JPH0420008B2 - - Google Patents

Info

Publication number
JPH0420008B2
JPH0420008B2 JP58139828A JP13982883A JPH0420008B2 JP H0420008 B2 JPH0420008 B2 JP H0420008B2 JP 58139828 A JP58139828 A JP 58139828A JP 13982883 A JP13982883 A JP 13982883A JP H0420008 B2 JPH0420008 B2 JP H0420008B2
Authority
JP
Japan
Prior art keywords
epichlorohydrin
amount
hydrolyzable chlorine
aprotic polar
polar solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58139828A
Other languages
Japanese (ja)
Other versions
JPS6031517A (en
Inventor
Koreatsu Ito
Yoshiki Toyoshima
Tsutomu Takahashi
Noriaki Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58139828A priority Critical patent/JPS6031517A/en
Publication of JPS6031517A publication Critical patent/JPS6031517A/en
Publication of JPH0420008B2 publication Critical patent/JPH0420008B2/ja
Priority to JP5014787A priority patent/JP2555853B2/en
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に電気および電子産業用に好適に
用いられるエポキシ樹脂の製造法に関する。 電気および電子材料として使用されるエポキシ
樹脂では、加水分解性塩素の含有量の少ないこと
が不可欠であり、このことは業界で広く認知され
ている。すなわち、加水分解性塩素は、電気絶縁
性の低下、リード線の腐蝕等の悪影響を及ぼす。
特に、半導体を使用する集積回路の封入用原料と
してのエポキシ樹脂では、加水分解性塩素の含有
量の少ないことが必須である。例えば、集積度64
キロビツト以上の集積回路では、加水分解性塩素
の含有量が600ppm以下であることが要求される。 加水分解性塩素を低減するために、さまざまな
製造方法が提案されている。例えば、特公昭53−
36000号には、ビスフエノールAとエピクロルヒ
ドリンとを溶解した溶液に水酸化ナトリウム水溶
液を徐々に供給しビスフエノールAのグリシジル
エーテルを製造する方法において、減圧・低温の
条件で水をエピクロルヒドリンと共沸させて除去
し、留出するエピクロルヒドリンを反応系中に循
環する方法が記載されている。該特許の実施例で
は加水分解性塩素は1200〜4500ppmであり充分な
改良効果は得られていない。特開昭54−90400号、
特開昭54−13596号および米国特許3121727号に
は、多価フエノールのグリシジルエーテルを製造
する方法において、多価フエノールとエピハロヒ
ドリンとの溶液にアルコールを添加する方法が記
載されている。該特許等の実施例では、特開昭54
−90400号の場合、ビスフエノールAとエピクロ
ルヒドリンとから得られるビスフエノールAのグ
リシジルエーテルの加水分解性塩素は約1000ppm
であり全塩素含有量は1500〜3500ppmであり、特
開昭54−13596の場合、フエノールノボラツクと
エピクロルヒドリンとから得られるフエノールノ
ボラツクのグリシジルエーテルの加水分解性塩素
は1500ppmであるなど充分な改良効果は得られて
いない。また該特許等では反応系内からの水分除
去はしなくてもよいと記載されているが、エピク
ロルヒドリンは水と共存するだけでも分解するこ
とは公知であり、工業上不利益である。 本発明者等は加水分解性塩素の含有量の少ない
エポキシ樹脂を得るべく鋭意研究した結果、エポ
キシ化反応の際特定の溶媒を用いることによりか
かる目的が達成されることを見いだし本発明に至
つた。 すなわち、本発明は、一価又は多価のフエノー
ル類とエピクロルヒドリンとをアルカリ金属水酸
化物および非プロトン性極性溶媒の存在下で反応
させることを特徴とするエポキシ樹脂製造法であ
る。本発明により、加水分解性塩素の含有量の少
ないエポキシ樹脂の製造が可能となつた。 本発明に使用される一価又は多価フエノール類
は、ハロゲン、アルキル基、アリル基、アルケニ
ル基、アリール基或いはアラルキル基で置換され
た或いは無置換のフエノール単位より成る一価又
は多価フエノール類であり、具体的にはフエノー
ル、オルトクレゾール、メタクレゾール、パラク
レゾール、ジフエノールメタン(ビスフエノール
F)、ジフエノールエタン、ジフエノールプロパ
ン(ビスフエノールA)、四臭化ビスフエノール
A、1,1―ビス―(4―ヒドロキシフエニル)
―1―フエニルエタン、1,1―ビス(4―ヒド
ロキシフエニル)―1,1―ジメチルメタン、フ
エノールノボラツク、臭素化フエノールノボラツ
ク、クレゾールノボラツク、臭素化クレゾールノ
ボラツク、レゾルシンノボラツク、臭素化レゾル
シンノボラツク、レゾルシン、ヒドロキノン、メ
チルレゾルシン、四塩化ビスフエノールAなどが
挙げられるが、これらに限定されるものではな
い。 本発明に使用されるアルカリ金属水酸化物は、
具体的には水酸化ナトリウム、水酸化カリウムな
どであるが、これらに限定されるものではない。
アルカリ金属水酸化物の使用量は、フエノール型
水酸基1モルに対し当モル程度が好ましい。アル
カリ金属水酸化物の使用量が少ないと、副生する
ゲル量が少なく製造上有利であるが、加水分解性
塩素が残存する。アルカリ金属水酸化物の使用量
が多いとゲル量が増加するので製造上不利益とな
る。 本発明に使用される非プロトン性極性溶媒は、
具体的にはジメチルスルホキシド、ジメチルスル
ホン、ジメチルホルムアミド、ジメチルアセトア
ミド、テトラメチル尿素、ヘキサメチルホスホル
アミドなどであるがこれらに限定されるものでは
ない。これらの非プロトン性極性溶媒の使用量
は、エピクロルヒドリン100重量部当り5〜50重
量部が好ましい。使用量が5重量部未満では、本
発明の効果があまり顕著ではない。使用量が多い
と分子間反応が進行しエポキシ当量(エポキシ基
1モル当りの分子量)が増加し、フエノール類の
グリシジルエーテルの品質が低下する。このこと
を考えると、50重量部以下が好ましい。 本発明で使用されるエピクロルヒドリンの使用
量はフエノール型水酸基1モルに対し2・5モル
〜20モルが好ましく、より好ましくは、4モル〜
10モルである。このことは、エピクロルヒドリン
の使用量が少ないと、分子間反応により高分子量
物の生成によりエポキシ樹脂の溶融粘度上昇等の
品質低下が起り、さらにゲル生成量が増加するな
ど工業的に不利益となるためであり、またエピク
ロルヒドリンの使用量が多いと反応混合物の容積
が増加するので、生産性が低下する等の工業的な
不利益が生じるためである。 本発明において、フエノール類のエポキシ化反
応は溶媒として非プロトン性極性溶媒を使用する
点を除き公知の方法により行うことができるが例
えば次のようにして行うことができる。まず、一
価又は多価フエノール類とエピクロルヒドリンを
先に記述の割合で混合する。固体のフエノール類
もエピクロルヒドリンに溶解して均一の溶液とな
る。ここにさらに非プロトン性極性溶媒を加えて
混合する。撹拌混合しながら次にアルカリ金属水
酸化物を加えて反応を行う。この反応は、常圧又
は減圧下で温度は常圧下は約100〜110℃、減圧下
では圧力にもよるが約50℃〜80℃に保持しつつ内
容液を共沸させる。揮発分は凝縮せしめて凝縮液
は油―水分離し、油分は反応系に戻すとの方法で
脱水を行う。アルカリ金属水酸化物の添加は、均
一に反応させるため2〜7時間かけて少量づつ分
割添加又は連続添加させる。一時的に入れると局
部的に反応が進みゲルが生成して好ましくない。
反応終了後はまず、蒸留により未反応のエピクロ
ルヒドリンを除去し次にメチル・イソブチルケト
ンなどのケトン類又はトルエンの様な芳香族炭化
水素溶媒で溶解し、不溶のアルカリ金属の塩を
別する。さらに水洗して非プロトン極性溶媒を除
去し、蒸溜により溶媒を除去してエポキシ樹脂を
得る。フエノール類のグリシジルエーテルを得
る。 本発明で云うエポキシ当量とは、エポキシ基1
モル当りの分子量で定義される。また加水分解性
塩素とは、エポキシ樹脂をジオキサンに溶解し、
水酸化カリウムのアルコール溶液を加え還流状態
で30分間加熱したときに脱離する塩素イオンを硝
酸銀溶液で逆滴定で定量し、該化合物中の塩素原
子の重量百分率で表わしたものである。以下に、
本発明を実施例をもつて詳細に説明するか、これ
らに限定されるものではない。 実施例1〜5および比較例1〜2 温度計、アルカリ金属水酸化物水溶液を連続添
加するための滴下ロート、撹拌翼、および反応系
中から蒸発する水分、エピクロルヒドリンを冷却
液化し有機層と水層をその比重差で分離して有機
層は反応系内にもどし水層は除去する冷却管付分
離管を有する容量1のバツフル付セパラブルフ
ラスコを用い、第1表に示す種類、量のフエノー
ル類とエピクロルヒドリンを反応させた。該反応
は、第1表に示す量の水酸化ナトリウム水溶液を
5時間で連続的に添加しながら、第1表に示す種
類、量の非プロトン性極性溶媒の存在下で行つ
た。 反応終了後は、未反応のエピクロルヒドリンを
減圧蒸留により除去し、このとき得られた副生塩
と非プロトン性極性溶媒を含むフエノール類のグ
リシジルエーテルをメチルイソブチルケトンに溶
解し、副生塩と非プロトン性極性溶媒を水洗によ
り除去した。さらに、減圧蒸留によりメチルイソ
ブチルケトンを除去してエポキシ樹脂を得た。こ
のようにして得られたエポキシ樹脂の加水分解性
塩素量およびエポキシ当量を第1表に示す。 非プロトン性極性溶媒を使用した実施例1にお
ける加水分解性塩素量は330ppmであるのに対し、
非プロトン性極性溶媒を使用しない比較例1にお
ける加水解性塩素量は、650ppmとなつており、
非プロトン性極性溶媒使用による加水分解性塩素
低減効果は顕著である。
The present invention relates to a method for producing an epoxy resin that is particularly suitable for use in the electrical and electronic industries. In epoxy resins used as electrical and electronic materials, a low content of hydrolyzable chlorine is essential, and this is widely recognized in the industry. That is, hydrolyzable chlorine has adverse effects such as a decrease in electrical insulation and corrosion of lead wires.
In particular, in epoxy resins used as raw materials for encapsulating integrated circuits using semiconductors, it is essential that the content of hydrolyzable chlorine be low. For example, density 64
For integrated circuits larger than kilobits, the content of hydrolyzable chlorine is required to be less than 600 ppm. Various manufacturing methods have been proposed to reduce hydrolyzable chlorine. For example, the
No. 36000 describes a method for producing glycidyl ether of bisphenol A by gradually supplying an aqueous sodium hydroxide solution to a solution of bisphenol A and epichlorohydrin, in which water is azeotroped with epichlorohydrin under reduced pressure and low temperature conditions. A method is described in which the epichlorohydrin removed by distillation is recycled into the reaction system. In the examples of this patent, the hydrolyzable chlorine content is 1200 to 4500 ppm, and a sufficient improvement effect is not obtained. Japanese Patent Publication No. 54-90400,
JP-A-54-13596 and US Pat. No. 3,121,727 describe a method for producing glycidyl ether of polyhydric phenol, in which alcohol is added to a solution of polyhydric phenol and epihalohydrin. In the example of the patent, etc.,
-90400, the hydrolyzable chlorine of glycidyl ether of bisphenol A obtained from bisphenol A and epichlorohydrin is approximately 1000 ppm.
The total chlorine content is 1500 to 3500 ppm, and in the case of JP-A-13596, the hydrolyzable chlorine of the glycidyl ether of phenol novolac obtained from phenol novolac and epichlorohydrin is 1500 ppm, which is a sufficient improvement. No effect has been obtained. Further, although the patent and the like state that it is not necessary to remove water from the reaction system, it is known that epichlorohydrin decomposes even when it coexists with water, which is industrially disadvantageous. As a result of intensive research to obtain an epoxy resin with a low content of hydrolyzable chlorine, the present inventors discovered that this objective could be achieved by using a specific solvent during the epoxidation reaction, leading to the present invention. . That is, the present invention is an epoxy resin production method characterized by reacting monovalent or polyvalent phenols with epichlorohydrin in the presence of an alkali metal hydroxide and an aprotic polar solvent. The present invention has made it possible to produce an epoxy resin with a low content of hydrolyzable chlorine. The monovalent or polyvalent phenols used in the present invention are monovalent or polyvalent phenols consisting of phenol units substituted or unsubstituted with halogen, alkyl group, allyl group, alkenyl group, aryl group, or aralkyl group. Specifically, phenol, orthocresol, metacresol, para-cresol, diphenolmethane (bisphenol F), diphenolethane, diphenolpropane (bisphenol A), bisphenol tetrabromide A, 1,1 -Bis-(4-hydroxyphenyl)
-1-phenylethane, 1,1-bis(4-hydroxyphenyl)-1,1-dimethylmethane, phenol novolak, brominated phenol novolak, cresol novolak, brominated cresol novolak, resorcinol novolak, bromine Examples include, but are not limited to, resorcinol novolak, resorcinol, hydroquinone, methylresorcinol, bisphenol A tetrachloride, and the like. The alkali metal hydroxide used in the present invention is
Specific examples include sodium hydroxide, potassium hydroxide, etc., but are not limited to these.
The amount of the alkali metal hydroxide used is preferably about the same mole per mole of phenolic hydroxyl group. When the amount of alkali metal hydroxide used is small, the amount of gel produced as a by-product is small, which is advantageous in production, but hydrolyzable chlorine remains. If the amount of alkali metal hydroxide used is large, the amount of gel increases, which is disadvantageous in production. The aprotic polar solvent used in the present invention is
Specific examples include dimethyl sulfoxide, dimethyl sulfone, dimethyl formamide, dimethyl acetamide, tetramethyl urea, hexamethyl phosphoramide, etc., but are not limited to these. The amount of these aprotic polar solvents used is preferably 5 to 50 parts by weight per 100 parts by weight of epichlorohydrin. If the amount used is less than 5 parts by weight, the effects of the present invention will not be so significant. If the amount used is too large, intermolecular reactions will proceed, the epoxy equivalent (molecular weight per mole of epoxy group) will increase, and the quality of the glycidyl ether of phenols will deteriorate. Considering this, it is preferably 50 parts by weight or less. The amount of epichlorohydrin used in the present invention is preferably 2.5 mol to 20 mol, more preferably 4 mol to 20 mol, per 1 mol of phenolic hydroxyl group.
It is 10 moles. This means that if the amount of epichlorohydrin used is small, the quality of the epoxy resin will deteriorate due to the formation of high molecular weight products due to the intermolecular reaction, such as an increase in the melt viscosity of the epoxy resin, and furthermore, the amount of gel formed will increase, which is industrially disadvantageous. This is because, if the amount of epichlorohydrin used is large, the volume of the reaction mixture increases, resulting in industrial disadvantages such as decreased productivity. In the present invention, the epoxidation reaction of phenols can be carried out by a known method, except that an aprotic polar solvent is used as a solvent, and for example, it can be carried out as follows. First, monovalent or polyvalent phenols and epichlorohydrin are mixed in the proportions described above. Solid phenols are also dissolved in epichlorohydrin to form a homogeneous solution. Further, an aprotic polar solvent is added and mixed. While stirring and mixing, the alkali metal hydroxide is then added to carry out the reaction. In this reaction, the content liquid is azeotropically distilled under normal pressure or reduced pressure while maintaining the temperature at about 100 to 110°C under normal pressure and about 50 to 80°C under reduced pressure, depending on the pressure. Dehydration is performed by condensing the volatile components, separating the condensate from oil and water, and returning the oil to the reaction system. The alkali metal hydroxide is added in small portions or continuously over 2 to 7 hours in order to react uniformly. If it is added temporarily, the reaction will progress locally and a gel will form, which is not preferable.
After the reaction is completed, unreacted epichlorohydrin is first removed by distillation, then dissolved in a ketone such as methyl isobutyl ketone or an aromatic hydrocarbon solvent such as toluene, and insoluble alkali metal salts are separated. Further, the aprotic polar solvent is removed by washing with water, and the solvent is removed by distillation to obtain an epoxy resin. Glycidyl ethers of phenols are obtained. In the present invention, the epoxy equivalent means epoxy group 1
Defined by molecular weight per mole. In addition, hydrolyzable chlorine is produced by dissolving epoxy resin in dioxane.
The chlorine ions released when an alcoholic solution of potassium hydroxide was added and heated under reflux for 30 minutes were determined by back titration with a silver nitrate solution, and expressed as the weight percentage of chlorine atoms in the compound. less than,
The invention will be explained in more detail by way of examples, without restricting it thereto. Examples 1 to 5 and Comparative Examples 1 to 2 A thermometer, a dropping funnel for continuously adding an aqueous alkali metal hydroxide solution, a stirring blade, and water evaporating from the reaction system and epichlorohydrin are cooled and liquefied to form an organic layer and water. Using a separable flask with a baffle and a capacity of 1, which has a separating tube with a cooling tube that separates the layers based on their specific gravity differences, returns the organic layer to the reaction system, and removes the aqueous layer, the types and amounts of phenols shown in Table 1 are added. was reacted with epichlorohydrin. The reaction was carried out in the presence of an aprotic polar solvent of the type and amount shown in Table 1 while continuously adding an aqueous sodium hydroxide solution in the amount shown in Table 1 over a period of 5 hours. After the reaction is complete, unreacted epichlorohydrin is removed by vacuum distillation, and the resulting by-product salt and glycidyl ether of phenols containing an aprotic polar solvent are dissolved in methyl isobutyl ketone to separate the by-product salt and non-protic solvent. The protic polar solvent was removed by washing with water. Furthermore, methyl isobutyl ketone was removed by vacuum distillation to obtain an epoxy resin. Table 1 shows the amount of hydrolyzable chlorine and epoxy equivalent of the epoxy resin thus obtained. While the amount of hydrolyzable chlorine in Example 1 using an aprotic polar solvent was 330 ppm,
The amount of hydrolyzable chlorine in Comparative Example 1, which does not use an aprotic polar solvent, is 650 ppm.
The effect of reducing hydrolyzable chlorine by using an aprotic polar solvent is remarkable.

【表】 ☆☆ エピクロルヒドリンのモル数
☆☆☆ 水酸化ナトリウムのモル数
[Table] ☆☆ Number of moles of epichlorohydrin ☆☆☆ Number of moles of sodium hydroxide

Claims (1)

【特許請求の範囲】[Claims] 1 一価又は多価のフエノール類とエピクロルヒ
ドリンとをアルカリ金属水酸化物および非プロト
ン性極性溶媒の存在下で反応させることを特徴と
するエポキシ樹脂製造法。
1. A method for producing an epoxy resin, which comprises reacting monovalent or polyvalent phenols with epichlorohydrin in the presence of an alkali metal hydroxide and an aprotic polar solvent.
JP58139828A 1983-07-29 1983-07-29 Production of epoxy resin Granted JPS6031517A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58139828A JPS6031517A (en) 1983-07-29 1983-07-29 Production of epoxy resin
JP5014787A JP2555853B2 (en) 1983-07-29 1993-02-01 Epoxy resin manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58139828A JPS6031517A (en) 1983-07-29 1983-07-29 Production of epoxy resin
JP5014787A JP2555853B2 (en) 1983-07-29 1993-02-01 Epoxy resin manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5014787A Division JP2555853B2 (en) 1983-07-29 1993-02-01 Epoxy resin manufacturing method

Publications (2)

Publication Number Publication Date
JPS6031517A JPS6031517A (en) 1985-02-18
JPH0420008B2 true JPH0420008B2 (en) 1992-03-31

Family

ID=26350804

Family Applications (2)

Application Number Title Priority Date Filing Date
JP58139828A Granted JPS6031517A (en) 1983-07-29 1983-07-29 Production of epoxy resin
JP5014787A Expired - Lifetime JP2555853B2 (en) 1983-07-29 1993-02-01 Epoxy resin manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5014787A Expired - Lifetime JP2555853B2 (en) 1983-07-29 1993-02-01 Epoxy resin manufacturing method

Country Status (1)

Country Link
JP (2) JPS6031517A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230145A (en) * 1985-08-01 1987-02-09 Matsushita Electric Works Ltd Epoxy resin composition for electronic material
DE3689111D1 (en) * 1985-12-13 1993-11-04 Ciba Geigy IMPROVED METHOD FOR PRODUCING GLYCIDYL COMPOUNDS.
JPH0759616B2 (en) * 1987-04-10 1995-06-28 住友化学工業株式会社 Method for producing epoxy resin
US4778863A (en) * 1987-08-13 1988-10-18 The Dow Chemical Company Preparation of epoxy resins having low undesirable halogen content
JP2565960B2 (en) * 1987-12-23 1996-12-18 旭チバ株式会社 Method for producing epoxy compound
JP2565959B2 (en) * 1987-12-24 1996-12-18 旭チバ株式会社 Method for producing glycidyl ethers
JP2532119B2 (en) * 1987-12-24 1996-09-11 旭チバ株式会社 Method for producing multifunctional epoxy resin
JPH0791360B2 (en) * 1987-12-26 1995-10-04 住友化学工業株式会社 Process for producing glycidyl ether of polyphenol
CA2157148A1 (en) 1994-09-08 1996-03-09 Masatsugu Akiba Epoxy resin composition and resin-encapsulated semiconductor device
ES2364790T3 (en) 2008-05-15 2011-09-14 Evonik Degussa Gmbh ELECTRONIC WRAPPING
KR101660237B1 (en) * 2014-07-18 2016-09-27 국도화학 주식회사 Preparation methode of Biobased Epoxy Resin and It's Composition for Cured System

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783520A (en) * 1980-11-12 1982-05-25 Sumitomo Chem Co Ltd Preparation of epoxy resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218180A (en) * 1975-08-01 1977-02-10 Mitsubishi Electric Corp Constant voltage diode
DD153882A1 (en) 1980-09-09 1982-02-10 Rainer Ehrig PROCESS FOR THE PREPARATION OF EPOXY RESINS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783520A (en) * 1980-11-12 1982-05-25 Sumitomo Chem Co Ltd Preparation of epoxy resin

Also Published As

Publication number Publication date
JPH0673039A (en) 1994-03-15
JPS6031517A (en) 1985-02-18
JP2555853B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US4778863A (en) Preparation of epoxy resins having low undesirable halogen content
JPH0420008B2 (en)
KR910001133B1 (en) Process for producing glycidyl ethers of monohydric polyhydric phenols
JPS6226647B2 (en)
JPS5973578A (en) Manufacture of glycidyl derivatives of compounds having at least one aromatic hydroxyl group or aromatic amine group
JPS61168617A (en) Production of high-purity brominated epoxy resin
GB2212157A (en) Glycidyl ethers of phenolic compounds and epoxy resins derived therefrom
JP4945958B2 (en) Method for producing purified epoxy resin
JPS6234330B2 (en)
JP2702515B2 (en) Purification method of epoxy resin
JPS6252764B2 (en)
JPS63254121A (en) Production of epoxy resin
JPH09183829A (en) Epoxy resin, epoxy resin composition and its hardened article
JPS6081222A (en) Improved manufacture of epoxynovolak resin
JPS58134112A (en) Reducing method for saponifiable chlorine content in polyglycidyl ether
JP3794598B2 (en) Method for producing molded epoxy compound
JPS5940831B2 (en) Method for producing glycidyl ether of monohydric or polyhydric phenol
JP2000273144A (en) Preparation of epoxy resin
JP3460164B2 (en) Manufacturing method of epoxy resin
JPH01252624A (en) Production of polyphenol glycidyl ether
JPS63208584A (en) Production of epoxy compound
JPH06329741A (en) Resin, epoxy resin, its production, resin composition and cured product of said composition
JPH1060068A (en) Production of phenolic resin
KR20080078134A (en) Method for producing a purified epoxy resin
KR100339702B1 (en) Method for purifying epoxy resin