the Hall element 16b do not generate magnetic flux because the flat coil 11 itself is in a de-energized state. Therefore, it becomes equal to the vertical component BM of the magnetic flux generated from the permanent magnet 22. Therefore, B.T.
becomes larger than the specific value Bs, and the Hall element 16b turns on. Therefore, the transistor Tr2 of the transistor bridge 2 for controlling the coil current direction. Tr is turned on, and current is applied to the flat coil 11 from the power supply circuit via the current value controller 7 in the 12 directions shown in FIG. Therefore, a thrust force in the F direction is generated in the movable element 20 as in the case described above, and the movable element 20 continues to move in the same direction. When the flat coil 11 is energized, magnetic flux is generated in the flat coil 11 itself, and the vertical component Bc of the magnetic flux on the Hall element 16b is opposite to the vertical component BM of the magnetic flux generated from the permanent magnet 22 on the Hall element 16b. direction, and the Hall element 16
b causes chattering.

この場合、信号列切替スイッチ5は接点5aに切替られ
ているため動作が安定なn系統のホール素子16a列の
動作信号を速度信号として検出し、周波数−速度変換器
6を介して可動子20の速度が電流値コントローラ7に
フィードバックされる。
In this case, since the signal train selector switch 5 is switched to the contact 5a, the operation signal of the n-system Hall element 16a row, which is stable in operation, is detected as a speed signal, and is transmitted to the movable element 20 via the frequency-speed converter 6. The speed of is fed back to the current value controller 7.

逆に、可動子20をF方向と反対方向に移動させる場合
は、方向選択スイッチ3.4の接点3b。
Conversely, when moving the movable element 20 in the direction opposite to the F direction, the contact 3b of the direction selection switch 3.4.

4b側が選択され、同時に信号列切替スイッチ5は接点
5bに切替られる。
4b side is selected, and at the same time, the signal train changeover switch 5 is switched to contact 5b.

よって、可動子20がF方向に移動する場合の速度信号
としては常にn系統側で検出され、F方向と反対方向に
移動する場合は、常にm系統側で検出されることにより
、可動子20の移動速度が目標値に応じて正確にコント
ロールされる。
Therefore, when the mover 20 moves in the F direction, the speed signal is always detected on the n-system side, and when the mover 20 moves in the opposite direction to the F direction, it is always detected on the m-system side. The movement speed of is accurately controlled according to the target value.

「発明の効果」 本発明は、上記の構成を有し、磁気検出素子を複数個の
扁平コイルの前側列と後側列の2系統に分離するととも
に、移動方向に応じて、動作する極性の永久磁石の磁束
と通電により扁平コイル自体に生ずる磁束の方向が合致
する系統の磁気検出素子列を選択し、その動作信号を可
動子の位置または速度信号として検出するものであるか
ら、チャタリングの無い可動子の位置または速度信号が
得られるため、正確な可動子の位置または速度信号の検
出が可能となるという優れた効果がある。
"Effects of the Invention" The present invention has the above configuration, separates the magnetic detection element into two systems of the front row and the rear row of a plurality of flat coils, and adjusts the operating polarity according to the direction of movement. The system selects a magnetic detection element array whose direction matches the magnetic flux of the permanent magnet and the magnetic flux generated in the flat coil itself due to energization, and detects the operation signal as a position or speed signal of the mover, so there is no chattering. Since the position or velocity signal of the movable element can be obtained, there is an excellent effect that the accurate position or velocity signal of the movable element can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の実施例を示し、第1図は可
動磁石型リニアモータの断面図、第2図はホール素子位
置関係及びその検出信号を外部信号として取出す場合の
接続を示した説明図、第3図は全体構成の概略ブロック
図、第4図(a)。 (b)は従来方法の説明図、第5図(a)〜(C)は扁
平コイル自体に生じる磁束を示した説明図、第6図は永
久磁石から生ずる磁束と扁平コイル自体に生ずる磁束の
関係を示した説明図である。 190.ガイドレール、 10.、、固定子、 11゜
、扁平コイル、 lla、llb、、巻線部、16a、
16b、、、ホール素子(磁気検出素子)、20、、、
可動子、 22,22.、、永久磁石。 第1図 第4図(a) 第5図 第6図(a) 第6図(b) 4コ
Figures 1 to 3 show embodiments of the present invention, with Figure 1 being a sectional view of a movable magnet type linear motor, and Figure 2 being a diagram showing the positional relationship of the Hall elements and the connections for extracting their detection signals as external signals. The explanatory diagram shown in FIG. 3 is a schematic block diagram of the overall configuration, and FIG. 4(a). (b) is an explanatory diagram of the conventional method, Figures 5 (a) to (C) are explanatory diagrams showing the magnetic flux generated in the flat coil itself, and Figure 6 is an explanatory diagram of the magnetic flux generated from the permanent magnet and the magnetic flux generated in the flat coil itself. It is an explanatory diagram showing a relationship. 190. Guide rail, 10. ,, Stator, 11°, Flat coil, lla, llb, , Winding part, 16a,
16b, Hall element (magnetic detection element), 20,...
Mover, 22, 22. ,,permanent magnet. Figure 1 Figure 4 (a) Figure 5 Figure 6 (a) Figure 6 (b) 4 pieces

Claims (1)

【特許請求の範囲】 ガイドレール内の空間に長手方向に配列した複数個の扁
平コイル、およびこれら扁平コイルの空心部をはさんだ
前後の巻線部にそれぞれ配設された磁気検出素子を有す
る固定子と、 該固定子に対して表裏両面から永久磁石を対応させるよ
うに配置した可動子とを備え、 前記扁平コイルの永久磁石に対する相対位置を前記磁気
検出素子で検出して前記可動子が一定方向に移動するよ
うに前記扁平コイルへの通電方向を切換える可動磁石型
のブラシレス直流リニアモータにおいて、 前記磁気検出素子を前記複数個の扁平コイルの前側列と
後側列の2系統に分離するとともに、移動方向に応じて
、動作する極性の永久磁石の磁束と通電により扁平コイ
ル自体に生ずる磁束の方向が合致する系統の磁気検出素
子列を選択し、その動作信号を可動子の位置または速度
信号として検出することを特徴とするブラシレス直流リ
ニアモータにおける信号検出方法。
[Scope of Claims] A fixing device having a plurality of flat coils arranged in the longitudinal direction in a space within a guide rail, and magnetic detection elements respectively disposed in the front and rear winding portions sandwiching the air core portions of these flat coils. and a movable element arranged so that permanent magnets correspond to the front and back sides of the stator, and the magnetic detection element detects the relative position of the flat coil to the permanent magnet, and the movable element is fixed at a constant position. In the movable magnet type brushless DC linear motor that switches the direction of energization to the flat coil so as to move in the direction, the magnetic detection element is separated into two systems, a front row and a rear row of the plurality of flat coils, and , depending on the direction of movement, select a magnetic detection element array whose polarity matches the magnetic flux of the operating polarity of the permanent magnet and the direction of the magnetic flux generated in the flat coil itself due to energization, and convert the operating signal to the position or speed signal of the mover. A signal detection method in a brushless DC linear motor characterized by detecting as follows.
JP2333356A 1990-11-29 1990-11-29 Signal detection method for brushless DC linear motor Expired - Fee Related JP2622775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333356A JP2622775B2 (en) 1990-11-29 1990-11-29 Signal detection method for brushless DC linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333356A JP2622775B2 (en) 1990-11-29 1990-11-29 Signal detection method for brushless DC linear motor

Publications (2)

Publication Number Publication Date
JPH04200286A true JPH04200286A (en) 1992-07-21
JP2622775B2 JP2622775B2 (en) 1997-06-18

Family

ID=18265198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333356A Expired - Fee Related JP2622775B2 (en) 1990-11-29 1990-11-29 Signal detection method for brushless DC linear motor

Country Status (1)

Country Link
JP (1) JP2622775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511060A (en) * 2020-08-09 2021-03-16 昆明理工大学 Hidden pole type permanent magnet brushless hub motor position estimation calibration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511060A (en) * 2020-08-09 2021-03-16 昆明理工大学 Hidden pole type permanent magnet brushless hub motor position estimation calibration method

Also Published As

Publication number Publication date
JP2622775B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US5841250A (en) Stage apparatus and linear motor, and exposure apparatus and device production method using the stage apparatus
EP0091685B1 (en) Electromagnetic actuators
US5955798A (en) Linear motor
JPH08502880A (en) Electromechanical transducer for generating linear motion
US5075583A (en) Brushless DC linear motor
US6274953B1 (en) System for preventing malfunction of a switching circuit for linear motor
EP0395116B1 (en) Magnetic bearing device
JPH07298599A (en) Variable-magnet dc linear motor
JPH04200286A (en) Signal detecting method in brushless dc linear motor
JPS55106074A (en) Moving-coil type linear motor
JP3387324B2 (en) Position detection device for movable magnet type linear motor
JPH08168232A (en) Linear encoder device
JP2781912B2 (en) Linear motor
JPS6225861A (en) Linear motor
JP2824785B2 (en) Linear motor
JPS61288770A (en) Linear motor
JPH0471359A (en) Moving magnet type dc brushless linear motor
JPH0139117Y2 (en)
JP2534062Y2 (en) Brushless DC linear motor
JPS6281966A (en) Linear dc motor
JPH06141526A (en) Moving magnet type linear dc motor
JPH0623197Y2 (en) Constant velocity moving coil type linear motor
JPS614455A (en) Linear motor
JP2617323B2 (en) Movable magnet type linear DC brushless motor with multiple movers
JP3145381B2 (en) Magnetic levitation device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees