JPH04198150A - Oxidation of 2-chloropropionaldehyde - Google Patents

Oxidation of 2-chloropropionaldehyde

Info

Publication number
JPH04198150A
JPH04198150A JP2325752A JP32575290A JPH04198150A JP H04198150 A JPH04198150 A JP H04198150A JP 2325752 A JP2325752 A JP 2325752A JP 32575290 A JP32575290 A JP 32575290A JP H04198150 A JPH04198150 A JP H04198150A
Authority
JP
Japan
Prior art keywords
reaction
chloropropionaldehyde
chromium
chloropropionic acid
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2325752A
Other languages
Japanese (ja)
Inventor
Nobumasa Arashiba
荒柴 伸正
Takaharu Kasuga
春日 隆晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2325752A priority Critical patent/JPH04198150A/en
Publication of JPH04198150A publication Critical patent/JPH04198150A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain 2-chloropropionic acid in high concentration and selectivity by oxidizing 2-chloropropionaldehyde with oxygen or an oxygen-containing gas in liquid phase in the presence of an iron compound, a chromium compound and a molybdenum compound. CONSTITUTION:The objective 2-chloropropionic acid can be produced by oxidizing 2-chloropropionaldehyde with oxygen or an oxygen-containing gas in liquid phase (especially at 40-90 deg.C) using a catalyst comprising an iron compound (e.g. ferric salt of 2-chloropropionic acid), a chromium compound [e.g. chromium(II) acetate] and a molybdenum compound (e.g. molybdenum naphthenate). The process enables the industrial production of 2-chloropropionic acid in a low- corrosion environment in high selectivity. 2-Chloropropionic acid having increased concentration can be produced by the process. The process is extremely advantageous because the obtained 2-chloropropionic acid does not contain detectable amount of 2,2-dichloro-propionic acid.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は次の反応式1) %式%) に従って2−クロロプロピオンアルデヒドを酸化して2
−クロロプロピオン酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is based on the following reaction formula 1).
- A method for producing chloropropionic acid.

2−クロロプロピオン酸は工業薬品および農薬製造用中
間体として広範囲な用途を有する重要な化合物である。
2-Chloropropionic acid is an important compound with a wide range of uses as an intermediate for the production of industrial chemicals and pesticides.

(従来の技術および発明が解決しようとする課H)従来
、2−クロロプロピオン酸は工業的には次の反応式2) %式%) に従ったプロピオン酸の塩素化反応によって製造されて
いる。しかし、この反応方法では、式から明らかなよう
に消費される塩素の半分は塩化水素の副生に向けられて
おり、塩素の利用率の面において経済的に好ましくない
上に、副生ずる塩化水素は未反応塩素や各種の不純物を
含むために利用価値が低く、また、廃棄に際しても中和
用のアルカリを必要とするという不利益を有す−る。ま
た、この方法で得られる2−クロロプロピオン酸には、
不純物として未反応のプロピオン酸の他に塩素化が更に
進んだ2.2−ジクロロプロピオン酸等のジクロル体が
通常数%含まれるために純度95%以上とすることが困
難である。特に、これらのジクロル体は単なる蒸留では
2−クロロプロビオン酸との分離が非常に困難であり、
高純度の2−クロロプロピオン酸を必要とする場合には
、例えば−旦メチルエステルに変換してから精密蒸留に
かけ、次いで加水分解の後にメタノールを分離回収する
といった煩雑な操作を必要とするという欠点を有してい
る。更に、このプロピオン酸の塩素化反応は、腐食性の
強い塩化水素を取り扱うために装置に高価な材料を必要
としたり装置の維持に大きな負担をかける等の問題点が
ある。 上記問題点の解決方法として、塩素化法によら
ない即ちジクロル体を生成しない製造方法の採用が考え
られる。それは、例えば特開昭61−126046号公
報に開示されているロジウムおよび塩基の存在下に塩化
ビニルと合成ガスとの反応によって製造できる2−クロ
ロプロピオンアルデヒドを、例えば特開昭62−964
46号公報に開示されている、鉄化合物、クロム化合物
、ニッケル化合物、マンガン化合物、銅化合物およびセ
リウム化合物から成る群から選ばれる少なくとも一種の
金属化合物の存在下、液相において酸素もしくは酸素含
有ガスにより酸化する方法が好適である。この方法は塩
化ビニルを出発原料としているため、基本的にジクロル
体の副生が殆どないという特徴があり好適である。又、
特開平01−233257号公報には(1)鉄化合物と
(2)バナジウム化合物、クロム化合物またはクロム化
合物を触媒として式1)の反応を行うと高い選択率で酸
化反応が出来る事が示されている。
(Problem H to be solved by the prior art and the invention) Conventionally, 2-chloropropionic acid has been industrially produced by the chlorination reaction of propionic acid according to the following reaction formula 2) % formula %) . However, in this reaction method, as is clear from the equation, half of the chlorine consumed is directed toward the by-product of hydrogen chloride, which is not economically desirable in terms of the utilization rate of chlorine. Since it contains unreacted chlorine and various impurities, it has low utility value, and also has the disadvantage of requiring alkali for neutralization when disposed of. In addition, 2-chloropropionic acid obtained by this method has
It is difficult to obtain a purity of 95% or higher because, in addition to unreacted propionic acid, several % of dichloro compounds such as 2,2-dichloropropionic acid, which has been further chlorinated, are usually contained as impurities. In particular, it is very difficult to separate these dichloro compounds from 2-chloroprobionic acid by simple distillation.
When high-purity 2-chloropropionic acid is required, the disadvantage is that it requires complicated operations, such as first converting it to methyl ester, then subjecting it to precision distillation, and then separating and recovering methanol after hydrolysis. have. Furthermore, this chlorination reaction of propionic acid has problems such as requiring expensive materials for the equipment to handle highly corrosive hydrogen chloride and placing a heavy burden on the maintenance of the equipment. As a solution to the above-mentioned problems, it is possible to adopt a production method that does not involve chlorination, that is, does not generate a dichloride. 2-chloropropionaldehyde, which can be produced by the reaction of vinyl chloride with synthesis gas in the presence of rhodium and a base, as disclosed in, for example, JP-A-62-964;
46, in the presence of at least one metal compound selected from the group consisting of iron compounds, chromium compounds, nickel compounds, manganese compounds, copper compounds and cerium compounds, by oxygen or oxygen-containing gas in the liquid phase. A method of oxidation is preferred. Since this method uses vinyl chloride as a starting material, it is suitable because it is basically characterized in that there is almost no by-product of dichloride. or,
JP-A-01-233257 discloses that when the reaction of formula 1) is carried out using (1) an iron compound and (2) a vanadium compound, a chromium compound, or a chromium compound as a catalyst, an oxidation reaction can be carried out with high selectivity. There is.

しかし、本反応は一般的に溶媒を用いて実施されるが、
2−クロロプロピオンアルデヒド濃度が通常1〜50重
景%、好ましくは5〜30重景%で実施され、比較的高
濃度で酸化反応を行うと選択率が著しく低下するという
欠点があった。従って、より好ましくは1〜15重量%
で反応する必要があった。しかし、選択率が高くても目
的生成物の濃度が低いと、目的物よりも低沸点の溶媒を
用いた場合に、生成物の単位重量当たりに換算した溶媒
回収のエネルギーコストが非常に高くなり、高濃度でも
選択率よく酸化反応できる方法が望まれていた。
However, although this reaction is generally carried out using a solvent,
The 2-chloropropionaldehyde concentration is usually 1 to 50% by weight, preferably 5 to 30% by weight, and when the oxidation reaction is carried out at a relatively high concentration, the selectivity is significantly reduced. Therefore, more preferably 1 to 15% by weight
I needed to react. However, even if the selectivity is high, if the concentration of the target product is low, the energy cost of solvent recovery per unit weight of product becomes very high when a solvent with a lower boiling point than the target product is used. There was a desire for a method that could perform oxidation reactions with good selectivity even at high concentrations.

(課題を解決するための手段および作用)本発明者らは
、上記問題点を解決するに当たり鋭意検討を積み重ねた
結果、鉄化合物、クロム化合物及びモリブデン化合物の
共存条件下にて酸化反応すれば、液相溶媒中比較的高い
濃度でも式1)の反応が極めて高い選択率で進行し、前
記問題点が解決できる事を見出し本発明を完成するに至
った。 即ち、本発明は、鉄化合物、クロム化合物及び
モリブデン化合物の存在下、液相において酸素もしくは
酸素含有ガスにより酸化することを特徴とする2−クロ
ロプロピオンアルデヒドの酸化方法である。 本発明の
方法において用いる鉄化合物としては塩化第一鉄、塩化
第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸第二鉄等の二価
または三価の鉄の鉱酸塩や酢酸第一鉄、酢酸第二鉄、安
息香酸第一鉄、蓚酸第一鉄、ナフテン酸鉄等の二価また
は三価の鉄の有機酸塩等が好ましく、またこの他、水酸
化第二鉄や酸化第二鉄等も使用する事ができる。また、
二価または三価の鉄の2−クロロプロピオン酸塩も好ま
しい鉄化合物の例として挙げられる。
(Means and effects for solving the problem) As a result of intensive studies in solving the above problems, the present inventors found that if an oxidation reaction occurs under the coexistence conditions of an iron compound, a chromium compound, and a molybdenum compound, The present inventors have found that the reaction of formula 1) proceeds with extremely high selectivity even at a relatively high concentration in a liquid phase solvent, and that the above-mentioned problems can be solved, leading to the completion of the present invention. That is, the present invention is a method for oxidizing 2-chloropropionaldehyde, which is characterized by oxidizing 2-chloropropionaldehyde in a liquid phase with oxygen or an oxygen-containing gas in the presence of an iron compound, a chromium compound, and a molybdenum compound. The iron compounds used in the method of the present invention include divalent or trivalent iron mineral salts such as ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, and ferric nitrate, and ferrous acetate. Organic acid salts of divalent or trivalent iron such as monoferrous, ferric acetate, ferrous benzoate, ferrous oxalate, and naphthenate are preferred; Secondary iron etc. can also be used. Also,
2-chloropropionate of divalent or trivalent iron is also mentioned as an example of a preferred iron compound.

又、クロム化合物の例としては、塩化クロム(■)、塩
化クロム(III) 、クロムヘキサカルボニル、オキ
シ塩化クロム(■)、酸化クロム(I[I)、酸化クロ
ム(■)、硝酸クロム(1)(9水和物)、三フッ化ク
ロム(■)(四水和物)、クロム(III)アセチルア
セトナート、クロム(I[I)三フッ化アセチルアセト
ナート、酢酸クロム(III)  (1水和物)、ナフ
テン酸クロム等の化合物が例示される。
Examples of chromium compounds include chromium chloride (■), chromium chloride (III), chromium hexacarbonyl, chromium oxychloride (■), chromium oxide (I[I), chromium oxide (■), and chromium nitrate (1). ) (9hydrate), chromium trifluoride (■) (tetrahydrate), chromium (III) acetylacetonate, chromium (I[I) trifluoride acetylacetonate, chromium (III) acetate (1 Examples include compounds such as hydrate) and chromium naphthenate.

更にモリブデン化合物の例としては、五塩化モリブデン
、二硫化モリブデン、モリブデンヘキサカルボニル、酸
化モリブデン(■)、酸化モリブデン(IV)アセチル
アセトナート、酢酸モリブデン(U)二量体、ナフテン
酸モリブデン等の化合物が挙げられる。
Furthermore, examples of molybdenum compounds include molybdenum pentachloride, molybdenum disulfide, molybdenum hexacarbonyl, molybdenum oxide (■), molybdenum oxide (IV) acetylacetonate, molybdenum acetate (U) dimer, molybdenum naphthenate, and the like. can be mentioned.

以上の化合物は、粉末状または結晶状で使用できるが、
2−クロロプロピオン酸や2−クロロプロピオンアルデ
ヒド及び又は予め溶媒に溶解させた形で用いることも好
ましい使用方法である。これらの化合物の使用量は通常
、反応液相中に各々の金属に換算して鉄は10〜200
00重量ppm 、モリブデンは10〜5000重量p
pm、クロムは0.1〜500重量ρpmの範囲で使用
する事が望ましい。この濃度範囲外では、溶媒中に於け
る2−クロロプロピオンアルデヒドが20重量%を越え
るような比較的高い濃度では、高選択率が得られないか
、高転化率を得る事が出来なくなる。溶媒中に於ける2
−クロロプロピオンアルデヒド濃度、反応温度及び酸素
分圧など他の条件に応じて最適な触媒濃度を任意に選ぶ
事が出来る。特にクロムについては、反応液相中500
重量ppwlを越えると急激な酸化反応が起こり易く、
安定した酸化反応を行うのが難しくなる。また、クロム
の非存在下では、高い転化率を達成できなくなり好まし
くない。
The above compounds can be used in powder or crystal form, but
It is also preferable to use 2-chloropropionic acid, 2-chloropropionaldehyde, and/or in the form of a pre-dissolved solution in a solvent. The amount of these compounds used is usually 10-200% of iron in the reaction liquid phase in terms of each metal.
00 ppm by weight, molybdenum is 10-5000 ppm by weight
It is desirable to use chromium in a range of 0.1 to 500 weight ρpm. Outside this concentration range, at relatively high concentrations of 2-chloropropionaldehyde in the solvent exceeding 20% by weight, high selectivity or high conversion cannot be obtained. 2 in solvent
- The optimal catalyst concentration can be arbitrarily selected depending on other conditions such as chloropropionaldehyde concentration, reaction temperature, and oxygen partial pressure. Especially for chromium, 500
When the weight ppwl is exceeded, rapid oxidation reactions tend to occur;
It becomes difficult to perform a stable oxidation reaction. Moreover, in the absence of chromium, a high conversion rate cannot be achieved, which is not preferable.

本発明の方法では、2−クロロプロピオンアルデヒドの
酸化を温度20〜120℃の範囲で行う事が好ましい。
In the method of the present invention, 2-chloropropionaldehyde is preferably oxidized at a temperature in the range of 20 to 120°C.

20℃より低い温度では酸化反応速度が4い上に過酸の
蓄積の恐れがあるために通常は好ましくない。又、12
0″Cより高い温度では、2−クロロプロピオンアルデ
ヒドや2−クロロプロピオン酸の脱塩酸等の副反応が著
しくなり、2−クロロプロピオン酸の収率が低下すると
ともに純度も悪くなる。これらの理由から、用いる温度
は40〜90℃が更に好ましい範囲である。
Temperatures lower than 20° C. are generally not preferred because the oxidation reaction rate is low and there is a risk of peracid accumulation. Also, 12
At temperatures higher than 0''C, side reactions such as dehydrochlorination of 2-chloropropionaldehyde and 2-chloropropionic acid become significant, resulting in a decrease in the yield and purity of 2-chloropropionic acid.These reasons are Therefore, the temperature used is more preferably in the range of 40 to 90°C.

本発明の方法では、溶媒の不存在下でも酸化は充分進行
するが、酸化に伴う発熱を効率よく除去して良好な反応
成績を得る為に溶媒の存在下で酸化を行うことが好まし
い。このような溶媒としては、酸化反応条件下で変質や
副反応を伴わないものが使用しうる。好ましい例として
は、酢酸、プロピオン酸、酪酸等のカルボン酸があり、
また、このほか、ジメチルスルホキシドや、スルホラン
、アセトン等も挙げられる。これら溶媒中の2−クロロ
プロピオンアルデヒドの濃度は、通常1〜50重量%程
度である。しかし比較的低濃度での酸化反応は、はぼ定
量的な高転化率且つ高選択率の反応成績が得られるもの
の、反応生成液中の目的物の濃度が低く、溶媒回収のエ
ネルギーコストが高くなり本発明の目的にはそぐわない
。本発明では15重量%さらには20重量%を越える比
較的高い濃度域でも、高転化率にて高選択率で酸化反応
させ得る事が特長である。即ち高濃度域でも選択率を損
なう事なく反応させる事が出来る。
In the method of the present invention, oxidation proceeds satisfactorily even in the absence of a solvent, but in order to efficiently remove the heat generated by oxidation and obtain good reaction results, it is preferable to carry out oxidation in the presence of a solvent. As such a solvent, one that does not cause deterioration or side reactions under oxidation reaction conditions can be used. Preferred examples include carboxylic acids such as acetic acid, propionic acid, butyric acid,
Other examples include dimethyl sulfoxide, sulfolane, and acetone. The concentration of 2-chloropropionaldehyde in these solvents is usually about 1 to 50% by weight. However, although oxidation reactions at relatively low concentrations can yield quantitatively high conversion rates and high selectivity, the concentration of the target product in the reaction product is low and the energy cost of solvent recovery is high. Therefore, this is not suitable for the purpose of the present invention. The present invention is characterized in that the oxidation reaction can be carried out with high conversion and high selectivity even in a relatively high concentration range exceeding 15% by weight or even 20% by weight. That is, even in a high concentration range, the reaction can be carried out without loss of selectivity.

又、この2−クロロプロピオンアルデヒドの酸化におい
ては、原料や溶媒に由来する水の混入がしばしば見られ
るが、反応系内に水が共存すると反応速度が低下して好
ましくない。しかし、本発明の方法においては、反応系
内の水は完全に除去する必要はなく、通常液相中に10
重量%以下、特に好ましくは3重量%以下とすれば酸化
は充分に進行する。
Further, in the oxidation of 2-chloropropionaldehyde, contamination of water originating from raw materials and solvents is often observed, and the coexistence of water in the reaction system is undesirable because the reaction rate decreases. However, in the method of the present invention, it is not necessary to completely remove water in the reaction system;
Oxidation will proceed sufficiently if the amount is less than 3% by weight, particularly preferably less than 3% by weight.

本発明の方法において、酸化剤としては酸素または酸素
含有ガスが用いられる。酸素含有ガスとしては、最も一
般的には空気が用いられる。これらの酸素含有ガスの圧
力は、反応系内の酸素分圧で0.2kg /cm”−G
以上、特に5 kg/ cm”−G以上が好ましい。酸
素分圧には特に上限を設ける必要はないが、あまり高圧
にすることは工業的に好ましくないので通常は酸素分圧
100 kg/ cm”−G以下の範囲で行われる。
In the method of the invention, oxygen or an oxygen-containing gas is used as the oxidizing agent. Air is most commonly used as the oxygen-containing gas. The pressure of these oxygen-containing gases is 0.2 kg/cm"-G as the oxygen partial pressure in the reaction system.
Above, 5 kg/cm"-G or above is particularly preferable. Although there is no need to set an upper limit on the oxygen partial pressure, it is industrially undesirable to make the pressure too high, so the oxygen partial pressure is usually 100 kg/cm"-G. - It is carried out in the range below G.

(実施例) 以下、実施例により本発明の方法を更に具体的に説明す
る。
(Example) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

裏隻■土 反応溶媒として用いる酢酸に、2−クロロプロピオン酸
の第二鉄塩を鉄として666ppm、5%ナフテン酸モ
リブデンをモリブデンとして66.6ppm、及び酢酸
クロム(II)(1水和物)をクロムとして13.3p
pmになるように調製して加え、溶解した。
In the acetic acid used as a reaction solvent, 666 ppm of ferric salt of 2-chloropropionic acid as iron, 66.6 ppm of 5% molybdenum naphthenate as molybdenum, and chromium (II) acetate (monohydrate) were added. 13.3p as chrome
pm, added and dissolved.

撹拌装置を備えた内容積100m1のステンレス製オー
トクレーブに、2−クロロプロピオンアルデヒド8gと
、上記酢酸溶媒12gを入れ、これに酸素と窒素が1:
1の混合ガスを80Kg/cmz−Gまで圧入し、温水
浴中、撹拌下で50℃において1時間反応を行わせた。
8 g of 2-chloropropionaldehyde and 12 g of the above acetic acid solvent were placed in a stainless steel autoclave with an internal volume of 100 m1 equipped with a stirring device, and oxygen and nitrogen were added in 1:1 ratio.
A mixed gas of No. 1 was injected under pressure to 80 kg/cmz-G, and the reaction was carried out at 50° C. for 1 hour with stirring in a hot water bath.

反応の進行に伴い圧力が低下しないようにボンベから酸
素を補給し、圧力を80Kg/cm”−Gに保った。
Oxygen was supplied from a cylinder to prevent the pressure from decreasing as the reaction progressed, and the pressure was maintained at 80 kg/cm''-G.

反応終了後、オートクレーブを冷却し、圧を抜いた後に
内容物を取り出し、ガスクロマトグラフにより分析した
。分析の結果、2−クロロプロビオンアルデヒドの転化
率は63.5%で、2−クロロプロピオン酸への選択率
は98.4%であった。また、反応液中には2,2−ジ
クロロプロピオン酸の副生は認められなかった。
After the reaction was completed, the autoclave was cooled, the pressure was released, and the contents were taken out and analyzed by gas chromatography. As a result of analysis, the conversion rate of 2-chloroprobionaldehyde was 63.5%, and the selectivity to 2-chloropropionic acid was 98.4%. Furthermore, no by-product of 2,2-dichloropropionic acid was observed in the reaction solution.

実施1 実施例1の方法において、反応温度を40℃とし、反応
時間を2時間とした以外は実施例1と同様に反応を行っ
た。その結果、2−クロロプロピオンアルデヒド転化率
59.8%、2−クロロプロピオン酸選択率98.7%
の反応成績を得た。又、反応後の液中には2.2−ジク
ロロプロピオン酸の副生は認められなかった。
Example 1 A reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 40° C. and the reaction time was 2 hours. As a result, 2-chloropropionaldehyde conversion rate was 59.8% and 2-chloropropionic acid selectivity was 98.7%.
obtained reaction results. Furthermore, no by-product of 2,2-dichloropropionic acid was observed in the solution after the reaction.

実施拠主 実施例1の方法において、2−クロロプロピオンアルデ
ヒドの仕込を6g、酢酸溶媒の仕込を14gとした以外
は実施例1と同様に反応を行った。その結果、2−クロ
ロプロピオンアルデヒド転化率79.9%、2−クロロ
プロピオン酸選択率98.1%の反応成績を得た。又、
反応後の液中には2,2−ジクロロプロピオン酸の副生
は認められなかった。
The reaction was carried out in the same manner as in Example 1, except that 6 g of 2-chloropropionaldehyde and 14 g of acetic acid solvent were charged. As a result, a reaction result of 2-chloropropionaldehyde conversion of 79.9% and 2-chloropropionic acid selectivity of 98.1% was obtained. or,
No by-product of 2,2-dichloropropionic acid was observed in the solution after the reaction.

実ll津( 実施例1の方法において、2−クロロプロピオンアルデ
ヒドの仕込を1.5gとし、実施例1で調製した触媒を
含む酢酸溶媒を9gと試薬の酢酸9.5gを仕込み反応
時間を2時間として実施例1と同様に反応を行った。そ
の結果、2−クロロプロピオンアルデヒド転化率99.
1%、2−クロロプロピオン酸選択率99.0%の反応
成績を得た。又、反応後の液中には2,2−ジクロロプ
ロピオン酸は認められなかった。
(In the method of Example 1, 1.5 g of 2-chloropropionaldehyde was charged, 9 g of the acetic acid solvent containing the catalyst prepared in Example 1, and 9.5 g of acetic acid as a reagent were charged, and the reaction time was set to 2. The reaction was carried out for the same time as in Example 1. As a result, the 2-chloropropionaldehyde conversion rate was 99.
1% and a 2-chloropropionic acid selectivity of 99.0%. Moreover, 2,2-dichloropropionic acid was not observed in the solution after the reaction.

北較桝工 実施例1の方法において、酢酸中の酢酸クロム(I[I
)  (1水和物)をクロムとして11000ppにな
るように調製して用いた以外は実施例1と同様に反応を
行った。しかし反応途中で急激に温度暴走が起こり安定
的な運転が困難であった。
In the method of Example 1, chromium acetate (I[I
The reaction was carried out in the same manner as in Example 1, except that chromium (monohydrate) was prepared to have a concentration of 11,000 pp. However, a sudden temperature runaway occurred during the reaction, making stable operation difficult.

l校医l 実施例1の方法において、酢酸クロム(II[)(1水
和物)のみを含まない酢酸溶媒を用いた以外は実施例1
と同様に反応を行った。その結果、2−クロロプロピオ
ンアルデヒド転化率18.9%、2−クロロプロピオン
酸選択率99.3χの反応成績を得た。
1 School doctor 1 Example 1 in the method of Example 1 except that an acetic acid solvent not containing only chromium acetate (II[) (monohydrate) was used.
The reaction was carried out in the same manner. As a result, a reaction result of 2-chloropropionaldehyde conversion of 18.9% and 2-chloropropionic acid selectivity of 99.3χ was obtained.

比較■1 実施例1の方法において5%ナフテン酸モリブデンのみ
を含まない酢酸溶媒を用いた以外は実施例1と同様に反
応を行った。その結果、2−クロロプロピオンアルデヒ
ド転化率36.7%、2−クロロプロピオン酸選択率9
0.1%の反応成績を得た。
Comparison (1) A reaction was carried out in the same manner as in Example 1 except that an acetic acid solvent containing only 5% molybdenum naphthenate was used. As a result, the 2-chloropropionaldehyde conversion rate was 36.7%, and the 2-chloropropionic acid selectivity was 9%.
A reaction result of 0.1% was obtained.

比較±↓ 実m例iの方法において2−クロロプロピオン酸の第二
鉄塩のみを含まない酢酸溶媒を用いた以外は実施例工と
同様に反応を行った。その結果、2−クロロプロピオン
アルデヒド転化率47.8%、2−クロロプロピオン酸
選択率88.oχの反応成績を得た。
Comparison ±↓ Example M The reaction was carried out in the same manner as in Example I except that an acetic acid solvent not containing only the ferric salt of 2-chloropropionic acid was used. As a result, the 2-chloropropionaldehyde conversion rate was 47.8%, and the 2-chloropropionic acid selectivity was 88. Oχ reaction results were obtained.

(発明の効果) 本発明の方法により、従来行われていたプロピオン酸の
塩素化法に比較して腐食の少ない環境下で工業的に2−
クロロプロピオン酸を選択性良く製造することができる
。また、これまでに提案されてきた2−クロロプロピオ
ンアルデヒドの酸化方法に比較して、より高い濃度でに
2−クロロプロピオン酸を製造することができる。更に
、得られる2−クロロプロピオン酸中には、2.2−ジ
クロロプロピオン酸が検出されない極めて有益な製造方
法である。
(Effects of the Invention) The method of the present invention enables industrial use of 2-
Chloropropionic acid can be produced with good selectivity. Furthermore, compared to the oxidation methods of 2-chloropropionaldehyde that have been proposed so far, 2-chloropropionic acid can be produced at a higher concentration. Furthermore, 2,2-dichloropropionic acid is not detected in the 2-chloropropionic acid obtained, making this a very useful production method.

Claims (1)

【特許請求の範囲】 1、2−クロロプロピオンアルデヒドを、鉄化合物、ク
ロム化合物及びモリブデン化合物の存在下、液相におい
て酸素もしくは酸素含有ガスにより酸化することを特徴
とする2−クロロプロピオンアルデヒドの酸化方法。 2、酸化を40〜90℃の温度範囲内で行うことを特徴
とする特許請求の範囲第1項に記載の方法。
[Claims] Oxidation of 2-chloropropionaldehyde, characterized in that 1,2-chloropropionaldehyde is oxidized with oxygen or an oxygen-containing gas in a liquid phase in the presence of an iron compound, a chromium compound, and a molybdenum compound. Method. 2. The method according to claim 1, characterized in that the oxidation is carried out within a temperature range of 40 to 90°C.
JP2325752A 1990-11-29 1990-11-29 Oxidation of 2-chloropropionaldehyde Pending JPH04198150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325752A JPH04198150A (en) 1990-11-29 1990-11-29 Oxidation of 2-chloropropionaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325752A JPH04198150A (en) 1990-11-29 1990-11-29 Oxidation of 2-chloropropionaldehyde

Publications (1)

Publication Number Publication Date
JPH04198150A true JPH04198150A (en) 1992-07-17

Family

ID=18180246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325752A Pending JPH04198150A (en) 1990-11-29 1990-11-29 Oxidation of 2-chloropropionaldehyde

Country Status (1)

Country Link
JP (1) JPH04198150A (en)

Similar Documents

Publication Publication Date Title
HU227087B1 (en) Method for preparing 1,1,1,3,3-pentachlorobutane
US4221734A (en) Process for the preparation of derivatives of fluoroalkane-carboxylic and perfluoroalkane-sulfinic acids
JPS5814418B2 (en) Production method of benzoyl chloride
JP5055262B2 (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JPS5865241A (en) Carbonylation of secondary benzylhalide
JPH04198150A (en) Oxidation of 2-chloropropionaldehyde
KR100315721B1 (en) Hydroxycarbonylation of Butadiene
JPH04198149A (en) Oxidation of 2-chloropropionaldehyde
EP0002989A1 (en) Process for preparation of organic acid halide
JP2002532445A (en) Method for adding haloalkanes to alkenes contacted with organophosphine compound
EP0034413A1 (en) Process for the preparation of diphenylether carboxylic acids
JP2022530577A (en) Manufacturing process of fluorobenzene and its catalyst
JPH01233257A (en) Production of 2-chloropropionic acid
EP4087834B1 (en) Process for the preparation of c3-5 saturated aliphatic carboxylic acids
JPH08231462A (en) Perfluoroalkylarboxylic acid fluoride and production of its derivative
JPH05286918A (en) Production of acrylonitrile dimer
JPS63297339A (en) Production of 2-chloropropionic acid
JPS62252744A (en) Production of aromatic dicarboxylic acid
JPS63310844A (en) Production of 2-chloropropionic acid
JPS63313747A (en) Oxidation of 2-chloropropionaldehyde
JPS603057B2 (en) Method for producing P-nitrobenzoic acid
JPS6296446A (en) Production of 2-chloropropionic acid
JPH03127784A (en) Production of thiazolecarboxylic acids
JPS6313419B2 (en)
JPS6055494B2 (en) Method for producing α-branched aliphatic carboxylic acid