JPH04198225A - Abrasion-resistant wrp material - Google Patents

Abrasion-resistant wrp material

Info

Publication number
JPH04198225A
JPH04198225A JP32386590A JP32386590A JPH04198225A JP H04198225 A JPH04198225 A JP H04198225A JP 32386590 A JP32386590 A JP 32386590A JP 32386590 A JP32386590 A JP 32386590A JP H04198225 A JPH04198225 A JP H04198225A
Authority
JP
Japan
Prior art keywords
whiskers
diameter
wrp
sic
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32386590A
Other languages
Japanese (ja)
Inventor
Takaomi Sugihara
孝臣 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP32386590A priority Critical patent/JPH04198225A/en
Publication of JPH04198225A publication Critical patent/JPH04198225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title material improved in abrasion resistance by homogeneously dispersing specified SiC whiskers in the structure of a matrix resin. CONSTITUTION:beta-Crystal-based SiC whiskers of a diameter of 0.3-1.5mum and an aspect ratio of 10-40 are heat-treated at 1800-2200 deg.c in a nonoxidizing atmosphere to obtain large-diameter SiC whiskers having a diameter of 1.5-4.0mum and an aspect ratio of 3-10. 30-50vol.% said whiskers optionally surface-treated is homogeneously dispersed in a matrix resin to obtain the title WRP material of an abrasion wear of 1.5mm<3> or below.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、直径が太くてアスペクト比が小さい径太性状
のSiCウィスカーを強化材とする組成の耐摩耗性に優
れるWRP材(ウィスカー強化樹脂複合材)に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is a WRP material (whisker-reinforced resin) which has excellent abrasion resistance and is composed of thick SiC whiskers with a large diameter and a small aspect ratio as a reinforcing material. related to composite materials).

〔従来の技術〕[Conventional technology]

5iCO針状単結晶で構成されるウィスカーは、比強度
、比弾性率、耐熱性、化学的安定性等の面で卓越した性
能特性を備えることから各種プラスチック材料の複合強
化材として有用性が期待されている。
Whiskers composed of acicular single crystals of 5iCO have excellent performance characteristics in terms of specific strength, specific modulus, heat resistance, chemical stability, etc., and are therefore expected to be useful as composite reinforcing materials for various plastic materials. has been done.

プラスチック材料の複合強化材としてはガラス繊維、炭
素繊維などに代表される連続繊維が汎用されており、こ
れらは長繊維または短繊維の状態で使用に供されている
。このうち、短繊維として用いる場合には連続繊維を数
−一から数C11単位に裁断してマトリックス樹脂に分
散させるもので、長繊維による複合化に比べて配向性の
ない無方向の複合性能が得られる特徴がある。
Continuous fibers such as glass fibers and carbon fibers are commonly used as composite reinforcing materials for plastic materials, and these are used in the form of long fibers or short fibers. Among these, when used as short fibers, continuous fibers are cut into units of several C11 to several C11 and dispersed in a matrix resin, and compared to composites using long fibers, non-directional composite performance with no orientation is improved. There are features you can get.

従来、前記短繊維による複合系においては、直径が細く
、アスペクト比の大きな性状が効果的であるとされてお
り、SiCなとのウィスカーを強化材とする場合でも、
直径1.0μ量以下でアスペクト比が少なくとも50以
上のものが高度の複合性能を付与するための要件とされ
ている。
Conventionally, in composite systems using short fibers, it has been believed that properties with a small diameter and a large aspect ratio are effective, and even when whiskers such as SiC are used as reinforcing materials,
A diameter of 1.0 μm or less and an aspect ratio of at least 50 or more are required to provide a high degree of composite performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、ウィスカーを強化材として現実にこの種の繊
維分散強化タイプの複合化をおこなってみると、従来認
識のように直径が細くてアスペクト比の大きなウィスカ
ーではマトリックス樹脂との混合時にウィスカー相互の
凝集が生じ、結果的に均一分散の不良に基づく特性向上
の制約および複合性能のバラ・ンキをもたらす問題点が
ある。この現象は特にマトリックス樹脂に対するウィス
カーの複合化率が多くなるほど顕著となり、ウィスカー
の体積含有率(Vf)が30%を越える場合にはロール
等により練る方法、またはプリフォームを作成したのち
、樹脂を含浸させる方法等でも正常で安定なWRP材を
得ることが不可能となる。したがって、ウィスカーの体
積含有率(Vf)を高めてWRP材の耐摩耗性を向上さ
せることには、大きな制約があった。
However, when this kind of fiber-dispersed reinforced composite was actually made using whiskers as a reinforcing material, it was found that whiskers with small diameters and large aspect ratios tend to coagulate with each other when mixed with matrix resin. As a result, there is a problem in that the property improvement is restricted due to poor uniform dispersion and the composite performance is uneven. This phenomenon becomes particularly noticeable as the composite ratio of whiskers to the matrix resin increases. If the volume content (Vf) of whiskers exceeds 30%, kneading with rolls or the like, or mixing the resin after creating a preform, is recommended. Even with methods such as impregnation, it is impossible to obtain a normal and stable WRP material. Therefore, there are major restrictions on improving the wear resistance of WRP materials by increasing the volume content (Vf) of whiskers.

本発明の目的は、従来認識とは異なり径太で低アスペク
ト比タイプのウィスカーを強化材とした高度の耐摩耗性
を備えるWRP材を提供することにある。
An object of the present invention is to provide a WRP material that has a high degree of wear resistance and uses thick diameter, low aspect ratio type whiskers as a reinforcing material, unlike conventional recognition.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による耐摩耗性WR
P材は、直径1.5〜4.0 μ鴎、アスペクト比3〜
10の径大性状を備えるSiCウィスカーが体積含有率
(Vf)30〜50%でマトリックス樹脂の組織中に均
一分散してなる組成を構成上の特徴とする。
Wear-resistant WR according to the present invention to achieve the above objects
P material has a diameter of 1.5 to 4.0 μ and an aspect ratio of 3 to 4.
The composition is characterized by a composition in which SiC whiskers having a large diameter property of 10 are uniformly dispersed in the structure of the matrix resin at a volume content (Vf) of 30 to 50%.

前記組成の本発明によるWRP材は、摩耗量として1.
5−++m’以下の高耐摩耗特性を備えている。
The WRP material according to the present invention having the above composition has a wear amount of 1.
It has high wear resistance properties of 5-++m' or less.

本発明で強化材として複合分散するSiCウィスカーは
、通常のウィスカー性状(直径0.1〜1゜0μ■、ア
スペクト比50〜100)に比べ大径・短長の径大性状
に特長づけられ、これは以下に詳述するように直径0.
3〜1.5μm、アスペクト比IO〜40のβ結晶型主
体のSiCウィスカーを非酸化性雰囲気中で1800〜
2200°Cの温度で熱処理する方法により製造するこ
とができる。
The SiC whiskers compositely dispersed as a reinforcing material in the present invention are characterized by a large diameter and short length compared to normal whisker properties (diameter 0.1 to 1°0 μ■, aspect ratio 50 to 100). This has a diameter of 0.0 mm, as detailed below.
SiC whiskers mainly composed of β-crystal type with a diameter of 3 to 1.5 μm and an aspect ratio of IO to 40 are heated to 1800 μm in a non-oxidizing atmosphere.
It can be manufactured by a method of heat treatment at a temperature of 2200°C.

SiCウィスカーの製造技術には、5iCj!n、S 
i HCf! s、(CH3)J S iのような分解
性珪素化合物をCH,、C,H,、C(1,などの次材
成分と気相反応させる方法、Sin、を含む固形状の珪
素源原料とカーボン粉末を混合するか、例えば籾殻炭の
ようにこれら成分を複合的に含有する物讐を加熱反応さ
せる方法などがあるが、本発明の原料となるSiCウィ
スカーは特にこれら製造履歴に影響されることはなく、
いずれの方法によって製造されたものであっても差し支
えない。
The manufacturing technology of SiC whiskers includes 5iCj! n, S
iHCf! A method of reacting a decomposable silicon compound such as s, (CH3)J Si with a subsequent material component such as CH, , C, H, or C(1) in a gas phase, a solid silicon source material containing Sin. There are methods such as mixing carbon powder with carbon powder, or heating and reacting a material containing a complex of these components, such as rice husk charcoal. However, the SiC whisker, which is the raw material of the present invention, is particularly influenced by the manufacturing history of these components. There is no problem,
It may be manufactured by any method.

性状として直径0.3〜1.5μ■、アスペクト比10
〜40のSiCウィスカーを原料とする理由は、この範
囲のアスペクト性状を備えるSiCウィスカーが昇華再
結晶による径大化の効果が最も顕著に現出するからであ
る。また、SiCウィスカーの結晶系は、β結晶型主体
のものを選定する必要があり、この要件を外れると目的
とする径大化はできなくなる。β結晶型を主体にすると
は、SiCウィスカーの結晶形が全てβ型か、α/β混
在型であってもβ型が支配的な形態を指すが、積層欠陥
密度が低いものほど少ない粒状物含有量で径大化が進行
する。好適なβ−5iCウイスカーの結晶特性は、下式
によるα度が20以下で、(111)回折線の半価幅が
0.14 deg以下である。
Properties: diameter 0.3-1.5μ■, aspect ratio 10
The reason why SiC whiskers having a diameter of 40 to 40 is used as a raw material is that SiC whiskers having aspect properties in this range exhibit the most remarkable effect of increasing the diameter by sublimation recrystallization. Further, it is necessary to select a crystal system of SiC whiskers that is mainly of the β crystal type, and if this requirement is not met, the intended diameter cannot be increased. "Mainly β crystal type" means that the SiC whisker crystal type is all β type, or even if it is α/β mixed type, the β type is dominant, but the lower the stacking fault density, the less grainy particles there are. The diameter increases depending on the content. Preferred crystal properties of the β-5iC whisker are that the α degree according to the following formula is 20 or less, and the half width of the (111) diffraction line is 0.14 deg or less.

α度=(H,x2/HixtO。α degree = (H, x2/HixtO.

但し、HlはX線回折でCuKαを線源としたときの2
6約35.6degに出る回折線強度、H2は同33.
5degに出る回折線強度である。
However, Hl is 2 when CuKα is used as a radiation source in X-ray diffraction.
6 Diffraction line intensity appearing at about 35.6 degrees, H2 is 33.
This is the intensity of the diffraction line appearing at 5 degrees.

このようなSiCウィスカーは、N2ガス、Arガスあ
るいは真空のような非酸化性雰囲気中で1800〜22
00°Cの温度域で熱処理する。熱処理の時間は、0.
2〜4時間で足りる。この際、処理温度が1800°C
を下廻ると直径1.5μ−以上に径大化するために長時
間が必要となって実用的でなくなり、また2200℃を
越えるとSiCの気化が激しくなって重量減少を促し、
収率の低下を招く。
Such SiC whiskers can be heated to 1800~22 in a non-oxidizing atmosphere such as N2 gas, Ar gas or vacuum.
Heat treatment in the temperature range of 00°C. The heat treatment time was 0.
2 to 4 hours is enough. At this time, the processing temperature was 1800°C.
If the temperature is lower than 2200°C, it will take a long time to increase the diameter to 1.5μ or more, making it impractical.If the temperature exceeds 2200°C, SiC will evaporate rapidly, leading to weight loss.
This results in a decrease in yield.

WRP複合化は、下記のプロセスでおこなうことができ
る。
WRP compositing can be performed by the following process.

径太性状のSiCウィスカーを、例えばアミノシランの
ような常用のシランカンブリング剤を有機溶媒に溶解し
た溶液に浸漬したのち有機溶媒を揮散除去する工程によ
り表面処理する。
The surface of SiC whiskers having a large diameter is immersed in a solution in which a commonly used silane cambling agent such as aminosilane is dissolved in an organic solvent, and then the organic solvent is removed by volatilization.

シランカップリング処理を施したウィスカーは、ついで
マトリックス樹脂に分散させる。
The silane coupling-treated whiskers are then dispersed in a matrix resin.

マトリックス樹脂としては、フェノール系、エポキシ系
、不飽和ポリエステル系、ジアリルフタレート系、ポリ
エチレン、ポリ塩化ビニール、ポリビニルアルコール、
ポリアミド、ポリイミド、ポリウレタン、ポリスチレン
、酢酸ビニール、四弗化エチレンなど各種の熱硬化性ま
たは熱可塑性の樹脂類を挙げることができ、必要に応じ
硬化剤、硬化促進剤などの成分を添加した液状の状態で
使用に供される。
Matrix resins include phenolic, epoxy, unsaturated polyester, diallyl phthalate, polyethylene, polyvinyl chloride, polyvinyl alcohol,
Examples include various thermosetting or thermoplastic resins such as polyamide, polyimide, polyurethane, polystyrene, vinyl acetate, and tetrafluoroethylene. condition and ready for use.

マトリックス樹脂に対する径太ウィスカーの配合比率は
、ウィスカーの体積含有率(Vf)として30〜50%
の範囲内に設定する。この体積含有率(Vf)の範囲は
、小径でアスペクト比の大きなウィスカーでは均一分散
ができない高配合域であり、上記の径大性状ウィスカー
を選択使用することによって均一分散の複合化が可能と
なる。しかし、体積含有率(Vf)が30%未満では摩
耗量が1.5m+*”を下廻る耐摩耗性を付与すること
ができず、また50%を越える配合域になると分散性が
悪化して均一な複合組織をえることが困難となる。
The blending ratio of the thick whiskers to the matrix resin is 30 to 50% as the volume content (Vf) of the whiskers.
Set within the range. This range of volume content (Vf) is a high blending range where whiskers with small diameters and large aspect ratios cannot achieve uniform dispersion, and by selectively using the above-mentioned large-diameter whiskers, uniform dispersion becomes possible. . However, if the volume content (Vf) is less than 30%, it is not possible to provide wear resistance with a wear amount of less than 1.5 m++'', and if the volume content exceeds 50%, the dispersibility deteriorates. It becomes difficult to obtain a uniform composite structure.

ウィスカーの分散化は、マトリックス樹脂を撹拌しなが
ら少しづつ徐々に加えて混合し、これを狭間隔の3本ロ
ールなどによるロール掛は手段で混練処理することによ
っておこなわれる。
Dispersion of the whiskers is carried out by gradually adding and mixing the matrix resin little by little while stirring, and then kneading the mixture by means of rolling, such as three narrowly spaced rolls.

混練物は真空脱泡処理で吸蔵するガス成分および空泡を
除去したのち、所望形状のモールドを用いて成形、硬化
してWRP材を得る。
The kneaded material is subjected to a vacuum defoaming treatment to remove occluded gas components and voids, and then molded using a mold of a desired shape and hardened to obtain a WRP material.

〔作 用〕[For production]

本発明によれば、従来技術に比べて直径が太くアスペク
ト比の小さなSiCウィスカーを強化材としているため
、体積含有率(Vf)が30〜50%という高配合域に
おいてマトリックス樹脂の組織中に均一分散したWRP
組成を呈している。
According to the present invention, SiC whiskers, which have a larger diameter and a smaller aspect ratio than conventional technology, are used as reinforcing materials, so they are uniform in the structure of the matrix resin in the high blending range of 30 to 50% volume content (Vf). Distributed WRP
It has a composition.

この組成構造が、強度性能を損ねることなしに摩耗量1
.5mm’以下の高耐摩耗性を付与するために効果的に
機能する。
This compositional structure allows for wear reduction of 1% without compromising strength performance.
.. It functions effectively to provide high wear resistance of 5 mm' or less.

〔実施例] 以下、本発明の実施例に比較例と対比して説明する。〔Example] Hereinafter, examples of the present invention will be explained in comparison with comparative examples.

実施例、比較例1〜2 直径0.5〜1.2μm、平均アスペクト比50の性状
を有し、(111)回折線の半価幅が0.1375 d
egのβ結晶型を主体とするSiCウィスカー原料〔東
海カーボン■製、′トーカウィスカーS−400”〕を
黒鉛ルツボに詰め、アルゴンガス雰囲気中で2000°
Cの温度で熱処理して、直径2.1〜3.2μm、平均
アスペクト比7の径太でアスペクト比の小さなSiCウ
ィスカーを得た。
Examples, Comparative Examples 1 and 2 It has the properties of a diameter of 0.5 to 1.2 μm, an average aspect ratio of 50, and a half width of the (111) diffraction line of 0.1375 d.
A SiC whisker raw material mainly composed of the β crystal type of EG [manufactured by Tokai Carbon ■, 'Toka Whisker S-400''] was packed in a graphite crucible and heated at 2000° in an argon gas atmosphere.
The SiC whiskers were heat-treated at a temperature of C to obtain thick SiC whiskers with a diameter of 2.1 to 3.2 μm and an average aspect ratio of 7.

この径大ウィスカーを、ウィスカー重量に対し1%のア
ミノシラン〔チッソ■製、S−330)をトルエンに溶
解したシランカップリング液に浸漬したのち、マントル
ヒーターでトルエンを揮散除去した。
This large-diameter whisker was immersed in a silane coupling solution in which 1% aminosilane (manufactured by Chisso Corporation, S-330) based on the weight of the whisker was dissolved in toluene, and then the toluene was removed by volatilization using a mantle heater.

体積含有率(Vf)が10〜20%の場合には、表面処
理を施した径太ウィスカーを配合量を変えて、エポキシ
樹脂〔油化シェルエポキシ■製、′エピコート828”
〕に適量の硬化剤〔油化シェルエポキシ昧製“エピキュ
アZ”〕を混合したマトリックス樹脂液を攪拌しながら
、少しづつ添加した。
When the volume content (Vf) is 10 to 20%, change the amount of surface-treated thick whiskers and use epoxy resin [manufactured by Yuka Shell Epoxy ■, 'Epicoat 828''.
A matrix resin solution prepared by mixing an appropriate amount of curing agent ("Epicure Z" manufactured by Yuka Shell Epoxy Co., Ltd.) was added little by little while stirring.

ついで、混合物をギャップ間隔が0.2mmの3本ロー
ルにかけて10分間混線処理した。
Then, the mixture was passed through three rolls with a gap of 0.2 mm and mixed for 10 minutes.

混練物を真空装置に移して真空脱泡して内部気泡を除去
し、予め離型剤を塗布したモールドに入れて再び真空脱
泡処理をおこなった。引き続き、モールドに100kg
/cI11”の圧力を1分間加えて成形し、80°Cで
2時間および150°Cで2時間に亘り硬化処理をおこ
なった。また、体積含有率(Vf) 30〜50%の場
合には、あらかじめ所定の’dfに調整したプリフォー
ムを作成して樹脂中に入れ真空含浸オートクレーブによ
りガス圧含浸したのち、樹脂を含浸させたプリフォーム
を金型に入れ、加圧しながら半硬化し、最後に金型から
取り出し硬化させた。
The kneaded material was transferred to a vacuum device and subjected to vacuum defoaming to remove internal air bubbles, and then placed in a mold coated with a release agent in advance and subjected to vacuum defoaming treatment again. Continue to put 100kg in the mold
A pressure of /cI11" was applied for 1 minute to form the mold, and a curing treatment was performed at 80 °C for 2 hours and at 150 °C for 2 hours. In addition, when the volume content (Vf) was 30 to 50%, , a preform adjusted to a predetermined 'df is prepared in advance, placed in resin and impregnated with gas pressure in a vacuum impregnation autoclave, then the preform impregnated with resin is placed in a mold, semi-cured under pressure, and finally It was removed from the mold and allowed to harden.

このようにして製造されたWRP材につき引張り強度と
摩耗量を測定し、その結果をSiCウィスカーの体積含
有量(Vf)と対比させて表1および表2に示した。
The tensile strength and wear amount of the WRP material thus manufactured were measured, and the results are shown in Tables 1 and 2 in comparison with the volume content (Vf) of SiC whiskers.

比較のために、強化材として平均粒子径2μ−のSjC
粉末(比較例1)および直径0.2〜0.6μm、平均
アスペクト比30〜40のSiCウィスカー(比較例2
)を用い、SiC粉末の場合のすべてとSICウィスカ
ーで体積含有率(Vf) 10%までは3本ロールによ
る混練にて、またSiCウィスカーで体積含有率(Vf
)20〜50%ではプリフォームを作成し樹脂を含浸さ
せる方法にて作製した複合材の特性を表1および表2に
併載した。
For comparison, SjC with an average particle size of 2μ was used as a reinforcing material.
powder (Comparative Example 1) and SiC whiskers with a diameter of 0.2-0.6 μm and an average aspect ratio of 30-40 (Comparative Example 2).
), up to 10% volume content (Vf) for all SiC powders and SIC whiskers, by kneading with three rolls;
) 20 to 50%, the properties of the composite material produced by the method of creating a preform and impregnating it with resin are listed in Tables 1 and 2.

なお、引張強度はJIS [6911−1979、摩耗
量はAsTM D1044−1978に従いテーパー式
摩耗試験機でC5−17,1000サイクル、荷重10
00gの条件でおこなった。
In addition, the tensile strength is determined according to JIS [6911-1979, and the amount of wear is determined according to AsTM D1044-1978 using a taper type abrasion tester at C5-17, 1000 cycles, and a load of 10.
The test was carried out under the condition of 00 g.

表 1(曲げ強度: kgf/m−り 表 2(摩耗量:鵬諷3) 表1および表2の結果から、本発明の要件を満たす体積
含有率(Vf)30〜50%のWRP材は高位の引張り
強度を保持しながら摩耗量1.5mm’以下の優れた耐
摩耗性を備えている。これに対し、SiC粉末を強化材
とした比較例1は引張り強度、耐摩耗性ともに劣ってお
り、また従来性状のSiCウィスカーを強化材とした比
較例2では30%を越える体積含有率(Vf)の複合化
が不可能であった。
Table 1 (Bending strength: kgf/m) Table 2 (Amount of wear: Peng 3) From the results of Tables 1 and 2, WRP materials with a volume content (Vf) of 30 to 50% that meet the requirements of the present invention are It has excellent wear resistance with a wear amount of 1.5 mm or less while maintaining high tensile strength.In contrast, Comparative Example 1, which uses SiC powder as a reinforcing material, has poor tensile strength and wear resistance. In addition, in Comparative Example 2 in which SiC whiskers of conventional properties were used as a reinforcing material, it was impossible to form a composite with a volume content (Vf) exceeding 30%.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によればマトリックス樹脂の組織
内に径大性状のSiCウィスカーが体積含有率(Vf)
30〜50%の高配合範囲で均一分散した組成の耐摩耗
性に優れるWRP材を提供することができる。
As described above, according to the present invention, large-diameter SiC whiskers are present in the structure of the matrix resin at a volume content (Vf).
It is possible to provide a WRP material with a uniformly dispersed composition and excellent wear resistance in a high blending range of 30 to 50%.

したがって、苛酷な条件下で機械的摺動を伴う各種用途
部材に適用して有用性が期待される。
Therefore, it is expected to be useful when applied to various application members that involve mechanical sliding under severe conditions.

出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也Applicant: Tokai Carbon Co., Ltd. Agent: Patent Attorney Masaya Takahata

Claims (1)

【特許請求の範囲】 1、直径1.5〜4.0μm、アスペクト比3〜10の
径太性状を備えるSiCウィスカーが体積含有率(Vf
)30〜50%でマトリックス樹脂の組織中に均一分散
してなる組成の耐摩耗性WRP材。 2、摩耗量が1.5mm^3以下である請求項1記載の
耐摩耗性WRP材。
[Claims] 1. SiC whiskers having a diameter of 1.5 to 4.0 μm and an aspect ratio of 3 to 10 have a volume content (Vf
) A wear-resistant WRP material having a composition of 30 to 50% uniformly dispersed in the matrix resin structure. 2. The wear-resistant WRP material according to claim 1, which has a wear amount of 1.5 mm^3 or less.
JP32386590A 1990-11-26 1990-11-26 Abrasion-resistant wrp material Pending JPH04198225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32386590A JPH04198225A (en) 1990-11-26 1990-11-26 Abrasion-resistant wrp material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32386590A JPH04198225A (en) 1990-11-26 1990-11-26 Abrasion-resistant wrp material

Publications (1)

Publication Number Publication Date
JPH04198225A true JPH04198225A (en) 1992-07-17

Family

ID=18159457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32386590A Pending JPH04198225A (en) 1990-11-26 1990-11-26 Abrasion-resistant wrp material

Country Status (1)

Country Link
JP (1) JPH04198225A (en)

Similar Documents

Publication Publication Date Title
CA1283763C (en) Fibrous material for composite materials, fiber- reinforced composite materials produced therefrom, and processes for producing same
Ishikawa Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature
US4778722A (en) Reinforcing fibers and composite materials reinforced with said fibers
US3969124A (en) Carbon articles
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
DE69909714T2 (en) Composite materials with ceramic matrix
DE60130688T2 (en) METHOD FOR THE PRODUCTION OF SIC FIBER REINFORCED SIC COMPOUND MATERIAL USING A HOT PRESSURE
JPH05105521A (en) Carbon-fiber reinforced silicon nitride-based nano-composite material and its production
US4579699A (en) Method for making α-Si3 N4 whiskers and articles therefrom
US4548774A (en) Method for preparing a SiC whisker-reinforced composite material
JPH02212370A (en) Composite material
US5698143A (en) Method for the preparation of silicon carbide-based composite ceramic body with fiber reinforcement
EP1364929A1 (en) Method for producing sic fiber-reinforced sic composite material having excellent fracture toughness
JPH04198225A (en) Abrasion-resistant wrp material
KR100673432B1 (en) Method for preparation of a carbon composite containing carbon nanotube
JPH09241929A (en) Hollow inorganic fiber and production of the same
JPH06279200A (en) Growing method of ceramic whisker and production of fiber reinforced composite material
JP3140701B2 (en) Method for producing long fiber reinforced silicon carbide composite material
EP1281696A1 (en) Method for producing sic fiber-reinforced sic composite material having high density
Vogelson et al. Fiber reinforced epoxy resin composite materials using carboxylate-alumoxanes as cross-linking agents
JP2000160474A (en) Coated ceramic fiber
JPS6048576B2 (en) Method for manufacturing SiC whisker-reinforced Al composite material
JPS61268441A (en) Composite material of generated fine carbon fiber
JPS63162726A (en) Hybrid fiber-reinforced composite
JPH06215618A (en) Manufacture of conductive resin composition containing tic whiskers