JPH04198308A - Acrylamide copolymer - Google Patents

Acrylamide copolymer

Info

Publication number
JPH04198308A
JPH04198308A JP2331085A JP33108590A JPH04198308A JP H04198308 A JPH04198308 A JP H04198308A JP 2331085 A JP2331085 A JP 2331085A JP 33108590 A JP33108590 A JP 33108590A JP H04198308 A JPH04198308 A JP H04198308A
Authority
JP
Japan
Prior art keywords
formula
structural unit
acrylamide
copolymer
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2331085A
Other languages
Japanese (ja)
Other versions
JP2535668B2 (en
Inventor
Hideyuki Sumi
英行 角
Hiroshi Hotta
寛史 堀田
Manabu Kikuta
学 菊田
Shigeo Kamijukkoku
成夫 上拾石
Masashi Takeda
武田 正志
Osamu Wada
理 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd, Toray Industries Inc filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2331085A priority Critical patent/JP2535668B2/en
Priority to US07/797,868 priority patent/US5202193A/en
Priority to EP19910120203 priority patent/EP0492163B1/en
Priority to DE69120042T priority patent/DE69120042T2/en
Priority to KR1019910021461A priority patent/KR100186870B1/en
Publication of JPH04198308A publication Critical patent/JPH04198308A/en
Application granted granted Critical
Publication of JP2535668B2 publication Critical patent/JP2535668B2/en
Priority to HK98104025A priority patent/HK1005314A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide the subject copolymer containing linearly and randomly arranged ethylene structural unit, acrylate structural unit and acrylamide structural unit containing quaternary ammonium salt and useful as an antistatic agent, etc., applicable without deteriorating the transparency, strength, elongation, etc., of the molded article. CONSTITUTION:The objective copolymer having a weight-average molecular weight of 1,000-50,000 and containing the structural unit of formula IV derived from the structural unit of formula III can be produced by dropping and reacting a compound of formula R<5>X (R<5> is 1-12C alkyl; X is halogen, etc.) (e.g. methyl iodide) to an organic solvent solution of a linear random copolymer of 65-99mol% of ethylene structural unit of formula I, 0-15mol% of acrylate structural unit of formula II (R<1> is 1-4C alkyl) and 1-35mol% of acrylic acid structural unit of formula III (R<2> is 2-8C alkylene; R<3> and R<4> are 1-4C alkyl).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアクリルアミド系共重合体およびそれに有用な
中間体に関する。さらに詳しくは、帯電防止剤として好
適に使用しうるアクリルアミド系共重合体およびそれに
有用な中間体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an acrylamide copolymer and intermediates useful therefor. More specifically, the present invention relates to an acrylamide copolymer that can be suitably used as an antistatic agent and intermediates useful therefor.

〔従来の技術〕[Conventional technology]

ポリオレフィン系樹脂、ABS樹脂、塩化ビニル系樹脂
などの熱可塑性樹脂は、フィルム、袋体などとして包装
材料や自動車部品などの材料に従来から汎用されている
が、これらの熱可塑性樹脂は一般に電気抵抗が大きく、
摩擦によって容易に帯電し、塵などを吸引するという重
大な欠点があった。
Thermoplastic resins such as polyolefin resins, ABS resins, and vinyl chloride resins have traditionally been widely used as packaging materials such as films and bags, and as materials for automobile parts. However, these thermoplastic resins generally have low electrical resistance. is large,
It had the serious drawback that it easily became electrostatically charged due to friction and attracted dust.

そこで、近年熱可塑樹脂に帯電防止能を付与する方法と
して、たとえば (イ)帯電防止剤を樹脂表面に塗布したのち乾燥する方
法、 (2)内部添加型帯電防止剤を樹脂中に練り込む方法、 (ハ)シリコーン系化合物を樹脂表面に塗布する方法、 に)樹脂自体を改質する方法 などが提案されている。
Therefore, in recent years, methods for imparting antistatic properties to thermoplastic resins include (a) a method of applying an antistatic agent to the resin surface and then drying it, and (2) a method of kneading an internally added antistatic agent into the resin. (3) A method of applying a silicone compound to the resin surface, and (2) A method of modifying the resin itself.

しかしながら、前記印の方法では、帯電防止剤として界
面活性剤溶液が用いられているが、このような帯電防止
剤は、洗浄により容易に除去されるため、恒久的な帯電
防止能を付与することができないという欠点がある。
However, in the method marked above, a surfactant solution is used as an antistatic agent, but such an antistatic agent is easily removed by washing, so it cannot impart permanent antistatic ability. The disadvantage is that it cannot be done.

前記(ロ)の方法では、内部添加型帯電防止剤としてグ
リセリン脂肪酸エステル、ソルビタン脂肪酸エステル、
アルキルジェタノールアミド、アルキルベンゼンスルホ
ン酸ナトリウム、アルキルイミダゾールの4級塩などが
用いられている。これらの内部添加型帯電防止剤を用い
たばあいには、表面の帯電防止剤が洗浄により失なわれ
たばあいであっても、その内部から新たな帯電防止剤が
順次ブリードするため、帯電防止能が比較的長期間永続
するという利点がある。
In the method (b) above, glycerin fatty acid ester, sorbitan fatty acid ester,
Alkyl jetanolamide, sodium alkylbenzene sulfonate, quaternary salts of alkylimidazole, and the like are used. When these internally added antistatic agents are used, even if the antistatic agent on the surface is lost by washing, new antistatic agent bleeds from inside, so the static It has the advantage that the preventive ability lasts for a relatively long period of time.

しかしながら、このような内部添加型帯電防止剤には、
洗浄後に帯電防止能が回復するまでに長時間を要し、ま
た帯電防止剤が過度にブリードしたばあいには、粘着性
が生じ、かえって塵などが付着しやすくなるという欠点
があるほか、これらの帯電防止剤は低分子量のものであ
るため、たとえば高温での成形加工時の熱により揮散す
るので、必要以上の帯電防止剤を添加する必要があると
いう不利益や、その有効量を調整することが困難であっ
た。
However, such internally added antistatic agents,
It takes a long time for the antistatic ability to recover after cleaning, and if the antistatic agent bleeds out excessively, it becomes sticky, making it easier for dust to adhere to it. Since the antistatic agent has a low molecular weight, it volatilizes due to the heat generated during molding processing at high temperatures, so there is a disadvantage that it is necessary to add more antistatic agent than necessary, and it is difficult to adjust its effective amount. It was difficult.

前記内部添加型帯電防止剤の欠点を解消するものとして
、近時、メトキシ基の20〜80モル%がジェタノール
アミン変性されたポリメチルメタクリレート(特開平1
−170603号公報)、アルコキシポリエチレングリ
コールメタクリレートのグラフト共重合体(特公昭58
−3.9860号公報)、スチレン−無水マレイン酸共
重合体をイミド変性したのち、4級化しカチオン化した
ポリマー(特公平]−29820号公報)、末端がカル
ボキシル基のポリメチルメタクリレートをグリシジルメ
タクリレートで末端カルボキシル基をメタクリロイル基
に変換した高分子量単量体とアミノアルキルアクリル酸
エステルまたはアクリルアミドとのくし型共重合体およ
びその4級化カチオン変性品(特開昭62−12171
7号公報)などの制電性官能基を有する高分子化合物が
提案されている。しかしながら、前記高分子化合物は、
いずれも透明性、強伸度などの樹脂の物性の低下を招き
、しかも帯電防止能および耐久性が不充分であるなどの
欠点があった。
In order to overcome the drawbacks of the internally added antistatic agent, polymethyl methacrylate (JP-A-1999-10001), in which 20 to 80 mol% of the methoxy groups are modified with jetanolamine, has recently been developed.
-170603), a graft copolymer of alkoxypolyethylene glycol methacrylate (Japanese Patent Publication No. 170603),
-3.9860 Publication), imide-modified styrene-maleic anhydride copolymer and then quaternized and cationized polymer (Special Publication Publication No.-29820), polymethyl methacrylate with a carboxyl group at the end and glycidyl methacrylate. A comb-shaped copolymer of a high molecular weight monomer whose terminal carboxyl group has been converted into a methacryloyl group and an aminoalkyl acrylic acid ester or acrylamide, and its quaternized cation-modified product (JP-A-62-12171
Polymer compounds having antistatic functional groups such as Japanese Patent Publication No. 7) have been proposed. However, the polymer compound
All of them had drawbacks such as deterioration of physical properties of the resin such as transparency and strength and elongation, and also insufficient antistatic ability and durability.

前記(ハ)の方法では、帯電防止能が半永久的に持続す
るが、シリコーン系化合物は高価であり、また作業効率
がわるいので、コスト面で不利テあった。
In the method (c), the antistatic ability lasts semi-permanently, but the silicone compound is expensive and the work efficiency is poor, so it is disadvantageous in terms of cost.

また、前記に)の方法は、樹脂に親水性基を導入する方
法であるが、充分な帯電防止能を付与せしめるためには
、かなりの量の親水性基を導入する必要があり、このよ
うに親水性基を導入したばあいには、樹脂そのものの耐
吸湿性の低下、機械的性質の低下を招くおそれがあった
In addition, the method (above) is a method of introducing hydrophilic groups into the resin, but in order to impart sufficient antistatic ability, it is necessary to introduce a considerable amount of hydrophilic groups. If a hydrophilic group is introduced into the resin, there is a risk that the moisture absorption resistance and mechanical properties of the resin itself will be lowered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、本発明者らは、前記従来技術に鑑みて半永久的
に帯電防止能にすぐれることは勿論のこと、樹脂の物性
をほとんど低下させることがなく、また成形品のブロッ
キングを生じにくい帯電防止剤として好適に使用しうる
化合物を見出すべく鋭意研究を重ねた結果、前記物性を
すべて同時に具備した化合物をようやく見出し、本発明
を完成するにいたった。
Therefore, in view of the above-mentioned conventional technology, the present inventors have developed a method that not only has excellent semi-permanent antistatic ability, but also hardly reduces the physical properties of the resin and is less likely to cause blocking of the molded product. As a result of intensive research in order to find a compound that can be suitably used as a drug, a compound that simultaneously possesses all of the above-mentioned physical properties was finally discovered, and the present invention was completed.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、■式: %式% で表わされるエチレン構造単位65〜99モル%、−数
式: (式中、R1は炭素数1〜4のアルキル基を示す)で表
わされるアクリレート構造単位0〜15モル%および一
般式: (式中、R2は炭素数2〜8のアルキレン基、Rおよび
R4はそれぞれ炭素数1〜4のアルキル基、R5は炭素
数1〜12のアルキル基、炭素数1〜12のアリールア
ルキル基または炭素数1〜12の指環アルキル基、Xは
ハロゲン原子、CH0803または CH0803を示す)で表わされるアクリルアミド構造
単位1〜35モル%からなる線状に不規則に配列した重
量平均分子量1000〜50000のアクリルアミド系
共重合体、および■式:%式%) で表わされるエチレン構造単位65〜99モル%、−数
式: (式中、R1は炭素数1〜4のアルキル基を示す)で表
わされるアクリレート構造単位θ〜15モル%および一
般式: (式中、R2は炭素数2〜8のアルキレン基、R3およ
びR4はそれぞれ炭素数1〜4のアルキル基を示す)で
表わされるアクリルアミド構造単位1〜35モル%から
なる線状に不規則に配列した重量平均分子量1000〜
50(100のアクリルアミド系共重合体の中間体に関
する。
That is, the present invention provides 65 to 99 mol% of ethylene structural units represented by the formula: % formula %, -acrylate structural units represented by the formula: (wherein R1 represents an alkyl group having 1 to 4 carbon atoms) 0 to 15 mol% and general formula: (wherein, R2 is an alkylene group having 2 to 8 carbon atoms, R and R4 are each an alkyl group having 1 to 4 carbon atoms, R5 is an alkyl group having 1 to 12 carbon atoms, carbon A linearly irregularly arranged acrylamide structural unit consisting of 1 to 35 mol% of an acrylamide structural unit represented by an arylalkyl group having 1 to 12 carbon atoms or a ring alkyl group having 1 to 12 carbon atoms, where X is a halogen atom, and represents CH0803 or CH0803. an acrylamide copolymer having a weight average molecular weight of 1,000 to 50,000, and 65 to 99 mol% of ethylene structural units represented by formula: acrylate structural unit θ to 15 mol% represented by the following formula: 1 to 35 mol% of acrylamide structural units represented by linearly irregularly arranged weight average molecular weight of 1000 to 35%
50 (Relating to an intermediate of the acrylamide copolymer of 100).

〔作用および実施例〕[Function and Examples]

本発明のアクリルアミド系共重合体は、前記したように
、式: %式% で表わされるエチレン構造単位65〜99モル%、一般
式: (式中1.]は炭素数1〜4のアルキル基を示す)で表
わされるアクリレート構造単位0〜15モル%および一
般式: (式中、R2は炭素数2〜8のアルキレン基、Rおよび
R4はそれぞれ炭素数1〜4のアルキル基、R5は炭素
数1〜12のアルキル基、炭素数1〜12のアリールア
ルキル基または炭素数1〜12の脂環アルキル基、Xは
ハロゲン原子、CH30SO3またはC2H50S03
を示す)で表わされるアクリルアミド構造単位1〜35
モル%からなる線状に不規則に配列した重量平均分子量
1000〜50000のアクリルアミド系共重合体であ
る。
As described above, the acrylamide copolymer of the present invention has 65 to 99 mol% of ethylene structural units represented by the formula: 0 to 15 mol% of acrylate structural units represented by the general formula: Alkyl group having 1 to 12 carbon atoms, arylalkyl group having 1 to 12 carbon atoms, or alicyclic alkyl group having 1 to 12 carbon atoms, X is a halogen atom, CH30SO3 or C2H50S03
acrylamide structural units 1 to 35 represented by
It is an acrylamide-based copolymer having a weight average molecular weight of 1,000 to 50,000 and randomly arranged in a linear manner consisting of mol%.

本発明のアクリルアミド系共重合体中の式:%式% で表わされるエチレン構造単位の割合は65〜99モル
%である。該エチレン構造単位の割合が65モル%未満
であるばあいには、本発明のアクリルアミド系共重合体
の軟化点が低くなり、熱可塑性樹脂に配合したときに、
タックやベタツキが生じ、また99モル%をこえるばあ
いには、本発明のアクリルアミド系共重合体の帯電防止
能が小さくなりすぎるようになる。なお、本発明におい
ては、前記エチレン構造単位の割合は、軟化点および帯
電防止能の釣り合いの点から、85〜97モル%である
ことがとくに好ましい。
The proportion of ethylene structural units represented by the formula: % in the acrylamide copolymer of the present invention is 65 to 99 mol%. When the proportion of the ethylene structural unit is less than 65 mol%, the softening point of the acrylamide copolymer of the present invention becomes low, and when blended with a thermoplastic resin,
Tackiness and stickiness occur, and if it exceeds 99 mol%, the antistatic ability of the acrylamide copolymer of the present invention becomes too small. In the present invention, the proportion of the ethylene structural unit is particularly preferably 85 to 97 mol% from the viewpoint of balancing the softening point and antistatic ability.

本発明のアクリルアミド系共重合体中の一般式: (式中、R1は前記と同じ)で表わされるアクリレート
構造単位の割合は0〜15モル%である。
The proportion of acrylate structural units represented by the general formula: (wherein R1 is the same as above) in the acrylamide copolymer of the present invention is 0 to 15 mol%.

該アクリレート構造単位の割合が15モル%をこえるば
あいには、本発明のアクリルアミド系共重合体の軟化点
が低くなり、熱可塑性樹脂に配合したときにタックやベ
タツキが生じるようになる。本発明において、前記アク
リレート構造単位が含まれているばあいには、熱可塑性
樹脂に配合したときに強靭性および耐衝撃性が付与され
るので好ましい。なお、本発明においては、前記アクリ
レート構造単位の割合は、軟化点と強靭性および耐衝撃
性との釣り合いの点から、1〜15モル%、なかんづく
3〜7モル%であることがとくに好ましい。
If the proportion of the acrylate structural unit exceeds 15 mol%, the softening point of the acrylamide copolymer of the present invention will be low, resulting in tackiness or stickiness when blended into a thermoplastic resin. In the present invention, it is preferable that the acrylate structural unit is contained because it imparts toughness and impact resistance when blended into the thermoplastic resin. In the present invention, the proportion of the acrylate structural unit is particularly preferably 1 to 15 mol%, particularly 3 to 7 mol%, from the viewpoint of a balance between softening point, toughness, and impact resistance.

前記アクリレート構造単位において 、Iは炭素数1〜
4のアルキル基である。かかるR】の具体例としては、
メチル基、エチル基、n−プロピル基、i−プロピル基
、n−ブチル基、1−ブチル基があげられ、これらの基
は1分子中に混在してもよい。なお、これらの基のなか
では、メチル基およびエチル基はえられるアクリルアミ
ド系共重合体の軟化点を維持するうえでとくに好ましい
ものである。
In the acrylate structural unit, I has 1 to 1 carbon atoms.
4 is an alkyl group. As a specific example of such R,
Examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, and 1-butyl group, and these groups may be mixed in one molecule. Among these groups, methyl and ethyl groups are particularly preferred in order to maintain the softening point of the resulting acrylamide copolymer.

本発明のアクリルアミド系共重合体中の一般式: %式% (式中、R,R,RおよびR5は前記と同じ)で表わさ
れるアクリルアミド構造単位の割合は1〜35モル%で
ある。該アクリルアミド構造単位の割合が1モル%未満
であるばあいには、帯電防止能が小さくなりすぎ、また
35モル%をこえるばあいには、本発明のアクリルアミ
ド系共重合体を熱可塑性樹脂に配合したときに吸湿性が
生じるようになる。なお、本発明においては、前記アク
リルアミド構造単位の割合は、帯電防止能および吸湿性
の釣り合いの点から、3〜15モル%であることがとく
に好ましい。
The proportion of acrylamide structural units represented by the general formula: % (in the formula, R, R, R and R5 are the same as above) in the acrylamide copolymer of the present invention is 1 to 35 mol%. When the proportion of the acrylamide structural unit is less than 1 mol%, the antistatic ability becomes too small, and when it exceeds 35 mol%, the acrylamide copolymer of the present invention is not used in the thermoplastic resin. When blended, it becomes hygroscopic. In the present invention, the proportion of the acrylamide structural unit is particularly preferably 3 to 15 mol% from the viewpoint of balancing antistatic ability and hygroscopicity.

前記アクリルアミド構造単位において、R2は炭素数2
〜8のアルキレン基である。かかるR2の具体例として
は、たとえばエチレン基、プロピレン基、ヘキサメチレ
ン基、ネオペンチレン基などがあげられ、これらの基は
1分子中に混在していてもよい。なお、これらの基のな
かでは、製造の容易性および経済性の面からエチレン基
およびプロピレン基が好ましく、とくにプロピレン基が
好ましい。
In the acrylamide structural unit, R2 has 2 carbon atoms.
~8 alkylene group. Specific examples of such R2 include, for example, ethylene group, propylene group, hexamethylene group, neopentylene group, etc., and these groups may be mixed in one molecule. Among these groups, ethylene groups and propylene groups are preferred from the viewpoint of ease of production and economy, with propylene groups being particularly preferred.

前記R3およびR4はそれぞれ炭素数1〜4のアルキル
基である。かかるR およびR4の具体例としては、メ
チル基、エチル基、プロピル基、ブチル基があげられ、
これらの基は1分子中に混在していてもよい。なお、こ
れらの基のなかでは、帯電防止能付与の点からメチル基
およびエチル基が好ましい。
R3 and R4 are each an alkyl group having 1 to 4 carbon atoms. Specific examples of such R and R4 include a methyl group, an ethyl group, a propyl group, a butyl group,
These groups may be mixed in one molecule. Among these groups, methyl and ethyl groups are preferred from the viewpoint of imparting antistatic ability.

前記R5は炭素数1〜j2のアルキル基、炭素数1〜1
2のアリールアルキル基または炭素数1〜12の脂環ア
ルキル基である。かかる R5の具体例としては、たと
えばメチル基、エチル基、n−プロピル基、i−プロピ
ル基、n−ブチル基、5ec−ブチル基、n−オクチル
基、n−ラウリル基、などのアルキル基;ベンジル基な
どのアリールアルキル基;シクロヘキシル基、メチルシ
クロヘキシル基などの脂環アルキル基があげられ、これ
らの基は1分子中に混在していてもよい。
R5 is an alkyl group having 1 to j2 carbon atoms, and 1 to 1 carbon atoms.
2 arylalkyl group or an alicyclic alkyl group having 1 to 12 carbon atoms. Specific examples of such R5 include alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 5ec-butyl group, n-octyl group, n-lauryl group; Examples include arylalkyl groups such as benzyl group; alicyclic alkyl groups such as cyclohexyl group and methylcyclohexyl group, and these groups may be mixed in one molecule.

なお、前記R5としては、本発明のアクリルアミド系共
重合体の耐熱性の観点から、直鎖状アルキル基およびア
リールアルキル基が好ましく、また帯電防止能付与の観
点から低級アルキル基が好ましい。とくに好ましいR5
としては、メチル基およびエチル基があげられる。
Note that R5 is preferably a linear alkyl group or an arylalkyl group from the viewpoint of heat resistance of the acrylamide copolymer of the present invention, and is preferably a lower alkyl group from the viewpoint of imparting antistatic ability. Particularly preferred R5
Examples include methyl and ethyl groups.

前記Xは、たとえばCI、Br、 lなどのハロゲン原
子、CH08O3または C2H50S03であり、これらは1分子中に混在して
いてもよい。なお、これらのなかでは、帯電防止能の点
からC1、CH08O3およびCH08O3が好ましい
The above X is, for example, a halogen atom such as CI, Br, or 1, CH08O3 or C2H50S03, and these may be mixed in one molecule. Among these, C1, CH08O3 and CH08O3 are preferred from the viewpoint of antistatic ability.

本発明のアクリルアミド系共重合体の重量平均分子量は
、1000〜50000である。該重量平均分子量が1
000未満であるばあいには、分子量が小さくなりすぎ
て本発明のアクリルアミド系共重合体を熱可塑性樹脂に
配合し、加熱したときに揮散じ、また50(100をこ
えるばあいには、本発明のアクリルアミド系共重合体を
熔融したときの粘度が大きくなりすぎ、作業性がわるく
なる。好ましい重量平均分子量は3000〜35NOで
ある。
The weight average molecular weight of the acrylamide copolymer of the present invention is 1,000 to 50,000. The weight average molecular weight is 1
If it is less than 000, the molecular weight will be too small and it will volatilize when the acrylamide copolymer of the present invention is blended with a thermoplastic resin and heated. When the acrylamide copolymer of the invention is melted, the viscosity becomes too high, resulting in poor workability.The preferred weight average molecular weight is 3000 to 35 NO.

なお、本明細書でいう重量平均分子量とは、ゲルパーミ
ュエーションクロマトグラフィー(GPC)で測定した
単分散のポリスチレン換算の重量平均分子量をいう。
Note that the weight average molecular weight as used herein refers to the weight average molecular weight in terms of monodisperse polystyrene measured by gel permeation chromatography (GPC).

本発明のアクリルアミド系共重合体は、テトラハイドロ
フラン(THF)やキシレンなどの通常のゲルパーミュ
エーションの溶離液に難溶であるので容易には測定する
ことができないが、超高温GPC法(絹用、高分子論文
集、44巻、2号、139〜1’41頁(1987年)
)にしたがって測定することかできる。
The acrylamide copolymer of the present invention cannot be easily measured because it is poorly soluble in ordinary gel permeation eluents such as tetrahydrofuran (THF) and xylene. For silk, Polymer Papers, Vol. 44, No. 2, pp. 139-1'41 (1987)
) can be measured according to

本発明のアクリルアミド系共重合体の中間体である式: %式% で表わされるエチレン構造単位、−数式・(式中、R1
は前記と同じ)で表わされるアクリレート構造単位およ
び一般式・ (式中、R,RおよびR4は前記と同じ)で表わされる
アクリルアミド構造単位からなる線状に不規則に配列し
た重量平均分子量1000〜50000のアクリルアミ
ド系共重合体の中間体は、たとえば以下の方法によって
えられる。
The intermediate of the acrylamide copolymer of the present invention is an ethylene structural unit represented by the formula: %formula%
are the same as above) and acrylamide structural units represented by the general formula (wherein R, R and R4 are the same as above) linearly irregularly arranged with a weight average molecular weight of 1000 to 50,000 acrylamide copolymer intermediate can be obtained, for example, by the following method.

まず、本発明のアクリルアミド系共重合体の中間体を製
造するための原料としては、とくに限定はないが、より
有利にはエチレン (c、、H4)と−数式: C82C)(COOR(式中、R1は前記と同じ)で表
わされるアクリレートとからなる共重合体の(部分)加
水分解物が用いられる。かかる共重合体は、エチレンと
前記アクリレートを高圧重合法で共重合させることによ
って容易にえられる。
First, the raw materials for producing the intermediate of the acrylamide copolymer of the present invention are not particularly limited, but more preferably ethylene (c, , H4) and - formula: C82C) (COOR (in the formula , R1 is the same as above)).Such a copolymer can be easily produced by copolymerizing ethylene and the acrylate using a high-pressure polymerization method. available.

前記エチレンに由来するエチレン構造単位と前記アクリ
レートに由来するアクリレート構造単位との比率は、え
られるアクリルアミド系共重合体のエチレン構造単位、
アクリレート構造単位およびアクリルアミド構造単位の
比率を決定することになるので、エチレンと前記−数式
で表わされるアクリレートのモル比(エチレン/アクリ
レート)は、(エチレン構造単位)/〔(アクリレート
構造単位)+(アクリルアミド構造単位)〕と等しくな
るように共重合体される。
The ratio of the ethylene structural unit derived from ethylene and the acrylate structural unit derived from the acrylate is determined by the ethylene structural unit of the acrylamide copolymer to be obtained,
Since the ratio of acrylate structural units and acrylamide structural units is determined, the molar ratio of ethylene to acrylate (ethylene/acrylate) represented by the above formula is (ethylene structural units)/[(acrylate structural units) + ( acrylamide structural unit)].

前記共重合体は、そのままでも用いうるが、分子量が大
きいので、たとえば水の存在下で高温高圧下で加水分解
と同時に熱分解を行なう減成方法により低分子量化され
ることが好ましい。
The copolymer can be used as it is, but since it has a large molecular weight, it is preferable to reduce its molecular weight by a degradation method in which hydrolysis and thermal decomposition are simultaneously carried out under high temperature and high pressure in the presence of water, for example.

このとき、アクリレートに起因する一般式・(式中、R
1は前記と同じ)で表わされるアクリレート構造単位の
全部または一部が加水分解により式: で表わされるアクリル酸構造単位となる。
At this time, the general formula (where R
All or part of the acrylate structural unit represented by (1 is the same as above) becomes an acrylic acid structural unit represented by the formula: by hydrolysis.

前記共重合体を熱分解することにより低分子量化した共
重合体を調製するためには、水の存在下に、前記共重合
体を反応温度150〜500℃、反応圧力3〜500k
g / cm2で熱による分子切断により製造しうる。
In order to prepare a copolymer having a lower molecular weight by thermally decomposing the copolymer, the copolymer is heated at a reaction temperature of 150 to 500° C. and a reaction pressure of 3 to 500 K in the presence of water.
g/cm2 by thermal molecular cleavage.

また、本発明において、アクリル酸構造単位の割合は、
水の仕込み割合、反応温度、圧力、時間などによって任
意に調整しうる。
Furthermore, in the present invention, the proportion of acrylic acid structural units is
It can be arbitrarily adjusted by adjusting the water charging ratio, reaction temperature, pressure, time, etc.

前記減成方法の具体例としては、たとえば特開昭53−
57295号公報、特開昭53−65389号公報、特
開昭6O−790H号公報、特開昭60−79015号
公報などに記載された方法があげられる。
As a specific example of the above-mentioned degradation method, for example, JP-A-53-
Examples include methods described in JP-A No. 57295, JP-A-53-65389, JP-A-6O-790H, JP-A-60-79015, and the like.

なお、本発明のアクリルアミド系共重合体は、着色され
たばあいには商品的価値を損なうばあいがあるので、本
発明に用いる原料としてはたとえば特開昭60−790
08号公報に例示された方法の生成物を用いることが好
ましい。
Note that if the acrylamide copolymer of the present invention is colored, it may impair its commercial value.
It is preferable to use the product of the method exemplified in Japanese Patent No. 08.

かくしてえられるエチレン−アクリル酸エステル−アク
リル酸共重合体を原料として本発明のアクリルアミド系
共重合体およびその中間体かえられる。
Using the thus obtained ethylene-acrylic ester-acrylic acid copolymer as a raw material, the acrylamide copolymer of the present invention and its intermediates can be produced.

前記原料から本発明のアクリルアミド系共重合体の中間
体を製造する方法についてはとくに限定はない。以下に
その一例について説明する。
There are no particular limitations on the method for producing the intermediate for the acrylamide copolymer of the present invention from the raw materials. An example will be explained below.

前記原料をたとえばベンゼン、トルエン、キシレン、シ
クロヘキサノン、デカン、クメン、シメンなどの芳香族
または脂肪族炭化水素、ケトンなどの不活性溶媒に溶解
し、これに前記原料のカルボキシル基に対して100〜
150モル%のジアルキルアミノアルキルアミンを添加
し、130〜220℃にて反応させてアクリル酸構造単
位に含まれるカルボキシル基をジアルキルアミノアルキ
ルアミドに変換してアクリルアミド系共重合体の中間体
としたのち、たとえばアルキルハライド、ジアルキル硫
酸塩などの公知の4級化剤でカチオン変性することによ
り、本発明の線状のアクリルアミド系ランダム共重合体
かえられる。
The raw material is dissolved in an inert solvent such as an aromatic or aliphatic hydrocarbon such as benzene, toluene, xylene, cyclohexanone, decane, cumene, or cymene, or a ketone.
After adding 150 mol% dialkylaminoalkylamine and reacting at 130 to 220°C to convert the carboxyl group contained in the acrylic acid structural unit to dialkylaminoalkylamide, it was made into an intermediate for an acrylamide copolymer. The linear acrylamide random copolymer of the present invention can be modified by cationic modification with a known quaternizing agent such as an alkyl halide or a dialkyl sulfate.

かくしてえられる本発明のアクリルアミド系共重合体は
すぐれた帯電防止能を呈する。その理由は定かではない
が、本発明のアクリルアミド系共重合体に含まれたアク
リルアミド構造単位が空気中の水分を取り込み、Xeが
イオン化して電気伝導を示すため、低い電気抵抗を示す
ことに起因するものと考えられる。
The acrylamide copolymer of the present invention thus obtained exhibits excellent antistatic ability. The reason for this is not clear, but it is because the acrylamide structural unit contained in the acrylamide copolymer of the present invention takes in moisture from the air, and Xe ionizes and exhibits electrical conduction, resulting in low electrical resistance. It is considered that

また、本発明においては、アクリルアミド構造単位が高
温下であっても揮発性を示さず、かつ本発明のアクリル
アミド系共重合体中に化学的に組み込まれているので、
加工時における揮散がなく、加工後においてはブロッキ
ングの発生や熱可塑性樹脂の物性の低下を招くことがな
いと考えられる。
Furthermore, in the present invention, the acrylamide structural unit does not exhibit volatility even at high temperatures, and is chemically incorporated into the acrylamide-based copolymer of the present invention.
There is no volatilization during processing, and it is thought that there will be no blocking or deterioration of the physical properties of the thermoplastic resin after processing.

本発明のアクリルアミド系共重合体を適用しうる熱可塑
性樹脂としては、たとえばポリエチレン、ポリプロピレ
ンなどのポリオレフィン系樹脂;ポリスチレン、ABS
樹脂などのポリスチレン系樹脂;ポリアミド系樹脂;ポ
リブチレンテレフタレートなどのポリエステル;変性ポ
リフェニレンエーテルなどのポリエーテルなどがあげら
れるが、本発明はかかる例示のみに限定されるものでは
ない。
Examples of thermoplastic resins to which the acrylamide copolymer of the present invention can be applied include polyolefin resins such as polyethylene and polypropylene; polystyrene, ABS, etc.
Examples include polystyrene resins such as resins; polyamide resins; polyesters such as polybutylene terephthalate; and polyethers such as modified polyphenylene ether, but the present invention is not limited to these examples.

つぎに本発明のアクリルアミド系共重合体を製造例およ
び実施例に基づいてさらに詳細に説明するが、本発明は
かかる例示のみに限定されるものではない。
Next, the acrylamide copolymer of the present invention will be explained in more detail based on production examples and examples, but the present invention is not limited to these examples.

製造例1 重量平均分子量78000のエチレン−アクリル酸エチ
ル共重合体(アクリル酸エチル含量7モル%) 200
 gを水2kgとともに磁気攪拌機付きの内容量41の
オートクレーブに仕込んだ。つぎに、チッ素ガスのバブ
リングにより水中に溶解した酸素を完全に除去したのち
、さらにチッ素ガスによる加圧(50kg/cd)およ
びガス抜き(1kg/aIr)の操作を5回繰り返し、
系内の酸素濃度を1 ppm以下にした。
Production Example 1 Ethylene-ethyl acrylate copolymer with a weight average molecular weight of 78,000 (ethyl acrylate content: 7 mol%) 200
g was charged together with 2 kg of water into an autoclave with a capacity of 41 and equipped with a magnetic stirrer. Next, after completely removing the oxygen dissolved in the water by bubbling nitrogen gas, pressurizing with nitrogen gas (50 kg/cd) and degassing (1 kg/aIr) were repeated 5 times.
The oxygen concentration in the system was reduced to 1 ppm or less.

つぎにチッ素ガス雰囲気下で350℃、200kg/c
dの条件で4時間分解減成反応を行なったのち、冷却し
た。
Next, under nitrogen gas atmosphere at 350℃ and 200kg/c
After carrying out the decomposition and degradation reaction for 4 hours under the conditions of d, it was cooled.

えられたエチレンルアクリル酸エチルーアクリル酸共重
合体の物性として重量平均分子量、赤外吸収スペクトル
およびIH−NMRスペクトルを以下の方法にしたがっ
て調べた。重量平均分子量および各構造単位の含量を第
1表に示す。
The physical properties of the obtained ethylene-acrylic acid-ethyl acrylic acid copolymer were examined for weight average molecular weight, infrared absorption spectrum, and IH-NMR spectrum according to the following methods. Table 1 shows the weight average molecular weight and the content of each structural unit.

また、赤外吸収スペクトルを第1図に、+H−NMRス
ペクトルを第2図に示す。
Further, the infrared absorption spectrum is shown in FIG. 1, and the +H-NMR spectrum is shown in FIG. 2.

(重量平均分子量) 高分子論文集、44巻、2号、139〜141頁(19
87年)に記載の方法に準じて測定した。ウォーターズ
社製、GPC−244fカラム:昭和電工(株)製、5
hodex、^−80M/S (2本))を用い、溶媒
として1−クロロナフタレンを用い、流量0、7 ml
 / min 、カラム温度210℃で測定した。
(Weight average molecular weight) Kobunshi Journal, Vol. 44, No. 2, pp. 139-141 (19
It was measured according to the method described in 1987). Manufactured by Waters, GPC-244f column: Manufactured by Showa Denko K.K., 5
Hodex, ^-80M/S (2 bottles)), using 1-chloronaphthalene as the solvent, flow rate 0.7 ml
/min, and the column temperature was 210°C.

(赤外吸収スペクトル) 日本分光工業■、^−202を用いてKBrの錠剤にし
て測定した。
(Infrared absorption spectrum) Measurement was performed using a KBr tablet using JASCO Kogyo ■, ^-202.

(Jtl−NMRスペクトル) 日本電子(株)製、JMN−GSX270J、:より、
溶媒として重クロロホルムを用いて55℃で測定した。
(Jtl-NMR spectrum) From JEOL Ltd., JMN-GSX270J:
Measurement was performed at 55°C using deuterated chloroform as a solvent.

製造例2〜5 製造例1において、エチレン−アクリル酸エステルとし
て第1表に示したものを用いたほかは製造例1と同様に
して本発明の原料として用いられるエチレン−アクリル
酸エステル−アクリル酸共重合体をえた。
Production Examples 2 to 5 Ethylene-acrylic ester-acrylic acid used as a raw material of the present invention in the same manner as Production Example 1 except that the ethylene-acrylic ester shown in Table 1 was used as the ethylene-acrylic ester. A copolymer was obtained.

えられた共重合体の物性として重量平均分子量および各
構造単位の含量を製造例1と同様にして調べた。その結
果を第1表に示す。
As physical properties of the obtained copolymer, the weight average molecular weight and the content of each structural unit were examined in the same manner as in Production Example 1. The results are shown in Table 1.

〔以下余白〕[Margin below]

実施例1 温度計、攪拌機、滴下ロートおよびディージ・スターク
(Dean Bark)分水器を備えた内容量IIの4
つロフラスコにキシレン400m1、製造例]でえられ
たエチレン−アクリル酸エチル−アクリル酸共重合体(
原料) 150 gおよびパラトルエンスルホン酸10
gを仕込んだ。
Example 1 Volume II 4 with thermometer, stirrer, addition funnel and Dean Bark water separator
400 ml of xylene in a two-glass flask, ethylene-ethyl acrylate-acrylic acid copolymer (preparation example)
raw materials) 150 g and para-toluenesulfonic acid 10
I prepared g.

つぎに、N1トジメチルアミノプロピルアミン21、I
gを仕込み、オイルバスを用いて14[i ℃に加熱し
、生成した水をキシレンとの共沸により連続的に除去し
、さらに140℃で17時間反応し、生成する水の共沸
が認められなくなるまでアミド化反応を継続した。
Next, N1 dimethylaminopropylamine 21, I
g was charged and heated to 14[i °C] using an oil bath, the produced water was continuously removed by azeotropy with xylene, and the reaction was further carried out at 140 °C for 17 hours, and azeotropy of the produced water was observed. The amidation reaction was continued until there was no more residue.

反応混合物458gを80℃に冷却し、本発明の中間体
を含む反応混合物]Ogを分取し、残りの反応混合物に
滴下ロートよりメチルアイオダイド287gを1時間か
けて徐々に滴下した。この間発熱が認められたが、冷却
により反応温度を90℃に維持し、滴下終了後はl[l
O℃で4時間熟成反応を行なった。
458 g of the reaction mixture was cooled to 80° C., the reaction mixture [Og] containing the intermediate of the present invention was separated, and 287 g of methyl iodide was gradually added dropwise to the remaining reaction mixture from a dropping funnel over 1 hour. During this time, heat generation was observed, but the reaction temperature was maintained at 90°C by cooling, and after the completion of the dropwise addition, l[l
The aging reaction was carried out at 0° C. for 4 hours.

先に分取した本発明の中間体およびえられた反応混合物
を取り出し、各々別々に多量のメタノール中へ投入し、
生成した沈澱物を回収し、真空乾燥し、生成物をえた。
The previously separated intermediate of the present invention and the obtained reaction mixture were taken out and separately poured into a large amount of methanol,
The generated precipitate was collected and dried under vacuum to obtain a product.

収量は中間体3、Sg。Yield: Intermediate 3, Sg.

アクリルアミド系共重合体187.5gであり、収率は
原料のエチレン−アクリル酸エチル−アクリル酸共重合
体基準で各々96.7%および98%であった。
The amount of the acrylamide copolymer was 187.5 g, and the yields were 96.7% and 98%, respectively, based on the raw material ethylene-ethyl acrylate-acrylic acid copolymer.

つぎに、えられた本発明の中間体およびアクリルアミド
系共重合体の赤外吸収スペクトル、)1−NMIIスペ
クトル、重量平均分子量および数平均分子量を調べた。
Next, the infrared absorption spectrum, )1-NMII spectrum, weight average molecular weight, and number average molecular weight of the obtained intermediate and acrylamide copolymer of the present invention were examined.

赤外吸収スペクトル、重量平均分子量および数平均分子
量の結果を第2表に示す。
The results of the infrared absorption spectrum, weight average molecular weight, and number average molecular weight are shown in Table 2.

中間体の赤外吸収スペクトルを第3図、’)I−NMI
Iスペクトルを第4図に、またアクリルアミド系共重合
体の赤外吸収スペクトルを第5] 図、 H−NMRスペクトルを第6図に示す。
Figure 3 shows the infrared absorption spectrum of the intermediate, ')I-NMI
The I spectrum is shown in FIG. 4, the infrared absorption spectrum of the acrylamide copolymer is shown in FIG. 5, and the H-NMR spectrum is shown in FIG.

また、中間体およびアクリルアミド系共重合体の分子量
分布曲線をそれぞれ第7図および第8図に示す。
Further, the molecular weight distribution curves of the intermediate and the acrylamide copolymer are shown in FIG. 7 and FIG. 8, respectively.

実施例2〜9 実施例1において、製造例1でえられたエチレン−アク
リル酸エチル−アクリル酸共重合体のかわりに、第2表
に示した共重合体を用い、またアミンおよび4級化剤と
して第2表に示したものを用いたほかは実施例1と同様
にしてアクリルアミド系共重合体をえた。
Examples 2 to 9 In Example 1, the copolymers shown in Table 2 were used instead of the ethylene-ethyl acrylate-acrylic acid copolymer obtained in Production Example 1, and the amine and quaternized An acrylamide copolymer was obtained in the same manner as in Example 1, except that the agents shown in Table 2 were used.

えられたアクリルアミド系共重合体の収率、赤外吸収ス
ペクトル、H−NMRスペクトル、重量平均分子量およ
び数平均分子量を実施例1と同様にして調べた。収率、
赤外吸収スペクトル、重量平均分子量および数平均分子
量の測定結果を収率とあわせて第2表に示す。
The yield, infrared absorption spectrum, H-NMR spectrum, weight average molecular weight, and number average molecular weight of the obtained acrylamide copolymer were examined in the same manner as in Example 1. yield,
The measurement results of the infrared absorption spectrum, weight average molecular weight, and number average molecular weight are shown in Table 2 together with the yield.

〔以下余白〕[Margin below]

なお、 ’H−NMRスペクトルの測定結果(ケミカル
シフト(ppm))は、以下のとおりである。
Note that the measurement results (chemical shift (ppm)) of the 'H-NMR spectrum are as follows.

(’H−NMRスペクトルの測定結果)(イ)実施例1 (ケミカルシフト(ppm)) ■:3.4、■:2.2、■:3.8、■:34、■:
41、■=15 (ロ)実施例2 C12■ (ケミカルシフト(ppm)) ■:3.4、■:2.2、■:3.7、■:3,1、■
:35、■:]、5、■:1.5、■=4.1、■:4
.]、[相]=1.5 (ハ)実施例3 c=o    c=。
('H-NMR spectrum measurement results) (a) Example 1 (Chemical shift (ppm)) ■: 3.4, ■: 2.2, ■: 3.8, ■: 34, ■:
41, ■=15 (b) Example 2 C12■ (Chemical shift (ppm)) ■: 3.4, ■: 2.2, ■: 3.7, ■: 3,1, ■
:35, ■:], 5, ■:1.5, ■=4.1, ■:4
.. ], [phase]=1.5 (c) Example 3 c=o c=.

CF3OCF2O (ケミカルシフト(ppm)) ■・3.3、■・2.2、■:3.7、■:31、■:
4.6、■=7.2〜7.4、■、2,3、■・41、
■:1.5 (ニ)実施例4 (ケミカルシフト(ppIII)) ■:3.8、■:38、■=33、■:4.9、■ニア
、4〜7.6、■:4.l、■:1.5(ホ)実施例5 NH CF2O CF2O CF2O (ケミカルシフト(ppm)) ■:3,4、■:2.I、■:3.5、■=3.1、■
・3,5、■・1.5、■:1.5、■:4.1(へ)
実施例6 c=o    c=。
CF3OCF2O (chemical shift (ppm)) ■・3.3, ■・2.2, ■: 3.7, ■: 31, ■:
4.6, ■=7.2~7.4, ■, 2,3, ■・41,
■: 1.5 (d) Example 4 (Chemical shift (ppIII)) ■: 3.8, ■: 38, ■=33, ■: 4.9, ■near, 4-7.6, ■: 4 .. l, ■: 1.5 (e) Example 5 NH CF2O CF2O CF2O (chemical shift (ppm)) ■: 3,4, ■: 2. I, ■: 3.5, ■=3.1, ■
・3, 5, ■・1.5, ■: 1.5, ■: 4.1 (to)
Example 6 c=o c=.

CH3[相] H3C−C−CH3■ CH2■ (ケミカルシフト(ppm)) ■・3.5、■:]、5、■=39、■=311■:3
5、■=15、■・15、■:411■:tl、[相]
:1.5 (ト)実施例7 NH CF2O CF2O CF2O (ケミカルシフト(ppm)) ■:3.4、■:22、■・3.8、■=3.1、■ 
:3.5  、 ■ 二 1.5 (チ)実施例8 c=o    c=。
CH3 [phase] H3C-C-CH3■ CH2■ (Chemical shift (ppm)) ■・3.5, ■:], 5, ■=39, ■=311■:3
5, ■=15, ■・15, ■:411■:tl, [phase]
:1.5 (G) Example 7 NH CF2O CF2O CF2O (Chemical shift (ppm)) ■: 3.4, ■: 22, ■・3.8, ■=3.1, ■
:3.5, ■2 1.5 (H) Example 8 c=o c=.

ONH eo3s −0−CH2−C)13 ■ ■ (ケミカルシフト(ppm)) ■:3.8、■:3.ll、■:3.1、■:3.5、
■:1.5、■:15、■:4.1、■=4.1、■:
1.5、[相]=1.5 (す)実施例9 (ケミカルシフト(ppm)) ■:3.ll、■:3.8、■:3.5、■:1.5、
■:4.9、■=7.4〜7,6、■:40、■:I5
、■・1.5、[相]・1.5実験例1〜9 各実施例でえられたアクリルアミド系共重合体または該
共重合体10重量部とポリプロピレン樹脂(三井東圧(
株)製: JS]429) 90重量部のブレンド物を
200℃に加熱したTダイ式のfR膜装置に導入し、厚
さ5011m、幅500■の未延伸フィルムとした。
ONH eo3s -0-CH2-C) 13 ■ ■ (Chemical shift (ppm)) ■: 3.8, ■: 3. ll, ■: 3.1, ■: 3.5,
■: 1.5, ■: 15, ■: 4.1, ■=4.1, ■:
1.5, [phase] = 1.5 (S) Example 9 (Chemical shift (ppm)) ■: 3. ll, ■: 3.8, ■: 3.5, ■: 1.5,
■: 4.9, ■=7.4~7,6, ■: 40, ■: I5
, ■・1.5, [Phase]・1.5 Experimental Examples 1 to 9 10 parts by weight of the acrylamide copolymer obtained in each example or the copolymer and polypropylene resin (Mitsui Toatsu (
Co., Ltd.: JS]429) 90 parts by weight of the blend was introduced into a T-die type fR film apparatus heated to 200°C to form an unstretched film with a thickness of 5011 m and a width of 500 cm.

えられたフィルムを]OcmX ]Qcmに切り出し、
試験用フィルムとした。また、対照界としてアクリルア
ミド系共重合体を用いないで作製したものも用意した。
Cut the obtained film into ]OcmX ]Qcm,
This was used as a test film. In addition, as a control field, one prepared without using an acrylamide copolymer was also prepared.

つぎに、えられたフィルムについて、表面固有抵抗、耐
水性、耐ブロッキング性、透明性および強伸度を以下の
方法にしたがって調べた。その結果を第3表に示す。
Next, the obtained film was examined for surface resistivity, water resistance, blocking resistance, transparency, and strength and elongation according to the following methods. The results are shown in Table 3.

(イ)表面固有抵抗 ■表面固有抵抗 試験フィルムを20℃、30%RH(相対湿度)または
20℃、60%RHの条件下に24時間放置後、(株)
川口電気製作新製、超絶総計R−503型を用いて表面
固有抵抗値を測定した。
(a) Surface specific resistance ■Surface specific resistance test After leaving the film under the conditions of 20°C and 30% RH (relative humidity) or 20°C and 60% RH for 24 hours,
The surface resistivity value was measured using Kawaguchi Denki Seisakusho's new model Chozetsu Soto R-503.

■持続性 試験フィルムを30日間室温で保存後、20℃、60%
RHの条件下で24時間放置後、前記■と同様にして表
面固有抵抗値を測定した。
■ Sustainability test After storing the film at room temperature for 30 days, 20℃, 60%
After being left for 24 hours under RH conditions, the surface resistivity value was measured in the same manner as in (2) above.

■耐水性 本発明のアクリルアミド系共重合体からなるフィルムに
ついては室温で30日間保存後に、また本発明のアクリ
ルアミド系共重合体とポリプロピレンからなるフィルム
については40℃のオーブン中で14日間エージングし
た後に、その表面を洗剤としてママレモン(ライオン(
株)製)水溶液で充分に洗浄後、イオン交換水で充分に
すすぎ、そののち20℃、60%RHの雰囲気中で24
時間放置し、前記■と同様に表面固有抵抗を測定した。
■Water resistance The film made of the acrylamide copolymer of the present invention is stored at room temperature for 30 days, and the film made of the acrylamide copolymer of the present invention and polypropylene is aged for 14 days in an oven at 40°C. , mama lemon (lion) as a detergent on its surface.
After thoroughly washing with an aqueous solution (manufactured by Co., Ltd.), rinsing thoroughly with ion-exchanged water, and then washing in an atmosphere of 20°C and 60% RH for 24 hours.
After leaving it for a while, the surface resistivity was measured in the same manner as in (2) above.

(ロ)耐ブロッキング性 本発明のアクリルアミド系共重合体をポリプロピレンに
配合して作製したフィルム2枚を2[1cIIIX 2
DCmのガラス板にはさみ、40℃のオーブンに入れ、
14日間エージングした。14日後にフィルムを取り出
し、手で引きはがし、ブロッキングの有無を測定した。
(b) Blocking resistance Two films prepared by blending the acrylamide copolymer of the present invention with polypropylene were mixed into 2 [1cIIIX 2
Place it between DCm glass plates and put it in an oven at 40℃.
It was aged for 14 days. After 14 days, the film was taken out, peeled off by hand, and the presence or absence of blocking was measured.

○ニブロッキングなし ×コブロッキングあり (ハ)透明性 本発明のアクリルアミド系共重合体をポリプロピレンに
配合して作製したフィルムの透明性を目視により判定し
た。
○No ni-blocking×With co-blocking (c) Transparency The transparency of a film prepared by blending the acrylamide copolymer of the present invention with polypropylene was visually determined.

○:透明性良好 X:透明性に問題あり (ニ)強伸度 本発明のアクリルアミド系共重合体を配合してなるフィ
ルムを幅10mm、長さ100mmに切出し、厚さ(T
mn)を測定した。このサンプルをチャック間59mm
に設定したテンシロン型引張り試験装置にかけ、300
+nm/ninの速度で引張り、破断強さ(S+ と破
断伸び(s)をはかり、次式により引張り強度および伸
度を求めた。
○: Good transparency
mn) was measured. This sample was chucked with a distance of 59 mm.
It was applied to a Tensilon type tensile tester set to
It was pulled at a speed of +nm/nin, and the breaking strength (S+) and breaking elongation (s) were measured, and the tensile strength and elongation were determined by the following equations.

s (mm) 〔伸 度)l=       xlO[1(%)50m
n+ 比較実験例1 実験例1〜9において、ブレンド物のかわりにポリプロ
ピレンを用いたほかは同様にして試験用フィルムを作製
し、各種物性を測定した。
s (mm) [Elongation] l = xlO [1 (%) 50m
n+ Comparative Experimental Example 1 Test films were produced in the same manner as in Experimental Examples 1 to 9, except that polypropylene was used instead of the blend, and various physical properties were measured.

その結果を第3表に示す。The results are shown in Table 3.

比較実験例2 実験例1〜9において、ブレンド物のかわりにポリプロ
ピレン100重量部と帯電防止剤としてステアリルジェ
タノールアミド3重量部の混合物を用いたほかは同様に
して試験用フィルムを作製し、各種物性を測定した。そ
の結果を第3表に示す。
Comparative Experimental Example 2 Test films were prepared in the same manner as in Experimental Examples 1 to 9, except that a mixture of 100 parts by weight of polypropylene and 3 parts by weight of stearyl jetanolamide as an antistatic agent was used instead of the blend. Physical properties were measured. The results are shown in Table 3.

第3表に示した結果から明らかなように、本発明のアク
リルアミド系共重合体は、熱可塑性樹脂にすぐれた帯電
防止能を付与し、しかも熱可塑性樹脂の透明性および強
伸度を低下させることがなく、また耐ブロッキング性に
すぐれたものであることかわかる。
As is clear from the results shown in Table 3, the acrylamide copolymer of the present invention imparts excellent antistatic ability to thermoplastic resins, and also reduces the transparency and strength and elongation of thermoplastic resins. It can be seen that there was no problem, and that it had excellent blocking resistance.

〔発明の効果〕〔Effect of the invention〕

本発明のアクリルアミド系共重合体は、熱可塑性樹脂に
すぐれた帯電防止能を付与するものであり、また熱可塑
性樹脂を用いて成形されたフィルム、成形品の透明性、
強伸度などの物性を低下させることがなく、しかも耐プ
ロ・ンキング性にすぐれたものであるため、種々の熱可
塑性樹脂に広範囲に適用しうるちのである。
The acrylamide copolymer of the present invention imparts excellent antistatic properties to thermoplastic resins, and also improves the transparency of films and molded products formed using thermoplastic resins.
Since it does not reduce physical properties such as strength and elongation and has excellent punching resistance, it can be widely applied to various thermoplastic resins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ製造例1てえられた中間
体に用いたエチレン−アクリル酸エチル−アクリル酸共
重合体の赤外吸収スペクトルオヨヒ’H−NMRスペク
トルのグラフ、第3図および第4図はそれぞれ本発明の
実施例1てえられたアクリルアミド系共重合体の中間体
の赤外吸収スペクトルおよびIH−NMRスペクトルの
グラフ、第5図および第6図はそれぞれ本発明の実施例
1でえられたアクリルアミド系共重合体の赤外吸収スペ
クトルおよび’)l−NMRスペクトル、第7図および
第8図はそれぞれ本発明の実施例1てえられた中間体の
分子量分布曲線およびアクリルアミド系共重合体の分子
量分布曲線である。
Figures 1 and 2 are graphs of the infrared absorption spectrum Oyohi'H-NMR spectrum of the ethylene-ethyl acrylate-acrylic acid copolymer used as the intermediate obtained in Production Example 1, respectively, and Figure 3 is a graph of the Oyohi'H-NMR spectrum. and FIG. 4 are graphs of the infrared absorption spectrum and IH-NMR spectrum of the acrylamide copolymer intermediate obtained in Example 1 of the present invention, respectively, and FIG. 5 and FIG. The infrared absorption spectrum and '1-NMR spectrum of the acrylamide copolymer obtained in Example 1, Figures 7 and 8 are the molecular weight distribution curve and the intermediate obtained in Example 1 of the present invention, respectively. It is a molecular weight distribution curve of an acrylamide-based copolymer.

Claims (1)

【特許請求の範囲】 1 式: ▲数式、化学式、表等があります▼ で表わされるエチレン構造単位65〜99モル%、一般
式: ▲数式、化学式、表等があります▼ (式中、R^1は炭素数1〜4のアルキル基を示す)で
表わされるアクリレート構造単位0〜15モル%および
一般式: ▲数式、化学式、表等があります▼ (式中、R^2は炭素数2〜8のアルキレン基、R^3
およびR^4はそれぞれ炭素数1〜4のアルキル基、R
^5は炭素数1〜12のアルキル基、炭素数1〜12の
アリールアルキル基または炭素数1〜12の脂環アルキ
ル基、Xはハロゲン原子、CH_3SO_3または C_2H_5OSO_3を示す)で表わされるアクリル
アミド構造単位1〜35モル%からなる線状に不規則に
配列した重量平均分子量1000〜50000のアクリ
ルアミド系共重合体。 2 式: ▲数式、化学式、表等があります▼ で表わされるエチレン構造単位65〜99モル%、一般
式: ▲数式、化学式、表等があります▼ (式中、R^1は炭素数1〜4のアルキル基を示す)で
表わされるアクリレート構造単位0〜15モル%および
一般式: ▲数式、化学式、表等があります▼ (式中、R^2は炭素数2〜8のアルキレン基、R^3
およびR^4はそれぞれ炭素数1〜4のアルキル基を示
す)で表わされるアクリルアミド構造単位1〜35モル
%からなる線状に不規則に配列した重量平均分子量10
00〜50000のアクリルアミド系共重合体。
[Claims] 1 Formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ 65 to 99 mol% of ethylene structural units represented by General formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R^ 1 indicates an alkyl group having 1 to 4 carbon atoms) 0 to 15 mol% of acrylate structural units and general formula: ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (In the formula, R^2 is an alkyl group having 2 to 4 carbon atoms) 8 alkylene group, R^3
and R^4 are each an alkyl group having 1 to 4 carbon atoms, R
^5 is an acrylamide structural unit represented by an alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 1 to 12 carbon atoms, or an alicyclic alkyl group having 1 to 12 carbon atoms; An acrylamide-based copolymer consisting of 1 to 35 mol% and randomly arranged in a linear manner and having a weight average molecular weight of 1,000 to 50,000. 2 Formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Ethylene structural units represented by 65 to 99 mol%, General formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R^1 is a carbon number of 1 to 0 to 15 mol% of acrylate structural units represented by (representing the alkyl group of 4) and the general formula: ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R^2 is an alkylene group having 2 to 8 carbon atoms, R ^3
and R^4 each represent an alkyl group having 1 to 4 carbon atoms) consisting of 1 to 35 mol% of acrylamide structural units arranged irregularly in a linear manner and having a weight average molecular weight of 10.
00 to 50,000 acrylamide copolymer.
JP2331085A 1990-11-28 1990-11-28 Acrylamide-based copolymer Expired - Fee Related JP2535668B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2331085A JP2535668B2 (en) 1990-11-28 1990-11-28 Acrylamide-based copolymer
US07/797,868 US5202193A (en) 1990-11-28 1991-11-26 N-substituted acrylamide copolymer
EP19910120203 EP0492163B1 (en) 1990-11-28 1991-11-26 N-substituted acrylamide copolymer
DE69120042T DE69120042T2 (en) 1990-11-28 1991-11-26 N-substituted acrylamide copolymers
KR1019910021461A KR100186870B1 (en) 1990-11-28 1991-11-27 N-substituted acrylamide copolymer
HK98104025A HK1005314A1 (en) 1990-11-28 1998-05-09 N-substituted acrylamide copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331085A JP2535668B2 (en) 1990-11-28 1990-11-28 Acrylamide-based copolymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP32761795A Division JP2925994B2 (en) 1995-12-15 1995-12-15 Acrylamide copolymer

Publications (2)

Publication Number Publication Date
JPH04198308A true JPH04198308A (en) 1992-07-17
JP2535668B2 JP2535668B2 (en) 1996-09-18

Family

ID=18239684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331085A Expired - Fee Related JP2535668B2 (en) 1990-11-28 1990-11-28 Acrylamide-based copolymer

Country Status (1)

Country Link
JP (1) JP2535668B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208753A (en) * 1994-12-07 1996-08-13 Dai Ichi Kogyo Seiyaku Co Ltd Cation-modified acrylamide or methacrylamide copolymer, and antistatic agent, thermoplastic resin composition, water-based composition and thermoplastic resin laminate containing the same
US5654369A (en) * 1995-07-25 1997-08-05 Dai-Ichi Kogyo Seiyaku Co., Ltd. Antistatic thermoplastic resin composition
US5717048A (en) * 1994-12-07 1998-02-10 Dai-Ichi Kogyo Seiyaku Co., Ltd. Cation-modified acrylamide or methacrylamide copolymer as well as antistatic agent, thermoplastic resin composition, aqueous composition and thermoplastic resin laminate comprising same
US5830616A (en) * 1995-07-19 1998-11-03 Iwatsu Electric Co., Inc. Magnetic latent image developing toner
WO2003011973A1 (en) 2001-07-30 2003-02-13 Sanko Chemical Industry Co., Ltd. Anti-static composition and method for production thereof
US6753069B1 (en) * 1998-10-26 2004-06-22 Dai-Ichi Kogyo Seiyaku Co., Ltd. Resin composition for ink jet recording sheet, the recording sheet, recording method of the same, and method for producing the recording sheet
WO2007032170A1 (en) * 2005-09-16 2007-03-22 Dai Nippon Printing Co., Ltd. Antistatic anti-glare film
WO2008140264A1 (en) * 2007-05-16 2008-11-20 Lg Chem, Ltd. Copolymer comprising alkene, acrylate and unsaturated acid anhydride, and method for preparing the same
JP2020143215A (en) * 2019-03-06 2020-09-10 住友化学株式会社 Modified polyolefin material and method for producing the same, and resin film and packaging material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357609A (en) * 1986-08-27 1988-03-12 テ−ハ− ゴルトシユミツト アクチエンゲゼルシヤフト Reformed polyethylene, manufacture and use
JPS63304010A (en) * 1987-01-16 1988-12-12 Sumitomo Chem Co Ltd Novel ethylene copolymer and production thereof
JPH01314729A (en) * 1988-02-04 1989-12-19 Sumitomo Chem Co Ltd Bicomponent fiber and nonwoven molded product thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2519581C2 (en) 1975-05-02 1983-09-29 Basf Ag, 6700 Ludwigshafen Paper sizing agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357609A (en) * 1986-08-27 1988-03-12 テ−ハ− ゴルトシユミツト アクチエンゲゼルシヤフト Reformed polyethylene, manufacture and use
JPS63304010A (en) * 1987-01-16 1988-12-12 Sumitomo Chem Co Ltd Novel ethylene copolymer and production thereof
JPH01314729A (en) * 1988-02-04 1989-12-19 Sumitomo Chem Co Ltd Bicomponent fiber and nonwoven molded product thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208753A (en) * 1994-12-07 1996-08-13 Dai Ichi Kogyo Seiyaku Co Ltd Cation-modified acrylamide or methacrylamide copolymer, and antistatic agent, thermoplastic resin composition, water-based composition and thermoplastic resin laminate containing the same
US5717048A (en) * 1994-12-07 1998-02-10 Dai-Ichi Kogyo Seiyaku Co., Ltd. Cation-modified acrylamide or methacrylamide copolymer as well as antistatic agent, thermoplastic resin composition, aqueous composition and thermoplastic resin laminate comprising same
US5830616A (en) * 1995-07-19 1998-11-03 Iwatsu Electric Co., Inc. Magnetic latent image developing toner
US5654369A (en) * 1995-07-25 1997-08-05 Dai-Ichi Kogyo Seiyaku Co., Ltd. Antistatic thermoplastic resin composition
US6753069B1 (en) * 1998-10-26 2004-06-22 Dai-Ichi Kogyo Seiyaku Co., Ltd. Resin composition for ink jet recording sheet, the recording sheet, recording method of the same, and method for producing the recording sheet
WO2003011973A1 (en) 2001-07-30 2003-02-13 Sanko Chemical Industry Co., Ltd. Anti-static composition and method for production thereof
WO2007032170A1 (en) * 2005-09-16 2007-03-22 Dai Nippon Printing Co., Ltd. Antistatic anti-glare film
JP5145938B2 (en) * 2005-09-16 2013-02-20 大日本印刷株式会社 Antistatic antiglare film
WO2008140264A1 (en) * 2007-05-16 2008-11-20 Lg Chem, Ltd. Copolymer comprising alkene, acrylate and unsaturated acid anhydride, and method for preparing the same
US7884162B2 (en) 2007-05-16 2011-02-08 Lg Chem, Ltd. Copolymer comprising alkene, acrylate and unsaturated acid anhydride, and method for preparing the same
US8168733B2 (en) 2007-05-16 2012-05-01 Lg Chem, Ltd. Copolymer comprising alkene, acrylate and unsaturated acid anhydride, and method for preparing the same
JP2020143215A (en) * 2019-03-06 2020-09-10 住友化学株式会社 Modified polyolefin material and method for producing the same, and resin film and packaging material

Also Published As

Publication number Publication date
JP2535668B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
EP1414884B1 (en) Sulfonated aliphatic-aromatic copolyesters
KR19980070384A (en) Block copolymers, block copolymer compositions and heat-shrinkable films made therefrom
JPH02603A (en) Acrylic macromonomer having polyethyleneimine derivative chain, its production, graft polymer having polyethyleneimine derivative chain as graft chain and its production
US5190989A (en) Hydrophilic group-containing AB-type block copolymer
JPH04198308A (en) Acrylamide copolymer
TWI354682B (en) Process for preparing a melt-processable polyamide
EP2588535B1 (en) Aziridinyl-containing compounds
JPH01126355A (en) Propylene polymer composition
JP2002201327A (en) High-density and branched structure type aliphatic polyester for plasticizer of pvc and flexible pvc blend containing the same
JPH04198307A (en) Production of acrylamide copolymer
JP2925994B2 (en) Acrylamide copolymer
JP3268402B2 (en) Thermoplastic resin composition
JP2830329B2 (en) Stabilized resin composition
JPH05194660A (en) Maleimide-based copolymer
JP4065612B2 (en) Polypropylene film
JPS5930850A (en) Heat-shrinkable film and sheet
Kroeze et al. Synthesis of Segmented (PB (PS-block-PB) n) and (PB (SAN-block-PB) n) Block Copolymers via Polymeric Thermal Iniferters
JP3104103B2 (en) Thermoplastic resin composition
JP3262294B2 (en) Thermoplastic resin composition
JPH05194661A (en) Maleimide-based copolymer
JPH02117909A (en) Shape memorizing block copolymer, use thereof and shape memorizing molded article
JPH01304146A (en) Block copolymer composition
Osman et al. Preparation and thermal characterization of graft copolymer obtained by radiation grafting of individual and binary monomer systems
JPH06329923A (en) Thermoplastic resin composition
JP2979143B1 (en) Amino acid polymer having carboxybetaine type structure in side chain and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees