JP3449800B2 - Method for producing 2-methyl-1,4-naphthoquinone - Google Patents
Method for producing 2-methyl-1,4-naphthoquinoneInfo
- Publication number
- JP3449800B2 JP3449800B2 JP25754594A JP25754594A JP3449800B2 JP 3449800 B2 JP3449800 B2 JP 3449800B2 JP 25754594 A JP25754594 A JP 25754594A JP 25754594 A JP25754594 A JP 25754594A JP 3449800 B2 JP3449800 B2 JP 3449800B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- hydrogen peroxide
- acid
- acetic acid
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、2−メチルナフタレン
を液相で酸化して2−メチル−1,4−ナフトキノンを
製造する方法に関する。FIELD OF THE INVENTION The present invention relates to a method for producing 2-methyl-1,4-naphthoquinone by oxidizing 2-methylnaphthalene in a liquid phase.
【0002】[0002]
【従来の技術】2−メチル−1,4−ナフトキノンは、
メナジオンあるいはビタミンK3 と言われ、動物体の出
血時に止血作用を有する。また、ビタミンK3 のみなら
ず、その誘導体であるビタミンK1 、K2 、K4 、ビタ
ミンK3 重亜硫酸ナトリウム付加物、ビタミンK3 重亜
硫酸ジメチルピリミジノール塩付加物なども人体用医薬
品、飼料用添加剤などとして使用されており、有用な化
合物である。2. Description of the Prior Art 2-Methyl-1,4-naphthoquinone is
It is called menadione or vitamin K3 and has a hemostatic effect when the animal body bleeds. Not only vitamin K3, but also its derivatives such as vitamins K1, K2, K4, vitamin K3 sodium bisulfite adduct, vitamin K3 dimethyl bisulfite dimethylpyrimidinol salt adduct, etc. are used as human medicines and feed additives. It has been used and is a useful compound.
【0003】従来、2−メチル−1,4−ナフトキノン
の工業的製造方法としては、2−メチルナフタレンを無
水クロム酸、重クロム酸ナトリウムなどの重クロム酸塩
などを使用して酸化する方法が行なわれてきた。しか
し、近年のクロム化合物による公害問題により、この方
法での製造は困難になってきた。Conventionally, as an industrial production method of 2-methyl-1,4-naphthoquinone, there is a method of oxidizing 2-methylnaphthalene using chromic anhydride, dichromate such as sodium dichromate, or the like. Has been done. However, due to the pollution problem caused by chromium compounds in recent years, it has become difficult to manufacture by this method.
【0004】これに対し、クロム化合物を使用しない酸
化方法についても、これまでに種々提案されてきた。そ
の方法の1つに、2−メチルナフタレンをバナジウム系
触媒を使用して気相で酸素酸化する方法がある(特開平
6−9485号公報など)が、この方法では、高い選択
率を得るために、転化率を非常に低く抑えざるを得な
い。また、液相での酸化方法として、セリウム化合物を
使用する方法が知られている(特開昭63−26442
8号公報など)。この方法によると、比較的高収率で目
的化合物を得ることができるが、化学量論量のセリウム
化合物を使用するため、電解などでセリウム化合物を再
生する必要がある。On the other hand, various oxidation methods which do not use chromium compounds have been proposed so far. As one of the methods, there is a method in which 2-methylnaphthalene is subjected to oxygen oxidation in the gas phase using a vanadium catalyst (Japanese Patent Laid-Open No. 6-9485, etc.). However, in this method, a high selectivity is obtained. In addition, the conversion rate must be kept very low. Further, as a liquid-phase oxidation method, a method using a cerium compound is known (JP-A-63-26442).
No. 8, etc.). According to this method, the target compound can be obtained in a relatively high yield, but since a stoichiometric amount of the cerium compound is used, it is necessary to regenerate the cerium compound by electrolysis or the like.
【0005】他の方法として、2−メチルナフタレンを
液相で、過酸化水素又は有機過酸を用いて酸化する方法
が知られている。この方法における反応例として、酢酸
等の溶媒中、触媒を用いないで酸化する方法(特公昭5
9−53252号公報など)、酸を触媒として用いる方
法(特開昭53−50147号公報)などが知られてい
るが、いずれも収率が40%に満たない低収率である。
パラジウムを添着させたイオン交換樹脂を触媒として用
いる試みもあり(特開昭61−227548号公報)、
この方法では50%を超える収率が得られているが、反
応物質に対して大量のイオン交換樹脂を使用するので、
イオン交換樹脂のコストとイオン交換樹脂からの溶出物
による汚染防止の観点から、イオン交換樹脂に非常に高
度の耐久性を付与する必要がある。Chem. Phe
rm. Bull., 34(2) 445−449
(1986)は、2−メチルナフタレンの酢酸溶媒中、
過酸化水素による酸化反応をパラジウム−イオン交換樹
脂触媒を用いて繰り返し行った場合の実験結果を報告し
ている。それによると、1回目の収率60.2%が4回
目には50.5%と約16%も低下しており、本発明者
等が追試した結果でも、触媒の繰り返し使用は5〜6回
が限度であった。このことは触媒コストが非常に大きく
なることを意味し、経済的観点から工業的な採用は困難
である。また、イオン交換樹脂を回分式反応装置で使用
する場合、反応液とともにイオン交換樹脂が撹拌される
ため、イオン交換樹脂に物理的強度が要求される。一
方、連続流通式反応装置を用いる場合、この反応は非常
に大きな発熱を伴なうため、除熱が極めて困難である。
また、この方法においては、2−メチルナフタレンの十
分な転化率を得るためには、2−メチルナフタレンに対
して6倍モル以上、すなわち、理論的必要量の2倍以上
という大量の過酸化水素を使用しなければならない。こ
のことは、原料薬品費に占める過酸化水素のコストが高
くなるのみならず、過剰な過酸化水素に起因する酸素ガ
スの発生、及び/又は過酸化物の反応系中への蓄積をも
たらし、操業運転時の発火や爆発の危険性を増大させる
可能性が高い。Another known method is to oxidize 2-methylnaphthalene in a liquid phase using hydrogen peroxide or an organic peracid. As an example of the reaction in this method, a method of oxidizing in a solvent such as acetic acid without using a catalyst (Japanese Patent Publication No.
No. 9-53252), a method using an acid as a catalyst (Japanese Patent Laid-Open No. 53-50147), and the like are known, but the yields are low at less than 40%.
There is also an attempt to use an ion exchange resin impregnated with palladium as a catalyst (Japanese Patent Laid-Open No. 61-227548),
Although a yield of over 50% has been obtained by this method, since a large amount of ion exchange resin is used for the reactants,
From the viewpoint of the cost of the ion exchange resin and the prevention of contamination by the eluate from the ion exchange resin, it is necessary to impart a very high degree of durability to the ion exchange resin. Chem. Phe
rm. Bull. , 34 (2) 445-449.
(1986) is a 2-methylnaphthalene in acetic acid solvent,
We report the experimental results when the oxidation reaction with hydrogen peroxide was repeated using a palladium-ion exchange resin catalyst. According to this, the yield of the first time was 60.2%, which was 50.5% at the fourth time, which was about 16% lower, and the result of additional tests by the present inventors showed that the catalyst was repeatedly used for 5-6%. The number of times was the limit. This means that the catalyst cost becomes very large, and industrial adoption is difficult from an economical point of view. Further, when the ion exchange resin is used in a batch reaction apparatus, the ion exchange resin is agitated together with the reaction solution, and therefore the physical strength is required for the ion exchange resin. On the other hand, when a continuous flow reactor is used, this reaction is extremely difficult to remove because it involves a very large amount of heat generation.
Further, in this method, in order to obtain a sufficient conversion rate of 2-methylnaphthalene, a large amount of hydrogen peroxide of 6 times mol or more, that is, 2 times or more of the theoretically necessary amount, relative to 2-methylnaphthalene. Must be used. This not only increases the cost of hydrogen peroxide in the raw material chemical cost, but also causes generation of oxygen gas due to excess hydrogen peroxide and / or accumulation of peroxide in the reaction system, It is likely to increase the risk of ignition and explosion during operational operation.
【0006】[0006]
【発明が解決しようとする課題】本発明は、2−メチル
ナフタレンを過酸化水素などの酸化剤で酸化して2−メ
チル−1,4−ナフトキノンを製造する方法において、
2−メチルナフタレンからの収率を向上させるのみでな
く、過酸化水素などの酸化剤の利用効率を高めること、
反応系を均一系にして除熱を容易にすること、ならびに
触媒コストを低減することにより、従来技術に比べ経済
的かつ工業的に有利に2−メチル−1,4−ナフトキノ
ンを製造することを目的とするものである。SUMMARY OF THE INVENTION The present invention provides a method for producing 2-methyl-1,4-naphthoquinone by oxidizing 2-methylnaphthalene with an oxidizing agent such as hydrogen peroxide.
Not only to improve the yield from 2-methylnaphthalene, but also to increase the utilization efficiency of oxidizing agents such as hydrogen peroxide,
To make 2-methyl-1,4-naphthoquinone economically and industrially advantageous as compared with the prior art by making the reaction system homogeneous to facilitate heat removal and reducing the catalyst cost. It is intended.
【0007】[0007]
【課題を解決するための手段】本発明者等は、パラジウ
ム及びイオン交換樹脂を用いて過酸化水素により2−メ
チルナフタレンを酸化する従来技術に対して、意外に
も、イオン交換樹脂に代えて、比較的大量の硫酸を用い
ることにより、過酸化水素の利用効率が大幅に向上する
うえに、転化率を高くしても高選択率で2−メチル−
1,4−ナフトキノンが得られることを見出し、本発明
に到達した。The present inventors have surprisingly found that the conventional technique of oxidizing 2-methylnaphthalene with hydrogen peroxide using palladium and an ion exchange resin is unexpectedly replaced with an ion exchange resin. By using a relatively large amount of sulfuric acid, the utilization efficiency of hydrogen peroxide is significantly improved, and 2-methyl-
They have found that 1,4-naphthoquinone can be obtained and have reached the present invention.
【0008】すなわち、本発明は、2−メチルナフタレ
ンに、カルボン酸を含む溶媒中、パラジウム化合物及び
カルボン酸溶媒1リットルに対する重量で5g〜100
gの硫酸の存在下に過酸化水素及び/又は有機過酸を作
用させることを特徴とする2−メチル−1,4−ナフト
キノンの製造方法を提供する。That is, according to the present invention, in a solvent containing carboxylic acid in 2-methylnaphthalene, the weight is 5 g to 100 per 1 liter of the palladium compound and the carboxylic acid solvent.
A method for producing 2-methyl-1,4-naphthoquinone, which comprises reacting hydrogen peroxide and / or an organic peracid in the presence of g sulfuric acid.
【0009】従来公知の方法において、本発明と類似の
条件を採用したものとして、前述のChem. Phe
rm. Bull., 34(2) 445−449
に、硫酸パラジウム(PdSO 4 )を触媒として用い過
酸化水素により酸化を行なった例が記載されている。こ
の例では、酢酸パラジウム(Pd(OAc) 2 )をこれ
と対応する鉱酸、すなわち硫酸と酢酸中で混合すること
でPdSO 4 を合成し、そのまま使用しているが、記述
から推定すると、硫酸の使用量はPd(OAc) 2 と等
モル程度と考えられ、本発明で規定した量に比して大幅
に低濃度である。また、この文献には、反応速度が比較
的速いことは記載されているが、収率に関する記載はな
い。また、Chem. Pherm. Bull.,
34(11) 4467−4473には、パラジウム−
イオン交換樹脂触媒存在下での過酸化水素によるナフタ
レン及びメチルベンゼンの酸化反応について速度式を決
定するための実験方法が記載されており、酢酸5mlに
対して4.6mg(すなわち酢酸1リットルに対して
0.92g)と、やはり本発明で規定した量に比べ低濃
度の硫酸を用いて酸化反応を行なっているが、初速度の
測定を行うに止まり、収率に関する記述はない。本発明
者等は、この文献に記載されている方法がどの程度の反
応成績を示すか確認するために、比較実験を行ってみ
た。その結果を比較例7に示すが、本発明で得られる結
果に比して転化率、選択率共に満足すべきものではなか
った。以上のごとく、反応に使用する硫酸の量を増やす
ことで、反応速度のみならず、転化率と選択率が向上す
ることは予想外のことであり、特に過酸化水素の利用効
率が向上することは、まったく意外なことである。In the conventionally known method, the conditions similar to those of the present invention are adopted, and the above-mentioned Chem. Phe
rm. Bull. , 34 (2) 445-449.
Describes an example of performing oxidation with hydrogen peroxide using palladium sulfate ( PdSO 4 ) as a catalyst. In this example, PdSO 4 was synthesized by mixing palladium acetate ( Pd (OAc) 2 ) with the corresponding mineral acid, that is, sulfuric acid in acetic acid, and used as it is. It is considered that the amount used is about equimolar to Pd (OAc) 2, and the concentration is significantly lower than the amount specified in the present invention. Further, this document describes that the reaction rate is relatively fast, but does not describe the yield. Also, Chem. Pherm. Bull. ,
34 (11) 4467-4473 includes palladium-
An experimental method for determining the rate equation for the oxidation reaction of naphthalene and methylbenzene with hydrogen peroxide in the presence of an ion exchange resin catalyst is described, which is 4.6 mg for 5 ml of acetic acid (ie for 1 liter of acetic acid). The concentration is 0.92 g), which is also lower than the amount specified in the present invention, and the oxidation reaction is carried out, but the initial rate is only measured and the yield is not described. The inventors of the present invention conducted a comparative experiment in order to confirm the reaction performance of the method described in this document. The results are shown in Comparative Example 7, but neither the conversion nor the selectivity was satisfactory as compared with the results obtained in the present invention. As described above, it is unexpected that not only the reaction rate but also the conversion rate and the selectivity are improved by increasing the amount of sulfuric acid used in the reaction, and especially the utilization efficiency of hydrogen peroxide is improved. Is quite surprising.
【0010】このような過酸化水素の効率の向上が認め
られる原因については今のところ明らかではない。The reason why such an improvement in the efficiency of hydrogen peroxide is recognized is not yet clear.
【0011】本発明において溶媒として使用されるカル
ボン酸は、反応原料および硫酸と混和し、反応条件下で
液体のカルボン酸であればよい。具体的には、酢酸、プ
ロピオン酸、酪酸、カプリル酸、カプロン酸、カプリン
酸などが挙げられるが、通常は、反応原料、生成物、副
生物、硫酸、過酸化水素、生成水などとの相溶性が良
く、安価な酢酸が好ましく用いられる。The carboxylic acid used as a solvent in the present invention may be any carboxylic acid which is miscible with the reaction raw materials and sulfuric acid and which is liquid under the reaction conditions. Specific examples thereof include acetic acid, propionic acid, butyric acid, caprylic acid, caproic acid, capric acid, etc., but usually the reaction raw material, product, by-product, sulfuric acid, hydrogen peroxide, generated water, etc. Acetic acid, which has good solubility and is inexpensive, is preferably used.
【0012】カルボン酸は単独で用いてもよいし、ある
いは反応に不活性な溶媒との混合物として用いることも
できる。The carboxylic acid may be used alone or as a mixture with a solvent inert to the reaction.
【0013】本発明で使用されるパラジウム化合物とし
ては、反応系に加えた場合に均一系を形成するものが望
ましい。具体的には酢酸パラジウム、カプリル酸パラジ
ウムなどのカルボン酸塩、塩化パラジウム、臭化パラジ
ウムなどのハロゲン化物、硫酸パラジウム、硝酸パラジ
ウムなどの酸の塩、パラジウムアセチルアセトナト錯
体、ジクロロビス(トリフェニルホスフィン)パラジウ
ム、トリス(ジベンジリデンアセトン)クロロホルムジ
パラジウム等の錯体化合物などが挙げられ、とりわけ酢
酸パラジウム及び硫酸パラジウムの使用が好ましい。The palladium compound used in the present invention is preferably one which forms a homogeneous system when added to the reaction system. Specifically, carboxylic acid salts such as palladium acetate and palladium caprylate, halides such as palladium chloride and palladium bromide, acid salts such as palladium sulfate and palladium nitrate, palladium acetylacetonato complex, dichlorobis (triphenylphosphine). Examples thereof include complex compounds such as palladium and tris (dibenzylideneacetone) chloroformdipalladium, and the use of palladium acetate and palladium sulfate is particularly preferable.
【0014】パラジウム化合物は、その使用量が少な過
ぎると収率及び過酸化水素の効率の点で十分な効果を得
ることができず、多過ぎると経済的観点から好ましくな
い。したがって、その使用量は一般に反応終了時の溶媒
に対するパラジウムの量として25〜500mg/リッ
トルであり、好ましくは45〜200mg/リットルで
ある。反応時に使用される硫酸は、濃硫酸でも硫酸水溶
液でもよく、あるいはカルボン酸溶液として添加して用
いても良い。If the amount of the palladium compound used is too small, a sufficient effect cannot be obtained in terms of yield and hydrogen peroxide efficiency, and if it is too large, it is not preferable from the economical viewpoint. Therefore, the amount used thereof is generally 25 to 500 mg / liter, preferably 45 to 200 mg / liter, as the amount of palladium with respect to the solvent at the end of the reaction. The sulfuric acid used in the reaction may be concentrated sulfuric acid or a sulfuric acid aqueous solution, or may be added as a carboxylic acid solution.
【0015】硫酸はカルボン酸溶媒1リットルに対する
重量で5〜100gの範囲で用いられ、さらに好ましく
は15〜50gの範囲で用いられる。この量が少な過ぎ
ると十分な収率が達成されず、多い場合は、コストや装
置腐食などの点で望ましくない。Sulfuric acid is used in an amount of 5 to 100 g, preferably 15 to 50 g, based on 1 liter of the carboxylic acid solvent . If this amount is too small, a sufficient yield cannot be achieved, and if it is too large, it is not desirable in terms of cost and device corrosion.
【0016】酸化剤として使用される過酸化水素は、通
常30〜60重量%の水溶液で用いられるが、100%
の過酸化水素を使用しても差し支えはない。また、酸化
剤としては、過酢酸、m−クロロ過安息香酸のような有
機過酸を用いることもできる。これらは、純粋な有機過
酸として、あるいは適当な溶媒の溶液として用いること
ができる。また、過酸化水素を予めカルボン酸と反応さ
せて有機過酸を形成し、これをそのまま用いて酸化を行
なっても良い。その使用量は、少な過ぎると十分な原料
の転化率を得ることができず、多過ぎると経済的に不利
であるのみならず、過剰な過酸化水素が生成物をさらに
酸化するため、かえって収率が下がることがある。その
ため、過酸化水素の好ましい使用量は2−メチルナフタ
レン1モルに対して0.5〜10モルであり、さらに好
ましくは1〜4モルである。過酸化水素の添加方法は、
所定量を反応系内に一度に添加しても、あるいは一定の
割合で経時的に添加しても良い。また、過酸化水素を溶
媒であるカルボン酸、あるいはカルボン酸及び硫酸と混
合して添加しても差し支えない。Hydrogen peroxide used as an oxidizing agent is usually used in an aqueous solution of 30 to 60% by weight, but 100%
There is no problem in using hydrogen peroxide. Further, as the oxidizing agent, an organic peracid such as peracetic acid or m-chloroperbenzoic acid can be used. These can be used as a pure organic peracid or as a solution in a suitable solvent. Alternatively, hydrogen peroxide may be reacted with a carboxylic acid in advance to form an organic peracid, and this may be used as it is for oxidation. If the amount used is too small, it will not be possible to obtain a sufficient raw material conversion rate, and if it is too large, it will be economically disadvantageous. The rate may decrease. Therefore, the preferable amount of hydrogen peroxide used is 0.5 to 10 mol, and more preferably 1 to 4 mol, per 1 mol of 2-methylnaphthalene. The method of adding hydrogen peroxide is
A predetermined amount may be added to the reaction system at once, or may be added at a constant rate over time. Further, hydrogen peroxide may be added in the form of a mixture with carboxylic acid which is a solvent, or carboxylic acid and sulfuric acid.
【0017】反応原料である2−メチルナフタレンの溶
液中の濃度は、高過ぎると2−メチル−1,4−ナフト
キノンの収率が低くなるし、低過ぎると容積効率が悪く
なり、実用的ではない。通常、2−メチルナフタレンの
濃度は最終溶液量に対する仕込み量として0.1〜20
0g/リットルであり、好ましくは1.0〜100g/
リットルである。If the concentration of the reaction raw material, 2-methylnaphthalene, in the solution is too high, the yield of 2-methyl-1,4-naphthoquinone will be low, and if it is too low, the volumetric efficiency will be poor, which is not practical. Absent. Usually, the concentration of 2-methylnaphthalene is 0.1 to 20 as the charged amount with respect to the final solution amount.
0 g / liter, preferably 1.0 to 100 g /
It is a liter.
【0018】反応温度は、25℃から100℃の範囲が
好適であるが、40〜90℃の範囲が特に望ましい。反
応温度が25℃未満では収率が低下し、100℃を超え
ると酸化剤の分解が始まり、その効率が悪くなる。反応
時間は通常5分から8時間程度であるが、過酸化水素の
添加速度、反応条件等により任意に調節することができ
る。The reaction temperature is preferably in the range of 25 ° C to 100 ° C, more preferably 40 to 90 ° C. If the reaction temperature is lower than 25 ° C, the yield will be lowered, and if it exceeds 100 ° C, decomposition of the oxidant will start and its efficiency will be deteriorated. The reaction time is usually about 5 minutes to 8 hours, but can be arbitrarily adjusted depending on the addition rate of hydrogen peroxide, reaction conditions and the like.
【0019】本発明において反応原料として用いられる
2−メチルナフタレンは、タールの留分より分離する等
の方法により工業的に生産されており、容易に入手する
ことができる。The 2-methylnaphthalene used as a reaction raw material in the present invention is industrially produced by a method such as separation from a tar fraction, and can be easily obtained.
【0020】本反応方法により得られた2−メチル−
1,4−ナフトキノンは、通常知られている方法で反応
混合物中より取り出すことができる。例えば、反応液を
濃縮し、これに水を加えて、2−メチル−1,4−ナフ
トキノンを固体として析出させて得る方法などがある。2-methyl-obtained by this reaction method
1,4-naphthoquinone can be taken out from the reaction mixture by a generally known method. For example, there is a method in which the reaction solution is concentrated, water is added to the solution, and 2-methyl-1,4-naphthoquinone is precipitated as a solid.
【0021】また、本反応で使用された触媒のパラジウ
ムも、適切な後処理を加えることで回収することができ
る。後処理方法としては、還元剤を加えて金属パラジウ
ムを沈降させる方法、適切な溶媒の溶液にしたのち吸着
捕集する方法などが挙げられる。[0021] The catalyst used in this reaction is palladium.
Beam can also be recovered by adding an appropriate post-treatment. Examples of the post-treatment method include a method of precipitating metallic palladium by adding a reducing agent, a method of forming a solution of an appropriate solvent and then adsorbing and collecting the solution.
【0022】[0022]
【実施例】次に、実施例を挙げて本発明をさらに詳細に
説明する。なお、以下の実施例において、2−メチルナ
フタレンをMN、2−メチル−1,4−ナフトキノンを
VK3と略記する。また、転化率、選択率および収率は
下記式にしたがって求めた。EXAMPLES Next, the present invention will be described in more detail with reference to examples. In the following examples, 2-methylnaphthalene is abbreviated as MN, and 2-methyl-1,4-naphthoquinone is abbreviated as VK3. The conversion rate, selectivity and yield were determined according to the following formulas.
【0023】[0023]
【数1】 [Equation 1]
【0024】実施例1
2−メチルナフタレン(MN)0.7g(4.92 m
mol)および硫酸800mg(反応終了時の酢酸1リ
ットルに対して40g)を酢酸13ml中に溶解させ、
酢酸パラジウムの0.2%酢酸溶液4.0mlを加え、
撹拌下に70℃に昇温し、次いで60%過酸化水素水
0.7ml(15.32mmol)と酢酸3.0mlの
混合物を15分かけて滴下した。滴下終了後そのまま1
5分間70℃で撹拌したのち、反応液を冷却し、HPL
C内部標準法で原料及び生成物の定量を行なった。結
果、2−メチルナフタレンの転化率は96.2%、2−
メチル−1,4−ナフトキノン(VK3)の選択率は6
7.3%、収率は64.7%であった。Example 1 0.7 g (4.92 m) of 2-methylnaphthalene (MN)
mol) and 800 mg of sulfuric acid ( 40 g per 1 liter of acetic acid at the end of the reaction) in 13 ml of acetic acid,
4.0 ml of 0.2% acetic acid solution of palladium acetate was added,
The temperature was raised to 70 ° C. with stirring, and then a mixture of 60% hydrogen peroxide solution 0.7 ml (15.32 mmol) and acetic acid 3.0 ml was added dropwise over 15 minutes. 1 after completion of dropping
After stirring at 70 ° C. for 5 minutes, the reaction solution was cooled and HPL
Raw materials and products were quantified by the C internal standard method. As a result, the conversion rate of 2-methylnaphthalene was 96.2%,
The selectivity of methyl-1,4-naphthoquinone (VK3) is 6
The yield was 7.3% and the yield was 64.7%.
【0025】実施例2〜6
硫酸量を表1で示される量にし、反応時間を滴下終了後
1時間とした以外は実施例1と同様に反応を行なった。
硫酸量及び反応成績を表1に示す。Examples 2 to 6 Reactions were carried out in the same manner as in Example 1 except that the amount of sulfuric acid was changed to the amount shown in Table 1 and the reaction time was set to 1 hour after completion of dropping.
The amount of sulfuric acid and the reaction results are shown in Table 1.
【0026】[0026]
【表1】 [Table 1]
【0027】実施例7〜8
表2で示される量のMNを用い、硫酸400mgを酢酸
16ml中に溶解させ、酢酸パラジウムの0.2%酢酸
溶液1.0mlを加え、撹拌下に70℃に昇温し、次い
で表2中に記載の量の60%過酸化水素水と酢酸3.0
mlの混合物を15分かけて滴下した。滴下終了後その
まま1時間70℃で撹拌したのち、反応液を冷却し、H
PLC内部標準法で原料及び生成物の定量を行なった。
添加量および反応成績を表2に示す。Examples 7 to 8 Using the amount of MN shown in Table 2, 400 mg of sulfuric acid was dissolved in 16 ml of acetic acid, 1.0 ml of 0.2% acetic acid solution of palladium acetate was added, and the mixture was heated to 70 ° C. with stirring. The temperature was raised, and then the amounts of 60% hydrogen peroxide and acetic acid described in Table 2 were added to 3.0
The ml mixture was added dropwise over 15 minutes. After completion of dropping, the mixture is stirred for 1 hour at 70 ° C., then the reaction solution is cooled and
Raw materials and products were quantified by the PLC internal standard method.
Table 2 shows the amount added and the reaction results.
【0028】[0028]
【表2】 [Table 2]
【0029】実施例9〜11
MN 0.7gおよび硫酸400mgを酢酸16ml中
に溶解させ、酢酸パラジウムの0.2%酢酸溶液1.0
mlを加え、撹拌下に表3中に記載の所定の温度に昇温
し、次いで60%過酸化水素水0.7mlと酢酸3.0
mlの混合物を15分かけて滴下した。滴下終了後その
ままの温度で1時間(実施例11については2.5時
間)撹拌したのち、反応液を冷却、HPLC内部標準法
で原料及び生成物の定量を行なった。反応温度および反
応成績を表3に示す。Examples 9-11 0.7 g of MN and 400 mg of sulfuric acid are dissolved in 16 ml of acetic acid, and a 0.2% acetic acid solution of palladium acetate 1.0
ml, and the mixture was heated to a predetermined temperature shown in Table 3 with stirring, and then 0.7 ml of 60% hydrogen peroxide solution and 3.0 ml of acetic acid were added.
The ml mixture was added dropwise over 15 minutes. After completion of the dropwise addition, the mixture was stirred at the same temperature for 1 hour (2.5 hours for Example 11), the reaction solution was cooled, and raw materials and products were quantified by the HPLC internal standard method. Table 3 shows the reaction temperature and the reaction results.
【0030】[0030]
【表3】 [Table 3]
【0031】実施例12〜15
MN 0.7gおよび硫酸400mgを酢酸13ml中
に溶解させ、酢酸パラジウムの0.2%酢酸溶液所定量
を加え、さらに酢酸を加えて溶液中の酢酸量を17ml
とした後、撹拌下に70℃に昇温し、次いで60%過酸
化水素水0.7mlと酢酸3.0mlの混合物を15分
かけて滴下した。滴下終了後そのままの温度で1時間撹
拌したのち、反応液を冷却、HPLC内部標準法で原料
及び生成物の定量を行なった。加えた酢酸パラジウム量
および反応成績を表4に示す。Examples 12 to 15 MN (0.7 g) and sulfuric acid (400 mg) were dissolved in acetic acid (13 ml), a predetermined amount of a 0.2% acetic acid solution of palladium acetate was added, and acetic acid was further added to adjust the acetic acid amount in the solution to 17 ml.
After that, the temperature was raised to 70 ° C. with stirring, and then a mixture of 60% hydrogen peroxide solution 0.7 ml and acetic acid 3.0 ml was added dropwise over 15 minutes. After completion of the dropwise addition, the mixture was stirred at the same temperature for 1 hour, cooled, and the raw materials and products were quantified by the HPLC internal standard method. Table 4 shows the amount of palladium acetate added and the reaction results.
【0032】[0032]
【表4】 [Table 4]
【0033】実施例16
酢酸パラジウムの酢酸溶液に代えて12%硫酸パラジウ
ム水溶液15μl(8.9μmol)を用いた以外は実
施例14と同様に反応を行なった。反応成績は、MN転
化率 89.2%、VK3選択率 60.3%であっ
た。Example 16 A reaction was carried out in the same manner as in Example 14 except that 15 μl (8.9 μmol) of a 12% palladium sulfate aqueous solution was used instead of the acetic acid solution of palladium acetate. The reaction results were such that the MN conversion was 89.2% and the VK3 selectivity was 60.3%.
【0034】実施例17
酢酸パラジウム溶液に代えてトリス(ジベンジリデンア
セトン)クロロホルムジパラジウム(0) 9.5mg
を用いた以外は実施例14と同様に反応を行なった。反
応成績はMN転化率92.5%、VK3選択率 64.
1%であった。Example 17 Tris (dibenzylideneacetone) chloroform dipalladium (0) 9.5 mg in place of the palladium acetate solution
The reaction was performed in the same manner as in Example 14 except that was used. The reaction results were as follows: MN conversion 92.5%, VK3 selectivity 64.
It was 1%.
【0035】実施例18
酢酸パラジウム溶液に代えてジクロロビス(トリフェニ
ルホスフィン)パラジウム 6.2mgを用いた以外は
実施例14と同様に反応を行なった。反応成績はMN転
化率92.5%、VK3選択率 62.5%であった。Example 18 The reaction was performed in the same manner as in Example 14 except that 6.2 mg of dichlorobis (triphenylphosphine) palladium was used instead of the palladium acetate solution. The reaction results were such that the MN conversion was 92.5% and the VK3 selectivity was 62.5%.
【0036】実施例19
60%過酸化水素水1.4ml、酢酸19.6ml、硫
酸400mgの混合物を、撹拌下に70℃、30分反応
させた。反応後に溶液中の過酢酸、過酸化水素を滴定に
て定量したところ、それぞれ1.24mol/リット
ル、0.08mol/リットルであった。この過酢酸溶
液のうち10mlを反応に用いた。反応は、MN 0.
7gおよび硫酸400mgを酢酸20ml中に溶解さ
せ、酢酸パラジウムの0.2%酢酸溶液1.0mlを加
え、撹拌下に70℃に昇温し、次いで上記過酢酸溶液1
0mlを15分かけて滴下した。滴下終了後そのままの
温度で1時間撹拌したのち、反応液を冷却、HPLC内
部標準法で原料及び生成物の定量を行なった。反応成績
はMN転化率 79.6%、VK3選択率60.8%で
あった。Example 19 A mixture of 1.4 ml of 60% hydrogen peroxide solution, 19.6 ml of acetic acid and 400 mg of sulfuric acid was reacted at 70 ° C. for 30 minutes while stirring. After the reaction, peracetic acid and hydrogen peroxide in the solution were quantified by titration to be 1.24 mol / liter and 0.08 mol / liter, respectively. 10 ml of this peracetic acid solution was used for the reaction. The reaction is MN 0.
7 g and 400 mg of sulfuric acid were dissolved in 20 ml of acetic acid, 1.0 ml of 0.2% acetic acid solution of palladium acetate was added, the temperature was raised to 70 ° C. with stirring, and then the peracetic acid solution 1 was prepared.
0 ml was added dropwise over 15 minutes. After completion of the dropwise addition, the mixture was stirred at the same temperature for 1 hour, cooled, and the raw materials and products were quantified by the HPLC internal standard method. The reaction results were such that the MN conversion was 79.6% and the VK3 selectivity was 60.8%.
【0037】実施例20
酢酸をすべてプロピオン酸に代えて、実施例4と同様に
反応を行なった。反応成績は、MN転化率 88.0
%、VK3選択率60.3%であった。Example 20 The reaction was carried out in the same manner as in Example 4 except that all the acetic acid was replaced with propionic acid. The reaction results were 88.0% MN conversion.
%, VK3 selectivity was 60.3%.
【0038】比較例1
比較のため、硫酸のみを触媒として反応を行なった。酢
酸パラジウムを添加しなかったこと、および反応時間を
3時間とした以外は実施例14と同じ方法で反応を行な
った。反応後分析の結果、MNの転化率は80.0%、
VK3の選択率は45.6%、収率は36.5%であっ
た。Comparative Example 1 For comparison, the reaction was carried out using only sulfuric acid as a catalyst. The reaction was performed in the same manner as in Example 14 except that palladium acetate was not added and the reaction time was 3 hours. As a result of post-reaction analysis, the conversion rate of MN was 80.0%,
The selectivity of VK3 was 45.6% and the yield was 36.5%.
【0039】比較例2
比較のため、硫酸を添加せず、酢酸パラジウムのみを触
媒として反応を行なった。硫酸を加えなかったこと、お
よび反応時間を4時間とした以外は実施例1と同様に反
応を行なった。反応後分析の結果、MNの転化率は5
7.7%、VK3の選択率は39.6%、収率は22.
8%であった。Comparative Example 2 For comparison, sulfuric acid was not added and the reaction was carried out using only palladium acetate as a catalyst. The reaction was performed in the same manner as in Example 1 except that sulfuric acid was not added and the reaction time was 4 hours. As a result of post-reaction analysis, the conversion rate of MN was 5
7.7%, VK3 selectivity 39.6%, yield 22.
It was 8%.
【0040】比較例3
触媒調製:スルホン酸型イオン交換樹脂(DOWEX
50W−X8,200〜400mesh)1gを酢酸1
0mlに浸漬し、上澄みの酢酸をデカンテーションで取
り除いた後、酢酸 10mlを加え、次いで撹拌下に酢
酸パラジウム2mgを加え、そのまま5時間撹拌した。
一夜静置後、余分の酢酸を取り除いて使用した。Comparative Example 3 Catalyst Preparation: Sulfonic Acid Type Ion Exchange Resin (DOWEX
50W-X8, 200-400 mesh) 1 g of acetic acid 1
After immersing in 0 ml and removing the supernatant acetic acid by decantation, 10 ml of acetic acid was added, then 2 mg of palladium acetate was added with stirring, and the mixture was stirred for 5 hours as it was.
After standing overnight, excess acetic acid was removed before use.
【0041】反応:上記触媒に酢酸10ml、MN
0.35gを加えて撹拌下に50℃まで昇温し、60%
過酸化水素水 0.35mlを加えて反応を開始した。
4時間後にさらに60%過酸化水素水 0.35mlを
追加、さらに4時間反応を継続した。冷却後、反応液を
HPLC内部標準法で分析して反応成績を算出した。そ
の結果、MN転化率は75.4%、VK3選択率は4
9.0%、収率は36.9%であった。Reaction: 10 ml of acetic acid and MN to the above catalyst
0.35 g was added and the temperature was raised to 50 ° C. with stirring to 60%.
0.35 ml of hydrogen peroxide water was added to start the reaction.
After 4 hours, 0.35 ml of 60% aqueous hydrogen peroxide was further added, and the reaction was continued for another 4 hours. After cooling, the reaction solution was analyzed by the HPLC internal standard method to calculate the reaction results. As a result, the MN conversion rate was 75.4% and the VK3 selectivity was 4
The yield was 9.0% and the yield was 36.9%.
【0042】なお、先行文献(特開昭61−22754
8号公報)では、このような条件で反応を行なうことに
より、転化率88.8%、選択率59.0%が得られる
としているが、本発明者等が種々追試を行なってもこの
成績を再現することはできなかった。The prior art document (Japanese Patent Laid-Open No. 61-22754).
No. 8) describes that a conversion rate of 88.8% and a selectivity rate of 59.0% can be obtained by carrying out the reaction under such conditions. Could not be reproduced.
【0043】比較例4
比較例3で調製したのと同じ触媒を用い、過酸化水素の
使用量を最初の0.35mlだけとし、4時間後に過酸
化水素を追加しなかった以外は比較例3と同様にして反
応を行なった。その結果、MN転化率 42.0%、V
K3選択率 44.2%、VK3収率 18.5%と、
満足な反応成績を得ることはできなかった。これは過酸
化水素の約80%が、酸素に分解し、あるいは生成物を
酸化する等の副反応に消費されたことを意味する。Comparative Example 4 Comparative Example 3 except that the same catalyst as prepared in Comparative Example 3 was used, the amount of hydrogen peroxide used was only 0.35 ml at the beginning and no additional hydrogen peroxide was added after 4 hours. The reaction was carried out in the same manner as in. As a result, MN conversion rate 42.0%, V
K3 selectivity of 44.2%, VK3 yield of 18.5%,
It was not possible to obtain satisfactory reaction results. This means that about 80% of hydrogen peroxide was consumed in side reactions such as decomposition into oxygen or oxidation of products.
【0044】比較例5および6
硫酸に代えて他の酸を用いた以外は実施例4と同様に反
応を行なった。使用した酸の種類、量および反応成績を
以下に示す。Comparative Examples 5 and 6 The reaction was carried out in the same manner as in Example 4 except that other acid was used instead of sulfuric acid. The type, amount and reaction results of the acid used are shown below.
【0045】 比較例5: リン酸 800mg (2時間反応) …MN転化率 64.2%、VK3選択率 42.8% 比較例6:トリフルオロメタンスルホン酸 800mg …MN転化率 86.4%、VK3選択率 38.9%[0045] Comparative Example 5: Phosphoric acid 800 mg (reaction for 2 hours) … MN conversion rate 64.2%, VK3 selectivity 42.8% Comparative Example 6: Trifluoromethanesulfonic acid 800 mg … MN conversion rate 86.4%, VK3 selectivity 38.9%
【0046】比較例7
硫酸の量を20mgとした以外は実施例2と同様に反応
を行なった。反応成績は、MN転化率 80.9%、V
K3選択率 48.1%、VK3収率 38.9%であ
った。十分なMN転化率を上げることができず、VK3
選択率も50%を超えていない。Comparative Example 7 The reaction was carried out in the same manner as in Example 2 except that the amount of sulfuric acid was changed to 20 mg. The reaction results are as follows: MN conversion rate 80.9%, V
The K3 selectivity was 48.1%, and the VK3 yield was 38.9%. We couldn't raise enough MN conversion rate, so VK3
The selectivity does not exceed 50%.
【0047】[0047]
【発明の効果】本発明に従えば、以下の効果が得られ
る。
(1)一段階の反応で、原料の転化率を犠牲にすること
なく高い選択率で2−メチル−1,4−ナフトキノンを
得ることができる。
(2)理論的必要量程度の量の過酸化水素で、高い転化
率が得られ、従来の方法に比べて過酸化水素の効率を飛
躍的に高めることができ、経済上および安全上有利に2
−メチル−1,4−ナフトキノンを製造することができ
る。
(3)均一系、温和な条件で反応が行なえるので除熱が
容易である。
(4)反応系で劣化する高価なイオン交換樹脂を用いな
いので、経済上有利である。According to the present invention, the following effects can be obtained. (1) 2-methyl-1,4-naphthoquinone can be obtained with a high selectivity without sacrificing the conversion rate of the raw materials by the one-step reaction. (2) With a theoretically required amount of hydrogen peroxide, a high conversion rate can be obtained, and the efficiency of hydrogen peroxide can be dramatically increased as compared with the conventional method, which is economically and safety advantageous. Two
-Methyl-1,4-naphthoquinone can be prepared. (3) The heat can be easily removed because the reaction can be performed under a homogeneous system and mild conditions. (4) It is economically advantageous because an expensive ion exchange resin that deteriorates in the reaction system is not used.
【0048】上述のように、本発明によれば、クロム化
合物などの環境上問題のある物質を使用することなく、
工業上有利に2−メチル−1,4−ナフトキノンを製造
する方法を提供することができる。As described above, according to the present invention, without using a substance having an environmental problem such as a chromium compound,
A method for industrially producing 2-methyl-1,4-naphthoquinone can be provided.
Claims (4)
含む溶媒中、パラジウム化合物及びカルボン酸溶媒1リ
ットルに対する重量で5g〜100gの硫酸の存在下に
過酸化水素及び/又は有機過酸を作用させることを特徴
とする2−メチル−1,4−ナフトキノンの製造方法。1. Hydrogen peroxide and / or organic peracid is allowed to act on 2-methylnaphthalene in a solvent containing a carboxylic acid in the presence of 5 to 100 g of sulfuric acid in a weight of 1 liter of a palladium compound and a carboxylic acid solvent. A method for producing 2-methyl-1,4-naphthoquinone, which comprises:
カルボン酸である請求項1記載の製造方法。2. The method according to claim 1, wherein the carboxylic acid is a saturated aliphatic carboxylic acid having 8 or less carbon atoms.
ラジウム化合物である請求項1又は2記載の製造方法。3. The production method according to claim 1, wherein the palladium compound is a palladium compound which is soluble in the reaction system.
酸化水素を1〜4モルの割合で用いることを特徴とする
請求項1、2又は3記載の製造方法。4. The method according to claim 1, 2 or 3, wherein hydrogen peroxide is used in a ratio of 1 to 4 mol per 1 mol of 2-methylnaphthalene.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25754594A JP3449800B2 (en) | 1994-09-27 | 1994-09-27 | Method for producing 2-methyl-1,4-naphthoquinone |
US08/529,455 US5637741A (en) | 1994-09-27 | 1995-09-18 | Process for producing 2-methyl-1,4-naphthoquinone |
ES95115063T ES2119283T3 (en) | 1994-09-27 | 1995-09-25 | PROCESS TO PRODUCE 2-METHYL-1,4-NAPHTOQUINONE. |
EP95115063A EP0704421B1 (en) | 1994-09-27 | 1995-09-25 | Process for producing 2-methyl-1,4-naphthoquinone |
DE69504162T DE69504162T2 (en) | 1994-09-27 | 1995-09-25 | Process for the preparation of 2-methyl-1,4-naphthoquinone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25754594A JP3449800B2 (en) | 1994-09-27 | 1994-09-27 | Method for producing 2-methyl-1,4-naphthoquinone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0892152A JPH0892152A (en) | 1996-04-09 |
JP3449800B2 true JP3449800B2 (en) | 2003-09-22 |
Family
ID=17307778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25754594A Expired - Fee Related JP3449800B2 (en) | 1994-09-27 | 1994-09-27 | Method for producing 2-methyl-1,4-naphthoquinone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3449800B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2614153C1 (en) * | 2016-02-01 | 2017-03-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" | Method for 2-methyl-1,4-naphthoquinone production |
-
1994
- 1994-09-27 JP JP25754594A patent/JP3449800B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0892152A (en) | 1996-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2963528B2 (en) | Chromium halogenated coordination complexes for the oxidation of butane to methyl ethyl ketone | |
EP0704421B1 (en) | Process for producing 2-methyl-1,4-naphthoquinone | |
JPH0579055B2 (en) | ||
JP3449800B2 (en) | Method for producing 2-methyl-1,4-naphthoquinone | |
WO2009116512A1 (en) | Method for producing carbonyl compound | |
JPS5865241A (en) | Carbonylation of secondary benzylhalide | |
JP2001151721A (en) | Method for producing 2,3,5-trimethyl-p-benzoquinone | |
JPH0772156B2 (en) | Process for producing fluorine-containing α, β-unsaturated carboxylic acid | |
JP2512391B2 (en) | Method for hydroxycarbonylation of butadiene | |
EP0571447B1 (en) | Catalytic hydroxylation of phenol | |
EP0156498B1 (en) | Process for producing acetic acid | |
JP4294209B2 (en) | Process for producing ortho-position alkylated hydroxyaromatic compounds | |
MXPA00002141A (en) | PREPARATION OF BETAINA SOLUTIONS. | |
JP3918640B2 (en) | Process for producing aliphatic dicarboxylic acids | |
JPS62252744A (en) | Production of aromatic dicarboxylic acid | |
JP3285605B2 (en) | Co-production method of phenol and vinyl acetate | |
JPH03255049A (en) | Preparation of biphenylcarboxylic acid | |
JPH0529024B2 (en) | ||
JPH08151346A (en) | Production of ketomalonic acid | |
JPH0768247B2 (en) | Method for producing diallyl dicarboxylic acid | |
JPS63168404A (en) | Selective oxidative carbonyzation of conjugated diene | |
JPH06340638A (en) | Production of 3-(phenylsulfonyl)-1,2,4-triazoles | |
EP0684220A1 (en) | Process for the preparation of p-alkoxybenzaldehydes | |
WO2009116584A1 (en) | Process for production of carbonyl compound | |
JPH04198149A (en) | Oxidation of 2-chloropropionaldehyde |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |