JPH04198593A - Construction of half tunnel and construction method thereof - Google Patents

Construction of half tunnel and construction method thereof

Info

Publication number
JPH04198593A
JPH04198593A JP2331381A JP33138190A JPH04198593A JP H04198593 A JPH04198593 A JP H04198593A JP 2331381 A JP2331381 A JP 2331381A JP 33138190 A JP33138190 A JP 33138190A JP H04198593 A JPH04198593 A JP H04198593A
Authority
JP
Japan
Prior art keywords
deformation
rock
excavation
shoring
roadbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2331381A
Other languages
Japanese (ja)
Other versions
JPH0786240B2 (en
Inventor
Michiisa Fujii
藤井 三千勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujii Consulting and Associates
Original Assignee
Fujii Consulting and Associates
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujii Consulting and Associates filed Critical Fujii Consulting and Associates
Priority to JP2331381A priority Critical patent/JPH0786240B2/en
Publication of JPH04198593A publication Critical patent/JPH04198593A/en
Publication of JPH0786240B2 publication Critical patent/JPH0786240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PURPOSE:To prevent an accident of a landsliding and to promote safety by providing shorings along internal wall surfaces of an overhang-shaped excavation section formed in a bedrock, etc., and laying struts at a certain interval between the shorings and open ends of a subgrade. CONSTITUTION:An overhang-shaped excavation section 4 is excavated from the surface of a bedrock 5 having a steep slope in a mountainous district, and beam-like shorings 11 having an approximate dog legged shaped section along internal wall surfaces of the excavation section 4. After that, struts 12 are provided along the wall surfaces at a certain interval so that they are laid between the shorings 11 and open ends of the surface of the bedrock of a subgrade. The strut foundation 13 for increasing strength is formed on a part of the subgrade of the struts 12, and a half tunnel A is constructed. According to the constitution, the deformation of the bedrock 5 around the internal wall surfaces can be suppressed by the shorings 11 and struts 12, the struts 12 can be arranged while preventing the bedrock 5 from falling, and safety and execution efficiency can be promoted.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、山岳地域や11σ岸等の斜面や絶壁に沿って
道路等を通ずために構築されるハーフトンネルの構造と
その構築方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to the structure and construction method of a half tunnel constructed to pass a road, etc. along a slope or cliff in a mountainous region or an 11σ bank, etc. It is something.

〈従来の技術〉 近年、山岳地域や海岸沿い等に道路網が整備されつつあ
り、該地域の岩盤の斜面又は絶壁に道路を通ず場合には
、従来は斜面や絶壁を道路面を確保するように掘削し、
長大のり面を形成して行う「切土工法」、道路面を確保
するだけの範囲を掘削して落石事故防止用のロックシェ
ツトを設ける「ロックシェラI・工法」、I・ンネルを
通ずr l−ンネルエ法」等が行われていた。
<Conventional technology> In recent years, road networks are being developed in mountainous areas and along coastlines, and when roads are routed along rock slopes or cliffs in these areas, conventionally the slopes or cliffs are used to secure the road surface. Drill as
The ``cutting method'' is carried out by forming a long slope, the ``Rock Sierra I method'' involves excavating an area large enough to secure the road surface and installing a lock shet to prevent rockfall accidents, and the ``Rock Sierra I method'' involves cutting through an I tunnel. -Nnerue method" etc. were practiced.

〈発明か解決しようとする課題〉 しかし、例えば、従来から一般的に行われている切土工
法によると、工費的には有利であるが、施工性の而では
、斜面傾斜と切土勾配の関係から長大のり面となること
が多く、岩盤掘削の範囲が大きくなるため施工性か悲く
なる。また、維持管理の面においても、長大のり面とな
るため該のり面の紺゛持管理が難しく、風化を助長する
ことから二次災害が起こりやすく、切取、1一部からの
落石対策が問題となる。更には、用地買収の点からいっ
ても、長大のり而となるため道路敷幅が広くなり、買収
範囲を広く取る必要が生じてくる。また、地質的弱練に
沿って地滑りを誘発する可能性が高い。
<Problem to be solved by the invention> However, for example, although the conventional cutting method is advantageous in terms of construction cost, it has problems with ease of construction due to the slope inclination and cutting slope. Due to this, the slopes are often long and the area of rock excavation becomes large, making construction difficult. In addition, in terms of maintenance and management, it is difficult to maintain the integrity of the slope because it is a long slope, and secondary disasters are likely to occur because it promotes weathering. becomes. Furthermore, from the point of view of land acquisition, as the road becomes a long road, the width of the road becomes wider, making it necessary to widen the scope of acquisition. It is also likely to induce landslides along geological weakening.

ロツクシェット工法によっても、切1−工法に比べて掘
削範囲を少なくすることができるが、落石事故のおそれ
が残存する。特に、先頃、福井県において同工法による
ロックシェッドが崩岩、樹上により破壊し、人命が失わ
れたことは記憶に新しいことであり、同11法の問題点
が注口されている。、また、I・ンネルエ法によると、
長大のり面は生しないことから以上のような問題は改善
されるが、工費が太き(なり、更には内部の照明等の維
持費が嵩む等の問題かある。
The Rock Sheet method also allows for a smaller excavation area compared to the Cut-1 construction method, but there remains the risk of rockfall accidents. In particular, it is still fresh in our memory that recently in Fukui Prefecture, a rock shed constructed using the same method was destroyed by falling rocks and trees, resulting in the loss of human life, and the problems with the 11th method have been brought into focus. , and according to I. Nnerue's method,
Since there is no long slope, the above-mentioned problems are solved, but there are problems such as increased construction costs (and even higher maintenance costs for internal lighting, etc.).

そこで、本発明は掘削範囲を少なくてきる等施工性がよ
く、崩岩の落下による事故防1ト等安全対策−1−等の
維持管理にも適していて、用地買収の範囲も少な(て済
む山岳等の岩盤の斜面叉(J絶壁における道路等を通ず
ための構造物及びその流上方法を開発することをl」的
とするものである。
Therefore, the present invention has good workability by reducing the excavation area, is suitable for maintenance and management of safety measures such as preventing accidents caused by falling rocks, and requires less land acquisition. The purpose of this project is to develop structures for passing roads, etc. on rocky slopes (J cliffs) of mountains, etc., as well as methods for moving them upstream.

く課題を解決するための手段〉 そこで、本発明は、第1には、岩盤の斜面又は絶壁の表
面に対して掘削して形成した路床と内壁面を有するオー
バーハング状の掘削部の内壁面に沿って沿設した支保工
と、該支保工と路床の開放端側間に一定間隔をおいて差
し渡した支柱とからなるハーフトンネルの構造、第2に
は、岩盤の斜面又は絶壁の表面に対して掘削して形成し
た路床と内壁面を有するオーバーハング状の掘削部の内
壁面に沿って沿設した支保工と、該支保−■−に対して
打ち込んて支保工裏の岩盤に埋設してなるロックボルト
と、該支保工と路床の開放端側間に一定間隔をおいて差
し渡した支柱とからなるハーフトンネルの構造、第3に
は、岩盤の斜面又は絶壁の表面に対して路床と内壁面を
有するオーバーハング状の掘削部を形成し、−1−記掘
削部の内壁面に沿って支保工を沿設し、該支保工を路床
開放端近くて支える仮設支柱を建て込み、その上で該支
保工と路床の開放端側間に一定間隔をおいて支柱を差し
渡してなるハーフトンネルの構築方法により、上記目的
を達成しようとするものである。
Means for Solving the Problems> Therefore, the present invention firstly aims to improve the interior of an overhang-shaped excavated portion having a roadbed and an inner wall surface formed by excavating into the surface of a rock slope or cliff. A half-tunnel structure consists of a support installed along the wall surface and supports placed at regular intervals between the support and the open end side of the roadbed. Shoring is installed along the inner wall surface of an overhang-shaped excavated part that has a roadbed and inner wall surface formed by excavating against the surface, and the rock behind the shoring is driven into the shoring. A half tunnel structure consists of rock bolts buried in the ground, and supports placed at regular intervals between the support and the open end of the roadbed. On the other hand, an overhang-shaped excavation part having a roadbed and an inner wall surface is formed, and a shoring is installed along the inner wall surface of the excavated part described in -1-, and a temporary structure that supports the shoring near the open end of the roadbed The above objective is achieved by a method of constructing a half tunnel in which supports are erected and the supports are then passed between the supports and the open end side of the roadbed at a constant interval.

〈作  用〉 つまり、本発明においては、岩盤等にオーバーハング状
の掘削部を形成し、該掘削部の内壁面に沿って沿設した
支保Tと該支保工と路床との開放端側間に一定間隔に支
柱を差し渡しであるので、該内壁面イ1[近の岩盤の変
形を有効に抑制する。殊に、該支保工裏の岩盤にロック
ボルトを埋設せしめると、より岩盤の変形を抑制する。
<Function> In other words, in the present invention, an overhang-shaped excavation part is formed in the rock, etc., and the support T installed along the inner wall surface of the excavation part and the open end side of the support and the roadbed are formed. Since the pillars are placed at regular intervals in between, deformation of the rock near the inner wall surface A1 is effectively suppressed. In particular, if rock bolts are buried in the bedrock behind the shoring, deformation of the bedrock is further suppressed.

本発明たるハーフトンネル構造を施工する際には、先ず
オーバーハング状の掘削部を形成し、l=記掘削部の内
壁面に沿って支保工を沿設したのち、支柱を配設するf
’iiiに仮設支柱を建て込むので、岩盤の崩れを有効
に防止しつつ支柱を一定間隔をおいて配設できる。
When constructing the half tunnel structure of the present invention, an overhang-shaped excavation section is first formed, and shoring is installed along the inner wall surface of the excavation section where l = f.
Since temporary supports will be erected at 'iii, the supports can be placed at regular intervals while effectively preventing rock collapse.

本発明たるハーフトンネルによれば、長大のり面を形成
しないので、掘削範囲か少なく、その掘削もオーバーハ
ング状に掘削するので、崩7 +、の落下による事故の
おそれも解消される。
According to the half tunnel of the present invention, since a long slope is not formed, the excavation area is small, and the excavation is performed in an overhanging manner, thereby eliminating the risk of an accident due to a fall.

〈実 施 例〉 以下本発明ハーフトンネルの構造とその構築方法につい
ての要旨を更に明確にするため図面を使用して実施例を
説明する。
<Example> In order to further clarify the gist of the structure of the half tunnel of the present invention and its construction method, examples will be described below using drawings.

第一実施例として示すハーフトンネルAは、第・ 1図
、第2図に示すように、山岳地帯にお(プる急斜面の岩
盤5を表面よりオーバーハング状の掘削部4を掘削し、
該掘削部4の内壁面2に沿って略くの字型の断面形状を
有する梁状の支保工11を沿設し、該支保工11と路床
3の岩盤表面の開放端間を差し渡すように壁面に沿って
一定間隔を置いて支柱12を設けてなるもので、該皮相
の路床部分には強度を増すため支柱基礎13が形成され
ている。、ハーフI・ンネルAが以上のように構成され
ていることから、長大のり面を形成する必要がなく、し
たがって岩盤掘削の範囲を少なく済ますことができ、該
ハーフトンネル」二部で落石や岩盤か落下したとしても
、ロックシエツト工法の場合のように該落ドにより圧し
潰されることかない。また、道路前幅か狭くてもよいた
め、用地買収も容易となる。
As shown in Figures 1 and 2, the half tunnel A shown as the first embodiment is constructed by excavating an excavation section 4 that overhangs the surface of a rock 5 on a steep slope in a mountainous area.
A beam-shaped shoring 11 having a substantially doglegged cross-sectional shape is installed along the inner wall surface 2 of the excavated portion 4, and extends between the shoring 11 and the open end of the rock surface of the roadbed 3. As shown in FIG. 1, pillars 12 are provided at regular intervals along the wall surface, and pillar foundations 13 are formed on the apparent roadbed portion to increase strength. Since the half tunnel A is constructed as described above, there is no need to form a long slope, and therefore the area of rock excavation can be reduced, and the second part of the half tunnel is free from falling rocks and rock. Even if it falls, it will not be crushed by the fall as in the case of the lock sheet construction method. In addition, the width in front of the road may be narrow, making land acquisition easier.

このハーフトンネルΔは、第4図に示すような手順で行
われる。訂しくは、以下のような方法で横築する3、 ■掘削部 まず、岩盤の斜面又は絶壁の表面に対して掘削し、掘削
部4を形成する。つまり、第4図にいうところの掘削部
を行う。この掘削部4は第5図に示すようなオーバーハ
ング状の断面形状に掘削することにより得られるもので
あり、路床3と内壁面2を有するものである。本#’t
6築方法では、通常対象とする地盤が中硬岩〜硬岩と堅
い岩盤であるため、掘削は発破掘削が主になる。しかし
、発破掘削では、他山に対して緩みを与える危険性があ
ることから、施工には十分注意する必要がある。
This half-tunnel Δ is performed according to the procedure shown in FIG. Specifically, horizontal construction is carried out using the following method. 3. Excavation section First, the excavation section 4 is formed by excavating the surface of a rock slope or cliff. In other words, the excavation portion shown in FIG. 4 is performed. This excavated portion 4 is obtained by excavating to have an overhanging cross-sectional shape as shown in FIG. 5, and has a roadbed 3 and an inner wall surface 2. Book#'t
In the 6 construction method, the target ground is usually medium-hard rock to hard rock, so the excavation is mainly done by blasting. However, with blast excavation, there is a risk of loosening other piles, so great care must be taken during construction.

近年、N A ”T” MによるI・ンネル掘削がさか
んになり、地山を痛めたくないというNΔTM本来の目
的から発破掘削に対して機械掘削技術が進歩してきてい
て、その一つとして、スロット削孔機を利用する硬岩掘
削法、つまり、スロッI・削孔機によりトンネル外周及
び切羽にスロットを削孔することて自由面を形成し、そ
の自由面に囲まれたブロックを高水圧破砕装置や膨張性
破砕材、油圧くさび等で割岩し、その後油圧ブレーカ−
で打撃破砕することにより硬岩を無発破掘削するものが
ある。
In recent years, I/N tunnel excavation by N A "T" M has become popular, and mechanical excavation technology has improved compared to blast excavation due to the original purpose of NΔTM, which is not to damage the ground. A hard rock excavation method using a hole-drilling machine, in other words, a slot I/drilling machine is used to drill slots on the outer circumference and face of the tunnel to form a free surface, and the blocks surrounded by the free surface are subjected to high-hydraulic fracturing. Break the rock using equipment, expandable crushing materials, hydraulic wedges, etc., and then break the rock with a hydraulic breaker.
There is a method for excavating hard rock without blasting by crushing it by impact.

また、ブーム掘削機は、T、 B、 M(+−ンネルポ
ーリングマシン)が、岩盤の全断面を一度に掘削するも
ので、地質の変化が激しく湧水の多い日本においては成
功例が少ないのに対し、費用が安く、工法の変更に対し
て融通用、適応性があり、切削断面の形に制限がなく、
移動設置が簡単で短時間にてきる等のメリットがある。
In addition, the boom excavator uses T, B, and M (+-nel polling machines) to excavate the entire cross section of the rock at once, and there are few success stories in Japan, where the geology is subject to rapid changes and there are many springs. On the other hand, it is inexpensive, flexible and adaptable to changes in construction methods, and there are no restrictions on the shape of the cut cross section.
It has the advantage of being easy to move and install in a short time.

■支保工の建て込み 次に、第4図、第5図に示すように、上記掘削部4の内
壁面2に沿って支保工11を沿設する。該支保工は梁状
に施される。本二[法の場合、地山の変形を押えるため
には、剛性の高い支保工材を用いることか有利である。
■Erection of shoring Next, as shown in FIGS. 4 and 5, shoring 11 is installed along the inner wall surface 2 of the excavated portion 4. The shoring is provided in the form of a beam. In the case of the Honji method, it is advantageous to use highly rigid supporting materials in order to suppress the deformation of the ground.

支保工の部材の標準は1.0mピッチでH形鋼で1.!
5ox 1.50又は200 X 200である。
The standard material for shoring is H-shaped steel with a pitch of 1.0m. !
5ox 1.50 or 200 x 200.

■仮設支柱の建て込み 続いて第5図に示すように、仮設支柱15を建て込む。■Erecting temporary supports Subsequently, as shown in FIG. 5, temporary supports 15 are erected.

これは支柱12を施7Lする前に行うもので、トンネル
のようにアーチ効果を期待てきないため仮設支柱が必ず
必要となる。支保]二は網製とし仮設支柱と連結する必
要がある。該仮設支柱は支社施工後に撤去する。該仮設
支柱の部材の標準は1.0mピッチでI−T形鋼300
 X 300又は400×400である。
This is done before installing the supports 12, and since the arch effect cannot be expected like in a tunnel, temporary supports are always required. The second support should be made of net and connected to the temporary support. The temporary supports will be removed after the branch office is constructed. The standard members of the temporary support are I-T section steel 300 with a pitch of 1.0m.
x 300 or 400 x 400.

■支社の施工 第5図に示すように、支保工と路床の開放端側間に一定
間隔をおいて支柱を施工する。該支柱は施工後の建築限
界を満足するもので、仮設支柱に対してピッチを広げて
美観上の処理を施すものである。第5図に示すように上
部の梁と基礎工を一体化する。支柱の施工完了後には、
支柱の安全性が最も重要となり、支柱の基礎部分が不安
定な場合には、アンカー等により補強を施しておく必要
がある。
■Construction of the branch As shown in Figure 5, construct pillars at a certain interval between the shoring and the open end of the roadbed. The pillars meet the architectural limits after construction, and are aesthetically treated by widening the pitch of the temporary pillars. As shown in Figure 5, the upper beam and foundation work are integrated. After the construction of the pillars is completed,
The safety of the pillar is of paramount importance, and if the foundation of the pillar is unstable, it is necessary to reinforce it with anchors, etc.

■覆工の施工 覆工は掘削面、支保工等の美観処理、掘削面の小崩落に
対する防護、湧水に対する防護等のために行われるもの
で、覆王吹伺コンクリート、プレキャスト覆工等を考慮
して行う。
■Construction of lining Lining is performed for the aesthetic treatment of the excavation surface, shoring, etc., protection against small collapses on the excavation surface, protection against spring water, etc., and is performed using covered concrete, precast lining, etc. Do it with consideration.

次に、第二実施例として示ずハーフトンネルBは、第一
実施例の場合と略同−構成であるが、第3図に示すよう
に、支保工11の天井部111に表面側からロックボル
ト14を打ち込んで、支保工11の天井部111の裏面
の岩盤に埋設ぜしめたものである。該ロツクホルI・1
4は該天井部111の上部から1τ部にかけて適宜間隔
て複数本打ち込まれていて、内壁面2に沿って一定間隔
て配設されている。このようにロックホルト14を設け
れば、T’Theに示す解析によっても分かるように天
井部1月」二部の岩盤の変形が抑制されていてほとんど
変形がない状態となっている。
Next, a half tunnel B (not shown as a second embodiment) has approximately the same configuration as the first embodiment, but as shown in FIG. Bolts 14 are driven into the bedrock on the back side of the ceiling 111 of the shoring 11. The Rockhol I.1
4 are driven into the ceiling portion 111 from the top to the 1τ portion at appropriate intervals, and are arranged at regular intervals along the inner wall surface 2. If the Rockholt 14 is provided in this way, the deformation of the rock in the ceiling part is suppressed and there is almost no deformation, as can be seen from the analysis shown in T'The.

次に、上記構造に基づくハーフトンネルに関して解析を
行う。解析はFEM(有限要素法)により行ったもので
あるが、該FEMは]・ンネルの変形問題等によく用い
られる数値解析であり、これにより掘削に対する変形の
形態、応力状態の変化等が把握できる。また、地盤の物
性値が具体的に得られれば変形量を推定することができ
る。本工法は、地山を痛めずいかに変形量を抑えられる
かが最大のテーマであり、このためFEMによる変形解
析は本工法の採用の可否を判断する重要な役割を果すも
のである。今回の解析においては、テストケースとして
地盤を完全弾性体と仮定している。
Next, a half tunnel based on the above structure will be analyzed. The analysis was performed using FEM (finite element method), which is a numerical analysis often used for tunnel deformation problems, etc., and this allows us to understand the form of deformation due to excavation, changes in stress state, etc. can. Furthermore, if the physical property values of the ground can be specifically obtained, the amount of deformation can be estimated. The main theme of this construction method is how to suppress the amount of deformation without damaging the ground, and for this reason, deformation analysis using FEM plays an important role in determining whether or not this method can be adopted. In this analysis, the ground is assumed to be a perfectly elastic body as a test case.

ここで、FEM解析において弾性解析を行う場合には、
設定する物性値は ■111位体積量ρ(t/m”) ■弾性係数(ヤンク率)T (t/m”)■ポアソン比
ν である。
Here, when performing elastic analysis in FEM analysis,
The physical property values to be set are: 111th volume ρ (t/m"); 2. Elastic modulus (yank modulus) T (t/m"); and 2. Poisson's ratio ν.

ここで、岩石の物性に関して密度ρは ρ−20〜3.0(t/m”) の範囲にある。また、弾性係数Euは、火成岩類の方が
堆積岩類より全体に高い値となる。ポアソン比はシー0
2〜03の範囲にある。
Here, regarding the physical properties of rocks, the density ρ is in the range of ρ-20 to 3.0 (t/m'').Furthermore, the elastic modulus Eu is generally higher in igneous rocks than in sedimentary rocks. Poisson's ratio is C0
It is in the range of 2-03.

また、−軸圧縮強度σ、と岩石の弾性係数E l(の関
係は既存のデータにより、 E、、=303Xσ。
Furthermore, the relationship between the -axial compressive strength σ and the rock's elastic modulus E l (E, , = 303Xσ) is based on existing data.

が読み取れる。can be read.

また、YR石物性と岩盤物性との相関関係は、E=i、
i]3×E、、09130 E・岩盤の弾性係数(kg/cm2) El、:岩石の弾性係数(kg/cm2)である。
In addition, the correlation between YR stone physical properties and rock physical properties is E=i,
i]3×E,, 09130 E・Modulus of elasticity of rock (kg/cm2) El,: Modulus of elasticity of rock (kg/cm2).

また、岩石物性と弾性波速度の関係は、・密度    
11(t/m”)  ρ=2.06dV +、” IL
J”8・−軸圧縮強度σ(kg/cm2)σ−22,8
3Vp2=07・弾性係数  E(kg/cm2)E=
8.156X]OV i、” ””’−、−] ]、 
− ・ポアソン比 ν    シー0./1501(]/V
、、)038”となる。
In addition, the relationship between rock physical properties and elastic wave velocity is: density
11 (t/m”) ρ=2.06dV +,”IL
J"8・-axial compressive strength σ (kg/cm2) σ-22,8
3Vp2=07・Elastic modulus E (kg/cm2) E=
8.156X] OV i, “””'-,-] ],
- Poisson's ratio ν C0. /1501(]/V
,,)038''.

以−lr、のような各物性の相関関係から岩盤の物性を
評価して妥当な物性値を設定することが必要である。
It is necessary to evaluate the physical properties of the rock based on the correlation of each physical property, such as -lr, and to set appropriate physical property values.

なお、FEM解析によって得られる変形量が全体の破壊
に至るものであるかとうかを判断する必要がある。NA
TMI−ンネルの設計、施工では変形を管理しながら掘
削を進めていくため、NΔTMての考え方が参考になる
ものと思われる。
It should be noted that it is necessary to judge whether the amount of deformation obtained by FEM analysis will lead to the destruction of the entire structure. NA
In designing and constructing TMI tunnels, the NΔTM concept will be useful as the excavation will proceed while managing deformation.

例えば、トンネルの内空変位、天端沈下、地中変位など
の変位計測結果から地t、I−+ひずみを逆算しひずみ
の大きさによってトンネルの安全性を定量的に評価する
方法が提案されている。ここで導入されているのが「限
界ひずみ」の考え方であり、破壊ひずみを岩石が破壊す
るときのひずみとすると、限界ひずみは破壊ひずみより
小さい値を取り、安全性に対しては危険な状態を示ずひ
ずみであると考えられる。ここで、限界ひずみは次のよ
うに定義される。
For example, a method has been proposed in which the ground t, I-+ strain is calculated backwards from the results of displacement measurements such as tunnel interior displacement, crown subsidence, underground displacement, etc., and the safety of the tunnel is quantitatively evaluated based on the magnitude of the strain. ing. What is introduced here is the concept of "critical strain." If the fracture strain is the strain at which a rock breaks, the critical strain takes a value smaller than the fracture strain, which is a dangerous state for safety. This is thought to be due to strain. Here, the critical strain is defined as follows.

ε。=σc/E ここて、ε。、限界ひずゐLJc・−
軸圧縮強度 E弾性係数 眼界ひずみは節理等の不連続面の影響をあまり受けない
量である。即ち、不連続面の影響によって一軸圧縮強度
が低下すれば弾性係数も低下し、その程度はほぼ同一で
ある。このことは岩盤の限界ひずみを岩石コアの値から
推定できる可能性を示している。
ε. =σc/E Here, ε. , limit strain LJc・-
The axial compressive strength, E elastic modulus, and ocular field strain are quantities that are not significantly affected by discontinuous surfaces such as joints. That is, if the unconfined compressive strength decreases due to the influence of the discontinuous surface, the elastic modulus also decreases, and the degree of decrease is almost the same. This indicates the possibility of estimating the critical strain of rock from rock core values.

以上のような物性値の設定及び解析結果の評価の方法に
基づいて実際に解析を行ってみる。解析は第6図に示す
手順に従って行われる。実際に解析を行った検問断面は
第7図に示すようなものとし、その物性値の設定は深さ
方向の岩は硬岩になるものと考えて、第7図のように地
盤をa層、1層層、C層、d層の4層に区分して物性値
を設定した。各層の物性値は、以上のように設定した。
An actual analysis will be performed based on the method of setting physical property values and evaluating the analysis results as described above. The analysis is performed according to the procedure shown in FIG. The cross section of the actual analysis was as shown in Figure 7, and the physical property values were set based on the assumption that the rock in the depth direction is hard rock, and the ground was set to layer a as shown in Figure 7. The physical property values were set for four layers: , 1 layer, C layer, and d layer. The physical property values of each layer were set as described above.

(以下余白) なお、ここで第7図において、従来の切上方法では、二
点破線で示すように掘削されることになる。
(The following is a blank space) In addition, in FIG. 7, in the conventional cut-up method, excavation is performed as shown by the two-dot broken line.

荷重条件としては、支保−し、ロックボルトの効果を把
握するために、以下の変形を計算する荷重条件を設定し
た。
In order to grasp the effect of supporting rock bolts, the following load conditions were set to calculate the deformation.

1、掘削による変形 2支保工のある場合の掘削による変形 3、ロツクホルI・工+支保工の場合の掘削による変形 荷重条件はF E M解析ソフl−(Mr、 5OII
−)における次のコマンドを組み合わせて設定する。
1. Deformation due to excavation 2. Deformation due to excavation when there is shoring 3. Deformation due to excavation when there is rockhole I/Shoring
-) is set by combining the following commands.

GRAV   重力荷重(初期応力状態)EXCΔ :
掘削(要素の掘削) BANK  :盛上(支保工等の要素の追加)DLOA
D  分布荷重(ロックボルトのよる荷重)1の場合G
RAV−EXCA 2の場合GRΔV→BANK−IEXCA3の場合GR
Δv−4BΔNK−IDLOAD→EXC八以−にのよ
うな条件で行われた解析結果は以下のようになる。
GRAV Gravity load (initial stress state) EXCΔ:
Excavation (excavation of elements) BANK: Mounding (addition of elements such as shoring) DLOA
D In the case of distributed load (load due to rock bolt) 1G
GRΔV for RAV-EXCA 2 → GR for BANK-IEXCA3
The analysis results performed under the following conditions are as follows: Δv-4BΔNK-IDLOAD→EXC8.

掘削面付近の変形形態は、各荷重条件毎に第8図(△)
〜(I3)に示すようになる。第8図において、破線が
変形前のもの、実線が変形後の状態を示し、同図(A、
)は掘削のみによる変形、同図(B)は支保工のある場
合の変形、同図(C)は支保1.とロックボルトを施し
た場合のそれぞれの荷重条件における変形形態及び変形
度を示している。
The deformation form near the excavation surface is shown in Figure 8 (△) for each load condition.
~(I3). In Fig. 8, the broken line shows the state before deformation, and the solid line shows the state after deformation.
) is the deformation due to excavation only, (B) is the deformation with shoring, and (C) is the deformation with shoring. The figure shows the deformation form and degree of deformation under each load condition when a rock bolt is applied.

第8図において変形図は、最大変位量を基準にスケーリ
ングしであるため、各荷重条件毎に異なる変位スケール
となっている。しかし、変形の状態については比較かで
きる。変形形態から得られる事項をまとめると以下のよ
うになる。
In FIG. 8, the deformation diagram is scaled based on the maximum displacement amount, so the displacement scale is different for each load condition. However, the state of deformation can be compared. The matters obtained from the modified form are summarized as follows.

■掘削による変形においては、掘削大端の解放部が変形
量が最大となるが、支保工を設けた場合には、この変形
量は小さく抑えられていることが分かる。
■In the case of deformation due to excavation, the amount of deformation is greatest at the open part at the large end of the excavation, but it can be seen that this amount of deformation is kept small when shoring is provided.

■また、ロックホルト玉を施した場合には、支保工のみ
の場合にあった天盤部の変形が抑えられていて、はとん
ど変形がない状態となっている。
■Furthermore, when Rockholt beads were applied, the deformation of the top plate that was present when only shoring was used was suppressed, and the structure was almost completely free of deformation.

■支保工を設けた場合は、底盤部が変形量が最大となる
。これは、弾性解析を行っているので、支保工によって
抑制された変形か底盤部に及んだものと考えられる。
■If shoring is provided, the amount of deformation will be greatest at the bottom plate. Since this was an elastic analysis, it is thought that the deformation was suppressed by the shoring, or that the deformation affected the bottom plate.

掘削面(=1近の変形量をまとめてみると、第9図に示
ず接点番号の変形量は縦方向については表1、水平方向
については表2に示すようになる。
If we summarize the amount of deformation near the excavation surface (=1), the amount of deformation of the contact number not shown in Fig. 9 is shown in Table 1 for the vertical direction and Table 2 for the horizontal direction.

(以下余白) 表1     y方向の変化量(cm)表2    X
方向の変化量(cm) −1−記より各荷重ケースによる変化量−を比較すると
、 掘削のみによる変形〉支保工のある場合の変形〉支保王
十ロックホルト王の場合の変形の傾向が得られる。特に
、支保二「は天盤の変形に対して有効に働いていて、例
えば、節点番号106の点における変形の度合は、支保
工がある場合には約4.0mmであるのに対し、支保二
[二かある場合には0、2mmというように約1/20
に抑えられる。、ロックポル1〜工の効果も、ロックポ
ルI・力の大きさや方向を計測結果をもとに変形を抑制
できるように設計ずれば、木工法の安定性に大きな役割
を果すと考えられる。
(Margin below) Table 1 Amount of change in y direction (cm) Table 2
Amount of change in direction (cm) -1- By comparing the amount of change due to each load case, we can find the following trends: deformation due to excavation only, deformation with shoring, and deformation with shoring. It will be done. In particular, the second shoring works effectively against the deformation of the ceiling. For example, the degree of deformation at node number 106 is approximately 4.0 mm when there is shoring, whereas 2 [if there are 2, approximately 1/20 such as 0 and 2 mm
can be suppressed to It is thought that the effects of Rockpol I will play a major role in the stability of the woodworking method if the design is designed to suppress deformation based on the measurement results of the magnitude and direction of Rockpol I force.

なお、本発明は本実施例に限定されるわけてはな(、本
発明の目的、作用及び後述する効果の奏する範囲におい
て任意に定められてよく、これらの変更は本発明の要旨
を何ら変更するものでないことはいうまでもない。
It should be noted that the present invention is not limited to the present examples (but may be arbitrarily defined within the scope of the purpose, operation, and effects described below of the present invention, and these changes do not change the gist of the present invention in any way. Needless to say, this is not something you can do.

〈発明の効果〉 以」−の如く構成される本発明においては、賢盤等に形
成されたオーバーハング状の掘削部の内壁面に沿って沿
設した支保工と該支保工と路床との開放端側間に一定間
隔に支柱を差し渡しであるので、該支保工と支柱とて該
内壁面イー、1近の岩盤の変形を有効に抑制することが
できる。これは、前述の解析結果からも認められるもの
である。
<Effects of the Invention> In the present invention configured as follows, there is provided a support that is installed along the inner wall surface of an overhang-shaped excavation portion formed on a board, etc., and a link between the support and the roadbed. Since the supports are placed at regular intervals between the open end sides of the support structure, deformation of the rock near the inner wall surface can be effectively suppressed by the supports and support supports. This is also recognized from the above-mentioned analysis results.

殊に、該支保工事の岩盤にロックホルトを埋設ぜしめる
と、より官需の変形を抑制する。
In particular, if Rockholt is buried in the bedrock of the support work, deformation of the government demand can be further suppressed.

また、本発明たるハーフトンネル構造の施工に際しては
、先ずオーバーハング状の掘削部を形成し、1−記掘削
部の内壁面に沿って支保工を沿設したのち、支柱を配設
する前に仮設支柱を建て込むので、岩盤の崩れを有効に
防止しつつ支柱を一定間隔をおいて配設てき、前置等の
事故を未然に防止することができ、安全性を高めること
ができる。
In addition, when constructing the half tunnel structure of the present invention, first an overhang-shaped excavation section is formed, and after 1- installing the support along the inner wall surface of the excavation section, before installing the supports. Since temporary supports are erected, the supports can be placed at regular intervals while effectively preventing the rock from collapsing, making it possible to prevent accidents such as front placement, thereby increasing safety.

本発明たるハーフトンネルによれば、長大のり面を形成
しないので、掘削範囲が少なくすることかでき、よって
、施工性を高めることができ、維持%j理も切土工法に
比へて容易となる。特に、掘削をオーバーハング状に行
うので、前置の落下による事故のおそれも解消される。
According to the half tunnel of the present invention, since a long slope is not formed, the excavation area can be reduced, and construction efficiency can therefore be improved, and maintenance is also easier compared to the cutting method. Become. In particular, since the excavation is performed in an overhanging manner, the risk of an accident due to the fore-end falling is also eliminated.

また、用地買収の点てもオーバーハング状に掘削するの
みであるので、買収範囲を少なく湾まずことができる。
In addition, in terms of land acquisition, since only overhanging excavation is required, the acquisition area can be kept small and unobstructed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図はハーフトンネル
の斜視図、第2図はハーフトンネルの断面図、第3図は
ロックホルトを設(プた場合の]\−フトンネルの断面
図、第4図は構築方法を示すフローチャート、第5図は
構築方法を示す説明図、第6図は解析方法を示すフロー
チャー1・、第7図は解析に使用した地盤の形状を示す
断面図、第8図(A)〜(C)は掘削のみによる変形、
支保工のある場合の変形、支保工とロックポルI・を施
した場合の変形の各場合の変形度を示す説明図、第9図
は節点番号を示す説明図である。 A:ハーフトンネル   BハーフI・ンネル11:支
保工      111・天井部112:側面部   
   12・支柱13:支柱基礎     140ック
ホルト2°内壁面      3路床 4掘削部:      5・岩盤
The drawings show an embodiment of the present invention, and FIG. 1 is a perspective view of a half tunnel, FIG. 2 is a cross-sectional view of the half tunnel, and FIG. , Figure 4 is a flowchart showing the construction method, Figure 5 is an explanatory diagram showing the construction method, Figure 6 is flowchart 1 showing the analysis method, and Figure 7 is a cross-sectional view showing the shape of the ground used in the analysis. , Figures 8(A) to (C) show deformation due to excavation only;
FIG. 9 is an explanatory diagram showing the degree of deformation in each case of deformation with shoring and deformation with shoring and rockpol I. FIG. 9 is an explanatory diagram showing node numbers. A: Half tunnel B Half I tunnel 11: Shoring 111 Ceiling section 112: Side section
12. Strut 13: Strut foundation 140 Kholt 2° inner wall surface 3 Subgrade 4 Excavation part: 5. Bedrock

Claims (1)

【特許請求の範囲】 1)岩盤の斜面又は絶壁の表面に対して掘削して形成し
た路床(3)と内壁面(2)を有するオーバーハング状
の掘削部(4)の内壁面に沿って沿設した支保工(11
)と、該支保工と路床の開放端側間に一定間隔をおいて
差し渡した支柱(12)とからなることを特徴とするハ
ーフトンネルの構造。 2)岩盤の斜面又は絶壁の表面に対して掘削して形成し
た路床(3)と内壁面(2)を有するオーバーハング状
の掘削部(4)の内壁面に沿って沿設した支保工(11
)と、該支保工に対して打ち込んで支保工裏の岩盤に埋
設してなるロックボルト(14)と、該支保工と路床の
開放端側間に一定間隔をおいて差し渡した支柱(12)
とからなることを特徴とするハーフトンネルの構造。 3)岩盤の斜面又は絶壁の表面に対して路床(3)と内
壁面(2)を有するオーバーハング状の掘削部(4)を
形成し、上記掘削部の内壁面に沿って支保工(11)を
沿設し、該支保工を路床開放端近くで支える仮設支柱(
15)を建て込み、その上で該支保工と路床の開放端側
間に一定間隔をおいて支柱(11)を差し渡してなるこ
とを特徴とするハーフトンネルの構築方法。
[Claims] 1) Along the inner wall surface of an overhang-shaped excavated portion (4) having a roadbed (3) and an inner wall surface (2) formed by excavating into the surface of a rock slope or cliff. Shoring installed along the road (11
), and struts (12) extending at regular intervals between the shoring and the open end side of the roadbed. 2) Shoring installed along the inner wall surface of an overhang-shaped excavated portion (4) that has a roadbed (3) and an inner wall surface (2) formed by excavating into the surface of a rock slope or cliff. (11
), a rock bolt (14) driven into the support and buried in the bedrock behind the support, and a pillar (12) inserted at a constant interval between the support and the open end side of the roadbed. )
A half tunnel structure characterized by consisting of. 3) An overhanging excavation section (4) having a roadbed (3) and an inner wall surface (2) is formed on the surface of a rock slope or cliff, and shoring ( 11) along the road and support the support near the open end of the roadbed (
15), and furthermore, a support (11) is inserted at a constant interval between the support and the open end side of the roadbed.
JP2331381A 1990-11-28 1990-11-28 Half tunnel structure and half tunnel construction method Expired - Fee Related JPH0786240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331381A JPH0786240B2 (en) 1990-11-28 1990-11-28 Half tunnel structure and half tunnel construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331381A JPH0786240B2 (en) 1990-11-28 1990-11-28 Half tunnel structure and half tunnel construction method

Publications (2)

Publication Number Publication Date
JPH04198593A true JPH04198593A (en) 1992-07-17
JPH0786240B2 JPH0786240B2 (en) 1995-09-20

Family

ID=18243054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331381A Expired - Fee Related JPH0786240B2 (en) 1990-11-28 1990-11-28 Half tunnel structure and half tunnel construction method

Country Status (1)

Country Link
JP (1) JPH0786240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013074A1 (en) * 2005-07-26 2007-02-01 Naaman, Ofer A method for tunnel construction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957645A (en) * 1972-10-03 1974-06-04
JPS6016698A (en) * 1983-07-05 1985-01-28 日本国有鉄道 Pipe parallelly arranging method
JPS6161000A (en) * 1984-08-31 1986-03-28 株式会社 寺田土木 Building of garage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957645A (en) * 1972-10-03 1974-06-04
JPS6016698A (en) * 1983-07-05 1985-01-28 日本国有鉄道 Pipe parallelly arranging method
JPS6161000A (en) * 1984-08-31 1986-03-28 株式会社 寺田土木 Building of garage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013074A1 (en) * 2005-07-26 2007-02-01 Naaman, Ofer A method for tunnel construction

Also Published As

Publication number Publication date
JPH0786240B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
Clough et al. Design and performance of excavations and tunnels in soft clay
Fookes et al. Stabilization and control of local rock falls and degrading rock slopes
Shi et al. Sub-horizontal reinforcement of weathered granite before tunneling beneath a spillway
Ergun Deep excavations
Haile A mechanistic evaluation and design of tunnel support systems for deep level South African mines.
JPH04198593A (en) Construction of half tunnel and construction method thereof
Lizzi ‘Pali radice’structures
Broms Design and construction of anchored and strutted sheet pile walls in soft clay
Lu et al. Damage of new Sanyi railway tunnel during the 1999 Chi-Chi earthquake
Lim et al. Performance of Cross and Buttress Walls to Control Wall Deflection Induced by Deep Excavation in Dense Urban Area.
Jayarama et al. Geotechnical challenges of conventional tunnelling underneath sensitive structures
Chopra et al. Case Studies of Railway Tunnelling on Udhampur—Katra Section
Garg et al. Planning, Design & Construction of Diversion Tunnel for Arun-3 HEP (900 MW) in Nepal-A Case Study
Menkiti et al. Tunneling in complex ground conditions in Bolu, Turkey
Jardaneh Assessment of Local Excavation Support Systems: A Case Study of‎ Nablus City, Palestine
Xing et al. Deformation and mechanic response of surrounding rock mass during shallow buried large-section tunnel excavation
Nagendra Challenge of tunnelling through the Main Boundary Thrust in Tunnel T1 of the Katra-Dharam Section of the Udhampur-Srinagar-Baramulla Rail Link Project
Lee et al. Geotechnical design and construction of Chandler Highway upgrade project in Melbourne
Boone et al. Design, construction, and performance of a deep braced excavation
Schoenwolf¹ et al. Underreamed Drilled Shafts Installed Using Slurry Methods
Liew Case Studies of Support of Open Excavations and Distressed Retaining Walls in Malaysia
Lunardi The therapy phase
Khali Construction of Railway Tunnels in Highly Adverse Geological Conditions in Himalayas by Using NATM–A Case Study
Koronakis et al. Special design methods for construction of tunnel portals in areas with extremely steep morphology
Stauffer et al. Observations and performance of a soil nail shoring wall in Seattle silts and clays

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees