JPH0419983B2 - - Google Patents

Info

Publication number
JPH0419983B2
JPH0419983B2 JP58113837A JP11383783A JPH0419983B2 JP H0419983 B2 JPH0419983 B2 JP H0419983B2 JP 58113837 A JP58113837 A JP 58113837A JP 11383783 A JP11383783 A JP 11383783A JP H0419983 B2 JPH0419983 B2 JP H0419983B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
methanol
formaldehyde
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58113837A
Other languages
Japanese (ja)
Other versions
JPS604147A (en
Inventor
Shoichi Sago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58113837A priority Critical patent/JPS604147A/en
Priority to EP84304244A priority patent/EP0130068B1/en
Priority to DE8484304244T priority patent/DE3470031D1/en
Priority to US06/623,327 priority patent/US4544773A/en
Publication of JPS604147A publication Critical patent/JPS604147A/en
Publication of JPH0419983B2 publication Critical patent/JPH0419983B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はメタノールの脱水素によりホルムアル
デヒドを製造する方法に関するものである。さら
に詳しくは亜鉛および/またはインジウムの硝酸
塩あるいは有機酸の塩を400℃以上で焼成して得
られる金属酸化物を触媒として、気相流通反応に
よつてメタノールを脱水素することを特徴とする
ホルムアルデヒドの製造方法に関するものであ
る。 ホルムアルデヒドの一般的な工業的製法として
は、メタノールの銀触媒による接触酸化脱水素法
あるいは酸化鉄と酸化モリブデンの混合物を触媒
として使用する接触酸化法が知られておりこれら
の方法では通常ホルムアルデヒドは水溶液として
得られている。前者は触媒として高価な銀を大量
に使用しかつまた650゜〜720℃という高い温度で
反応がおこなわれる。さらに原料メタノール中の
ハロゲンや硫黄の他微量の金属の混入に対しては
非常に敏感であるため原料メタノールの充分な精
製が必要であり、また触媒の失活を防ぐために多
量の水蒸気を混入させねばならないなどの欠点を
有している。また後者は反応温度は350゜〜450℃
と比較的低いものの大過剰の空気を触媒上に流通
させねばならない。このために装置内に高額の投
資とエネルギーコストを要し、また副生物として
ギ酸を生じ易いために精製工程を必要とする。か
つまた精製後の廃ガスは特別の処理が必要である
などの欠点を有している。 いずれの場合も反応後のガスを水に吸収させて
30%〜50%濃度のホルムアルデヒド水溶液として
ホルムアルデヒドが回収される。このためホルム
アルデヒドの大きな工業的用途であるポリアセタ
ール樹脂、尿素樹脂、フエノールホルムアルデヒ
ド樹脂等の製造に用いる際、濃縮、精製等の工程
において多大なエネルギーコストを生じているの
が実情である。 一方、いわゆるメタノールの脱水素によるホル
ムアルデヒドの製造についても数多くの方法が提
案されている。たとえば銅、銀、およびケイ素よ
り成る触媒をもちいる方法(特公昭41−11853)、
溶融した亜鉛、ガリウム、インジウムまたはアル
ミニウムもしくはこれらの合金をもちいる方法
(特公昭47−19251)、炭素を含有する溶融状亜鉛
又は亜鉛を含む合金にメタノールを接触させる方
法(特開昭48−97808)などが提案されている。
しかしながらこれらの方法でも触媒の寿命が短か
い、反応率が低いほど種々の欠点があり工業的な
製造法として満足できるものではない。また銅、
亜鉛、いおうよりなる触媒をもちいる方法(特開
昭51−1407)及び銅、亜鉛あるいは銅、亜鉛及び
硫黄触媒をもちい、ガス状硫黄化合物を供給しつ
つメタノールの脱水素を実施する方法(特開昭51
−76209)は反応生成物あるいは排出するガス中
に硫黄が混入し、工業的には種々の問題が生じる
ことが予想される。これを改良するために銅、亜
鉛、及びセレンより成る触媒を用いる方法も提案
されている(特開昭52−215)が、触媒寿命、選
択性などの点で工業的にいまだ不満足なものであ
る。 本発明者らはこれら問題点を改善すべく鋭意研
究を重ねた結果亜鉛および/またはインジウムの
硝酸塩あるいは有機酸の塩を原料として400℃以
上で焼成して得られる金属酸化物を触媒として使
用することによつてメタノールの脱水素により、
収率よくかつまたきわめて安定にホルムアルデヒ
ドが得られることを見出しこの知見に基づいて本
発明を完成するに至つた。 本発明において用いられる触媒は酸化亜鉛およ
び/または酸化インジウムである。酸化亜鉛およ
び酸化インジウムの原料塩としては一般に硝酸
塩、硫酸塩、炭酸塩、水酸化物、有機酸塩等各種
の塩があるが、本発明における酸素非存在下のメ
タノールの脱水素反応によるホルムアルデヒドの
製造においてはきわめて特異なことに、硝酸塩も
しくは有機酸塩を原料として用いて400℃以上で
焼成した触媒のみがきわめて高収率かつ高選択的
にホルムアルデヒドを生成することが本発明者ら
によつてみいだされた。これに対してその他の塩
類、たとえば炭酸塩、水酸化物などを原料塩とし
てもちいた場合にはメタノールから一酸化炭素お
よび水素への分解反応が優先し、ホルムアルデヒ
ドの選択率はきわめて低い。この場合、反応温度
を下げてもメタノールの転化率が低下するにもか
かわらずホルムアルデヒドの選択率は殆んど改善
されないか、より低下する傾向が見られた。とこ
ろで、工業的に酸素存在下で使用されている銀触
媒についても反応試験を実施したが本発明の如
き、酸素非存在下ではホルムアルデヒド合成活性
はほとんどみられなかつた。 本発明方法において触媒の原料塩は通常、窒素
雰囲気(もしくは流通下)または空気雰囲気(も
しくは流通下)で焼成される。焼成温度は400℃
以上であることが好ましく、更に望ましくは500
℃ないし1000℃が適当である。本発明の反応は、
通常気相流通式で実施される。反応条件に関して
は触媒層温度で450〜650であり、500〜600℃が好
適である。反応圧力には特に制限がないが、常圧
ないし10Kg/cm2以下の加圧下で実施するのが適当
である。また、メタノールは触媒層へ気体状で供
給される。この際、メタノールは窒素やメタンな
どのような不活性ガスおよび/または水素で稀釈
して供給してもよい。メタノールの供給量は反応
器の大きさ、形状等にもよるが触媒1Kgあたり
0.1〜10Kg/hrが適当である。0.1Kg/hr未満では
実用的ではなく10Kg/hrを超えるとメタノールの
反応率は低下する。反応器を出た反応ガスは冷却
されて、通常の化学工業的方法によつてホルムア
ルデヒドおよび未反応のメタノールが回収され
る。このようにして得られる生成物は10〜70wt
%のホルムアルデヒドおよび残余のメタノールか
らなり、水分の含有率が1wt%以下であるような
ホルムアルデヒドのメタノール溶液として得るこ
とができる。また、反応によつて水素が高収率で
得られるため、反応のオフガスも熱源あるいはそ
の他の原料として有効に使用することが可能であ
る。 本発明における触媒はメタノールの反応率が高
く極めて高収率でホルムアルデヒドを得ることが
できる。触媒の寿命も優れており、炭素質の触媒
上への沈着はほとんどみられない。また銅系の触
媒に生じ易い触媒ペレツト間の融着によるブロツ
キング現象も全く生じないことも大きな特徴であ
る。 以下に本発明を実施例によりさらに詳しく説明
するが本発明はこれらに限定されるものではな
い。 実施例1〜6、比較例1〜4 (1) 触媒調製法 触媒A(酸化亜鉛−) 硝酸亜鉛(Zn(NO32・6H2O)をオーブン中
350℃で3時間、空気雰囲気下で焼成した後、電
気炉をもちい500℃で5時間空気気流中で焼成処
理をおこない触媒Aを得た。触媒AのBET表面
積は0.50m2/gであつた。 触媒B(酸化亜鉛−) 硝酸亜鉛(Zn(NO32・6H2O)をオーブン中
350℃で3時間、空気雰囲気下で焼成した後、電
気炉をもちい600℃で5時間空気気流中で焼成処
理をおこない触媒Bを得た。触媒BのBET表面
積は0.37m2/gであつた。 触媒C(酸化亜鉛−) 硝酸亜鉛(Zn(NO32・6H2O)をオーブン中
350℃で3時間、空気雰囲気下で焼成した後、電
気炉をもちい800℃で5時間空気気流中で焼成し
触媒Cを得た。触媒CのBET表面積は0.23m2
gであつた。 触媒D(酸化亜鉛−) 硝酸亜鉛(Zn(NO32・6H2O)をオーブン中
350℃で3時間空気雰囲気下で焼成し触媒Dを得
た。触媒DのBET表面積は82.9m2/gであつた。 触媒E(酸化亜鉛−) 硝酸亜鉛(Zn(NO32・6H2O)をオーブン中
350℃で3時間空気雰囲気下で焼成した後、電気
炉をもちい450℃で5時間空気気流中で焼成し触
媒Eを得た。触媒EのBET表面積は0.26m2/g
であつた。 触媒F(酸化亜鉛−) 酢酸亜鉛(Zn(CH3COO)2・9H2O)を触媒B
と同様な処理をおこない触媒Fを得た。触媒Fの
BET表面積は5.4m2/gであつた。 触媒G(酸化亜鉛−) 水酸化亜鉛(Zn(CH)2)を触媒Cと同様な処
理をおこない触媒Gを得た。触媒GのBET表面
積は8.47m2/gであつた。 触媒H(酸化亜鉛−) 塩基性炭酸亜鉛(Zn(CO32・3Nn(OH)2)を
触媒Bと同様な処理をおこない触媒Hを得た。触
媒HのBET表面積は17.7m2/gであつた。 触媒I(酸化インジウム) 硝酸インジウム(In(OH33・3H2O)を触媒B
と同様な処理をおこない触媒Iを得た。触媒Iの
BET表面積は52.3cm2/gであつた。 触媒J(銀) 市販の多孔質銀(半井化学製)をそのまま用い
た。 以上触媒A〜Jの調製について述べたが調製後
の触媒は24〜48メツシユの粒径に成形した後デシ
ケータ中に保管した。 また比表面積の測定は200℃で30分窒素気流中
で脱水処理を行なつた後、モノソーブ(カンタク
ローム社製)を使用して測定した。 (2) 触媒反応試験 触媒2.0gに反応に不活性であることを確認し
た40〜60メツシユの溶融アルミナ2.0gを混合し、
これを内容10m/mの石英製管型反応器に充填す
る。そしてこの反応器に150℃であらかじめ気化
混合させたメタノールと窒素の混合気体
(CH3OH/N2=35/65モル比)を250mmol/hr
常圧の条件で流通させ反応温度500℃〜650℃でメ
タノールの脱水素反応を行なつた。但し、実施例
3および比較例4は(CH3OH/N2=42/58
375.9mmol/hr常圧)の条件で反応をおこなつ
た。反応器の出口ガスはそのまま保温されたガス
サンプラーによつて、APS−201 20% Flusin
T(ガスクロ工業社製)カラム3m及びモレキユラ
ーシーブ13Xカラム2mを使用した熱電導度型ガ
スクロマトグラフに導入し、反応生成物であるホ
ルムアルデヒド〔HCHO〕、ギ酸メチル、ジメチ
ルエーテル〔DME〕、水素〔H2〕、一酸化炭素
〔CO〕、メタン〔CH4〕及び未反応のメタノール
〔出口CH3OH〕、窒素の分析定量をおこなつた。
反応結果は表1に示したが、いずれも設定温度に
到達後、8〜12時間反応を継続後の値であり、定
常活性を示している。ガスクロマトグラフによる
分析では、ジメチルエーテル、ギ酸メチルはほと
んど生成しなかつたので表−1より省略した。 * CH3OH転化率(%)=(1−〔出口CH3OH〕/〔HCHO
〕+〔CO〕+〔CH4〕+〔出口CH2OH〕)×100 ** HCHO収率(%)=〔HCHO〕/〔HCHO〕+〔CO〕+
〔CH4〕+〔出口CH3OH〕×100 *** HCHO選択率(%)=〔HCHO〕/〔HCHO〕+〔CO
〕+〔CH4〕×100 注 〔HCHO〕,〔CO〕,〔CH4〕→各々の成分の
生成速度(mmol/hr) 〔CH3OH〕→反応管出口の未反応メタノー
ル(mmol/hr) 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing formaldehyde by dehydrogenating methanol. More specifically, formaldehyde is characterized by dehydrogenating methanol through a gas phase flow reaction using a metal oxide obtained by calcining zinc and/or indium nitrate or organic acid salt at 400°C or higher as a catalyst. The present invention relates to a manufacturing method. Common industrial methods for producing formaldehyde include the catalytic oxidation dehydrogenation method using methanol as a silver catalyst and the catalytic oxidation method using a mixture of iron oxide and molybdenum oxide as a catalyst. It is obtained as follows. The former uses a large amount of expensive silver as a catalyst and the reaction is carried out at a high temperature of 650° to 720°C. Furthermore, the raw methanol is extremely sensitive to the contamination of trace amounts of metals such as halogen and sulfur, so the raw methanol must be thoroughly purified, and a large amount of water vapor must be mixed in to prevent catalyst deactivation. It has disadvantages such as having to be used. In the latter case, the reaction temperature is 350° to 450°C.
Although relatively low, a large excess of air must be passed over the catalyst. This requires high investment and energy costs in the equipment, and also requires a purification step because formic acid is likely to be produced as a by-product. Moreover, the waste gas after purification has the disadvantage that special treatment is required. In either case, the gas after the reaction is absorbed into water.
Formaldehyde is recovered as an aqueous formaldehyde solution with a concentration of 30% to 50%. For this reason, when formaldehyde is used in the production of polyacetal resins, urea resins, phenol formaldehyde resins, etc., which are major industrial uses of formaldehyde, the actual situation is that large energy costs are incurred in processes such as concentration and purification. On the other hand, many methods have been proposed for the production of formaldehyde by so-called dehydrogenation of methanol. For example, a method using a catalyst consisting of copper, silver, and silicon (Japanese Patent Publication No. 41-11853);
A method using molten zinc, gallium, indium, aluminum, or an alloy thereof (Japanese Patent Publication No. 47-19251), a method of bringing methanol into contact with molten zinc containing carbon or an alloy containing zinc (Japanese Patent Publication No. 48-97808) ) have been proposed.
However, even these methods have various drawbacks such as a short catalyst life and a low reaction rate, and are not satisfactory as industrial production methods. Also copper,
A method using a catalyst consisting of zinc and sulfur (Japanese Unexamined Patent Publication No. 51-1407) and a method of dehydrogenating methanol while supplying a gaseous sulfur compound using a copper, zinc or copper, zinc and sulfur catalyst (Japanese Unexamined Patent Publication No. 51-1407) 1977
-76209), it is expected that sulfur will be mixed into the reaction product or the emitted gas, causing various industrial problems. In order to improve this, a method using a catalyst consisting of copper, zinc, and selenium has been proposed (Japanese Patent Laid-Open No. 52-215), but this method is still unsatisfactory industrially in terms of catalyst life, selectivity, etc. be. The inventors of the present invention have conducted intensive research to improve these problems, and as a result, we have used a metal oxide obtained by firing zinc and/or indium nitrate or organic acid salt as a raw material at 400°C or higher as a catalyst. Possibly by dehydrogenation of methanol,
It was discovered that formaldehyde can be obtained in good yield and in an extremely stable manner, and based on this knowledge, the present invention was completed. The catalyst used in the present invention is zinc oxide and/or indium oxide. Raw material salts for zinc oxide and indium oxide generally include various salts such as nitrates, sulfates, carbonates, hydroxides, and organic acid salts. In production, the present inventors have found that only catalysts calcined at 400°C or higher using nitrates or organic acid salts as raw materials produce formaldehyde in extremely high yields and with high selectivity. It was discovered. On the other hand, when other salts, such as carbonates and hydroxides, are used as raw material salts, the decomposition reaction of methanol to carbon monoxide and hydrogen takes precedence, and the selectivity for formaldehyde is extremely low. In this case, even if the reaction temperature was lowered, the formaldehyde selectivity hardly improved or tended to decrease even though the methanol conversion rate decreased. By the way, reaction tests were also conducted on silver catalysts that are used industrially in the presence of oxygen, but almost no formaldehyde synthesis activity was observed in the absence of oxygen, as in the present invention. In the method of the present invention, the raw material salt of the catalyst is usually calcined in a nitrogen atmosphere (or under a flow) or an air atmosphere (or under a flow). Firing temperature is 400℃
It is preferably 500 or more, and more preferably 500 or more.
℃ to 1000℃ is suitable. The reaction of the present invention is
It is usually carried out using a gas phase flow method. Regarding the reaction conditions, the catalyst layer temperature is 450 to 650°C, preferably 500 to 600°C. Although there is no particular restriction on the reaction pressure, it is appropriate to carry out the reaction under normal pressure to an increased pressure of 10 kg/cm 2 or less. Moreover, methanol is supplied to the catalyst layer in gaseous form. At this time, methanol may be diluted with an inert gas such as nitrogen or methane and/or hydrogen before being supplied. The amount of methanol supplied depends on the size and shape of the reactor, but it is per 1 kg of catalyst.
0.1-10Kg/hr is suitable. If it is less than 0.1 Kg/hr, it is not practical, and if it exceeds 10 Kg/hr, the methanol reaction rate decreases. The reaction gas leaving the reactor is cooled and formaldehyde and unreacted methanol are recovered by conventional chemical industrial methods. The product thus obtained is 10-70wt
% formaldehyde and the remainder methanol, and can be obtained as a methanol solution of formaldehyde with a water content of 1 wt% or less. Furthermore, since hydrogen can be obtained in high yield through the reaction, the off-gas from the reaction can also be effectively used as a heat source or other raw materials. The catalyst of the present invention has a high methanol reaction rate and can obtain formaldehyde in an extremely high yield. The catalyst life is also excellent, with almost no carbonaceous deposits on the catalyst. Another major feature is that the blocking phenomenon caused by fusion between catalyst pellets, which tends to occur with copper-based catalysts, does not occur at all. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. Examples 1 to 6, Comparative Examples 1 to 4 (1) Catalyst preparation method Catalyst A (zinc oxide) Zinc nitrate (Zn(NO 3 ) 2.6H 2 O) was placed in an oven.
After calcination at 350°C for 3 hours in an air atmosphere, calcination treatment was performed at 500°C for 5 hours in an air stream using an electric furnace to obtain catalyst A. The BET surface area of catalyst A was 0.50 m 2 /g. Catalyst B (zinc oxide) Zinc nitrate (Zn(NO 3 ) 2・6H 2 O) in an oven
After calcination in an air atmosphere at 350°C for 3 hours, calcination treatment was performed at 600°C in an air stream for 5 hours using an electric furnace to obtain catalyst B. The BET surface area of catalyst B was 0.37 m 2 /g. Catalyst C (zinc oxide) Zinc nitrate (Zn(NO 3 ) 2・6H 2 O) in an oven
After firing in an air atmosphere at 350°C for 3 hours, catalyst C was obtained by firing at 800°C in an air stream for 5 hours using an electric furnace. The BET surface area of catalyst C is 0.23m 2 /
It was hot at g. Catalyst D (zinc oxide) Zinc nitrate (Zn(NO 3 ) 2・6H 2 O) in an oven
Catalyst D was obtained by calcining at 350°C for 3 hours in an air atmosphere. The BET surface area of Catalyst D was 82.9 m 2 /g. Catalyst E (zinc oxide) Zinc nitrate (Zn(NO 3 ) 2・6H 2 O) in an oven
After calcining in an air atmosphere at 350°C for 3 hours, catalyst E was obtained by calcining in an electric furnace at 450°C for 5 hours in an air stream. The BET surface area of catalyst E is 0.26 m 2 /g
It was hot. Catalyst F (zinc oxide) Zinc acetate (Zn(CH 3 COO) 2.9H 2 O) as catalyst B
Catalyst F was obtained by carrying out the same treatment as above. of catalyst F
The BET surface area was 5.4 m 2 /g. Catalyst G (Zinc Oxide) Zinc hydroxide (Zn(CH) 2 ) was treated in the same manner as Catalyst C to obtain Catalyst G. The BET surface area of Catalyst G was 8.47 m 2 /g. Catalyst H (zinc oxide) Basic zinc carbonate ( Zn(CO 3 ) 2.3Nn(OH) 2 ) was treated in the same manner as Catalyst B to obtain Catalyst H. The BET surface area of Catalyst H was 17.7 m 2 /g. Catalyst I (indium oxide) Indium nitrate (In(OH 3 ) 3・3H 2 O) as catalyst B
Catalyst I was obtained by carrying out the same treatment as above. Catalyst I
The BET surface area was 52.3 cm 2 /g. Catalyst J (Silver) Commercially available porous silver (manufactured by Hanui Kagaku) was used as it was. The preparation of catalysts A to J was described above, and the prepared catalysts were molded to a particle size of 24 to 48 mesh and then stored in a desiccator. The specific surface area was measured using Monosorb (manufactured by Quantachrome) after dehydration treatment at 200°C for 30 minutes in a nitrogen stream. (2) Catalytic reaction test: Mix 2.0g of catalyst with 2.0g of molten alumina of 40 to 60 mesh, which has been confirmed to be inert to the reaction.
This was filled into a quartz tube reactor with a content of 10 m/m. Then, a mixed gas of methanol and nitrogen (CH 3 OH/N 2 = 35/65 molar ratio), which had been vaporized and mixed in advance at 150°C, was added to this reactor at a rate of 250 mmol/hr.
The dehydrogenation reaction of methanol was carried out at a reaction temperature of 500°C to 650°C by flowing under normal pressure conditions. However, in Example 3 and Comparative Example 4, (CH 3 OH/N 2 =42/58
The reaction was carried out under conditions of 375.9 mmol/hr (normal pressure). The outlet gas of the reactor was collected using APS-201 20% Flusin using a gas sampler that was kept warm.
The reaction products, formaldehyde [HCHO], methyl formate, dimethyl ether [DME], and hydrogen [ H 2 ], carbon monoxide [CO], methane [CH 4 ], unreacted methanol [outlet CH 3 OH], and nitrogen were analyzed and quantitatively determined.
The reaction results are shown in Table 1, and all values are after the reaction was continued for 8 to 12 hours after reaching the set temperature, indicating steady activity. In analysis by gas chromatography, dimethyl ether and methyl formate were hardly produced, so they were omitted from Table 1. * CH 3 OH conversion rate (%) = (1 - [Outlet CH 3 OH] / [HCHO
] + [CO] + [CH 4 ] + [outlet CH 2 OH]) × 100 ** HCHO yield (%) = [HCHO] / [HCHO] + [CO] +
[CH 4 ] + [Outlet CH 3 OH] × 100 *** HCHO selectivity (%) = [HCHO] / [HCHO] + [CO
] + [CH 4 ] × 100 Note [HCHO], [CO], [CH 4 ] → Production rate of each component (mmol/hr) [CH 3 OH] → Unreacted methanol at the outlet of the reaction tube (mmol/hr) ) 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 酸素の非存在下においてメタノールの脱水素
により気相状でホルムアルデヒドを製造する方法
において、亜鉛および/またはインジウムの硝酸
塩あるいは有機酸の塩を400℃以上で焼成して得
られる金属酸化物を触媒として使用することを特
徴とするホルムアルデヒドの製造方法。
1. In a method for producing formaldehyde in a gas phase by dehydrogenating methanol in the absence of oxygen, a metal oxide obtained by calcining zinc and/or indium nitrates or salts of organic acids at 400°C or higher is used as a catalyst. A method for producing formaldehyde, characterized in that it is used as a formaldehyde.
JP58113837A 1983-06-23 1983-06-23 Production of formaldehyde Granted JPS604147A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58113837A JPS604147A (en) 1983-06-23 1983-06-23 Production of formaldehyde
EP84304244A EP0130068B1 (en) 1983-06-23 1984-06-22 A process for producing formaldehyde
DE8484304244T DE3470031D1 (en) 1983-06-23 1984-06-22 A process for producing formaldehyde
US06/623,327 US4544773A (en) 1983-06-23 1984-06-22 Process for producing formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113837A JPS604147A (en) 1983-06-23 1983-06-23 Production of formaldehyde

Publications (2)

Publication Number Publication Date
JPS604147A JPS604147A (en) 1985-01-10
JPH0419983B2 true JPH0419983B2 (en) 1992-03-31

Family

ID=14622286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113837A Granted JPS604147A (en) 1983-06-23 1983-06-23 Production of formaldehyde

Country Status (1)

Country Link
JP (1) JPS604147A (en)

Also Published As

Publication number Publication date
JPS604147A (en) 1985-01-10

Similar Documents

Publication Publication Date Title
EP0100607B1 (en) Catalyst compostion and its use in a process for the production of alcohols from synthesis gas
US6342538B1 (en) Catalyst for the synthesis of methanol and a method for the synthesis of methanol
JP3553066B2 (en) Process for the catalytic decomposition of nitrous oxide contained in pure or gaseous mixtures
JPH0336571B2 (en)
US4227023A (en) Process for the selective ortho-alkylation of phenolic compounds
JPS6143332B2 (en)
EP0130068B1 (en) A process for producing formaldehyde
JPH0347142A (en) Orthoalkylation of phenol
KR102296609B1 (en) Catalyst for manufacturing hydrocarbon and method for preparing thereof
JPH0419983B2 (en)
EP0261867B1 (en) Process for producing formaldehyde
JPH0419984B2 (en)
US3939191A (en) Process for methanol synthesis
KR870000522B1 (en) Contisuous process preparing indole
JPH04156944A (en) Catalyst for dissociating methanol
US4115434A (en) Catalysts and processes for preparing unsaturated nitriles
JPH0371174B2 (en)
JPH062698B2 (en) Formaldehyde production method
JP3413235B2 (en) Synthesis gas production method
JP4025502B2 (en) Catalyst for producing aldehyde from lower hydrocarbon and method for producing aldehyde using carbon dioxide as oxidizing agent
JPS6089441A (en) Production of formaldehyde
JPS6332771B2 (en)
JPH09173848A (en) Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether
JP4671006B2 (en) Carbon monoxide production method
JPH07103064B2 (en) Process for producing 3-alkylbutene-1-al