JPH04197812A - Method for controlling active suspension for vehicle - Google Patents

Method for controlling active suspension for vehicle

Info

Publication number
JPH04197812A
JPH04197812A JP33222690A JP33222690A JPH04197812A JP H04197812 A JPH04197812 A JP H04197812A JP 33222690 A JP33222690 A JP 33222690A JP 33222690 A JP33222690 A JP 33222690A JP H04197812 A JPH04197812 A JP H04197812A
Authority
JP
Japan
Prior art keywords
suspension
vehicle
longitudinal
vehicle height
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33222690A
Other languages
Japanese (ja)
Inventor
Atsushi Mine
美禰 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP33222690A priority Critical patent/JPH04197812A/en
Priority to GB9124484A priority patent/GB2251412B/en
Priority to DE4143599A priority patent/DE4143599C2/en
Priority to DE4138831A priority patent/DE4138831C2/en
Publication of JPH04197812A publication Critical patent/JPH04197812A/en
Priority to US08/358,547 priority patent/US5515277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To ease a feeling of stiffness mainly on deceleration of a vehicle by providing a reference car height changing circuit which lowers reference car height as the absolute value of longitudinal (g) or longitudinal (g) on deceleration increases. CONSTITUTION:A longitudinal acceleration signal detected by a longitudinal (g) sensor 14 is converted by hysterisis 17 and a dead zone circuit 18 into such a signal that does not react with the normal fluctuation of longitudinal (g) during normal running of a car but with large pitching of the car body as when an accelerator is fully released or when the car is braked by more than a middle level, and the signal is then input to a longitudinal load transfer calculating circuit 19 and a reference car height changing circuit 28. The reference car height changing circuit 28 changes and sets reference car height proportionately to the absolute value of longitudinal (g) in response to the signal input. An actual suspension stroke change signal based on a suspension stroke sensor 13 and a vehicle height adjusting switch 16 is corrected by a reference car height variable signal so that the higher the absoulte value the lower the desired value of car height regarding all of the four wheels.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車用アクティブサスペンションの制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for controlling an active suspension for a motor vehicle.

従来の技術 各サスペンション毎に少なくともばね上とばね下の上下
相対変位量を検出し、サスペンションを基準車高に保持
するよう各サスペンション毎に独立して液体又は気体等
の流体の注入、排出を制御するようにした自動車用のア
クティブサスペンションにおいて、車体の前後方向加速
度(前後2)及び横方向加速度(横51)を検出する前
後2センサ及び横2センサを設け、加減速時及び旋回時
に発生する前後2及び横2の情報から車体のピッチング
及びロールを予測し。
Conventional technology At least the vertical relative displacement of the sprung and unsprung parts of each suspension is detected, and the injection and discharge of fluid such as liquid or gas is controlled independently for each suspension so as to maintain the suspension at the standard vehicle height. In the active suspension for automobiles, two front and rear sensors and two lateral sensors are installed to detect the longitudinal acceleration (2 longitudinal) and lateral acceleration (51 lateral) of the vehicle body, and the sensor detects the longitudinal acceleration (2 longitudinal) and the lateral acceleration (51 lateral) of the vehicle body. Predict the pitch and roll of the vehicle body from information on 2 and lateral 2.

該ピッチング及びけ−ルを抑制するに必要な流体の注入
、排出制御量を各サスペンション毎に算出して流体の注
入、排出制御を行うようにしたものは、特開平2−95
911号公報にて公開されている。
A system in which fluid injection and discharge control is performed by calculating the amount of fluid injection and discharge necessary for suppressing pitching and keeling for each suspension is disclosed in Japanese Patent Application Laid-Open No. 2-95.
It is published in Publication No. 911.

発明が解決しようとする課題 上記のように、アクティブサスペンションにおいて、サ
スペンションのばね上とばね下の上下相対変位量を検出
してサスペンションを基準車高に保つよう制御する所謂
フィード/−ツタ制御に、加減速時及び旋回時の前後2
及び横2を検出して予測される車体のピッチング及びロ
ールを抑制するという所謂フィードフォワード制御を組
合せると、遅れなく車体姿勢を目標とする姿勢に保持す
ることができるという効果をもたらし得るが、車両の制
動時前輪の沈み込みをゼロとしてしまうので、特に急制
動時はドライバに不自然なつっばり感を与えるとうい問
題が生じる。
Problems to be Solved by the Invention As mentioned above, in an active suspension, the so-called feed/vine control, which detects the amount of vertical relative displacement between the sprung and unsprung portions of the suspension and controls the suspension to maintain the reference vehicle height, has the following problems: Front and back 2 during acceleration/deceleration and turning
Combining so-called feedforward control, which detects lateral and lateral 2 and suppresses predicted pitching and roll of the vehicle body, can bring about the effect that the vehicle body posture can be maintained at the target posture without delay. Since the sinking of the front wheels during braking of the vehicle is reduced to zero, a problem arises in that it gives the driver an unnatural feeling of stiffness, especially during sudden braking.

本発明はこのような車両減速時のつっばり感を緩和させ
ることを主目的とするものである。
The main object of the present invention is to alleviate such a stiff feeling when the vehicle is decelerated.

課題を解決するための手段 本発明は上記のように少なくとも各サスペンションのば
ね上とばね下の上下相対変位量を検出して各サスペンシ
ョンを基準車高に保つよう流体の注入、排出をサスペン
ション毎に制御するフィードバック制御系と、少なくと
も車体の前後方向加速度を検出して加減速時予測される
車体のピッチングを抑制するよう各サスペンション毎に
流体の注入、排出を制御するフィードフォワード制御系
とをもった自動車用アクティブサスペンションにおいて
、上記前後方向加速度の絶対値又は減速時の加速度が大
となるに従って上記基準車高を低くしていく基準車高変
更回路を設け、加減速時車体のピッチングを抑制すると
共に、車体全体の車高を前後方向加速度の絶対値又は減
速時の加速度が大となるに従って低くしていく制御を行
うことを特徴とするものである。
Means for Solving the Problems As described above, the present invention detects at least the vertical relative displacement of the sprung and unsprung portions of each suspension, and injects and discharges fluid for each suspension to maintain each suspension at a reference vehicle height. It has a feedback control system that controls the vehicle body, and a feedforward control system that detects at least the longitudinal acceleration of the vehicle body and controls fluid injection and discharge for each suspension so as to suppress pitching of the vehicle body that is predicted during acceleration and deceleration. In an active suspension for an automobile, a reference vehicle height change circuit is provided that lowers the reference vehicle height as the absolute value of the longitudinal acceleration or the acceleration during deceleration increases, thereby suppressing pitching of the vehicle body during acceleration and deceleration. The present invention is characterized in that the vehicle height of the entire vehicle body is controlled to be lowered as the absolute value of the longitudinal acceleration or the acceleration during deceleration increases.

作用 上記により、加減速時又は減速時の加速度が大きくなれ
ばなるほど車体全体がより深く沈み込むので、ドライバ
を含む乗員が感じる不自然なつっばり感はほとんど解消
されると共に、減速時の加速度が大なる急制動時は車体
がより低くなるので車体重心地上高が下がり前後方向荷
重移動量が減少しタイヤ接地反力の変化量が従来のもの
より小となり、結果的に制動能力(制動時の限界2)の
高い車両を得ることができる。
As a result of the above, the greater the acceleration during acceleration or deceleration, the deeper the entire vehicle sinks, which almost eliminates the unnatural feeling of stiffness felt by passengers including the driver, and reduces the acceleration during deceleration. During sudden braking, the vehicle body becomes lower, which lowers the height of the vehicle's center of gravity and reduces the amount of load transfer in the longitudinal direction.The amount of change in tire ground reaction force becomes smaller than before, resulting in braking ability (during braking). A vehicle with a high limit 2) can be obtained.

実施例 以下本発明の実施例を附図を参照して説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明を適用すべきアクティブサスペンション
の制御システムの一例を示すシステム図であり、該第1
図において、l 1,12は左右前輪のサスペンション
、13.14は左右後輪のサスペンションで、各サスペ
ンションとしてはオイル室Aと密閉された気体室Bとを
ダイヤフラムCにて区画した気体ばね部りの該オイル室
AとオイルシリンダEのオイル室FとをオリフィスGを
介して連通させ、該オイルシリンダEの一端(例えばシ
リンダの底面部)をサスペンションアーム等の車輪側部
材に、他端(例えばピストンロッド)を車体側部材にそ
れぞれ結合し、上下方向の荷重に対しオイルシリンダ内
と気体ばね部のオイル室F、A間を油がオリフィスGを
介して流通し適当な減衰力を発生させると共に、ダイヤ
フラムCを介して気体室Bに密閉された気体の容積弾性
によってばね作用を得るようになっている従来より公知
のハイドロ−ニューマチックサスペンションを採用した
例を示している。
FIG. 1 is a system diagram showing an example of an active suspension control system to which the present invention is applied;
In the figure, 1 and 12 are the suspensions for the left and right front wheels, and 13 and 14 are the suspensions for the left and right rear wheels. Each suspension is a gas spring section in which an oil chamber A and a sealed gas chamber B are separated by a diaphragm C. The oil chamber A and the oil chamber F of the oil cylinder E are communicated via an orifice G, and one end of the oil cylinder E (for example, the bottom surface of the cylinder) is connected to a wheel side member such as a suspension arm, and the other end (for example, The piston rods are connected to the vehicle body side members, and oil flows between the oil cylinder and the oil chambers F and A of the gas spring part through the orifice G to generate an appropriate damping force against vertical loads. , shows an example employing a conventionally known hydro-pneumatic suspension in which a spring action is obtained by the volumetric elasticity of gas sealed in a gas chamber B via a diaphragm C.

21.22,23.24は上記各サスペンションのオイ
ルシリンダEのオイル室F(及び気体ばね部のオイル室
A)に油を供給したり該オイル室F(及びA)の油を排
出したりする制御弁であって、これらの各制御弁2 l
+ 22 、23 + 2 sは後述スるコントローラ
3からの弁駆動信号によりそれぞれ独立して制御される
21.22, 23.24 supply oil to the oil chamber F (and oil chamber A of the gas spring part) of the oil cylinder E of each suspension, and discharge oil from the oil chamber F (and A). a control valve, each of these control valves 2 l
+ 22 and 23 + 2 s are independently controlled by valve drive signals from the controller 3, which will be described later.

4は油タンク、5は油ポンプであり、該油ポンプ5はエ
ンジン6によって回転駆動されるが、図示実施例ではパ
ワステアリング用の油ポンプ5′と上記油ポンプ5とを
タンデムとしエンジン6により再抽ポンプ5,5′が同
時に回転駆動される例を示している。
4 is an oil tank, and 5 is an oil pump. The oil pump 5 is rotationally driven by the engine 6, but in the illustrated embodiment, the oil pump 5' for power steering and the oil pump 5 are in tandem, and the oil pump 5 is driven by the engine 6. An example is shown in which the re-extraction pumps 5 and 5' are driven to rotate at the same time.

油ポンプ5の吐出油はチエツクバルブ7を通って高圧ア
キュムレータ8に蓄圧されると共に上記制御弁のうちの
1つまたは2つ以上が住人側に切換わるとその注入側に
切換わった制御弁から1つまたは2つ以上のサスペンシ
ョンのオイル室に高圧の油が供給され、又制御弁のうち
の1つまたは2つ以上が排出側に切換わるとその排出側
に切換わった制御弁から1つまたは2つ以上のサスペン
ションのオイル室の油が排出されオイルクーラ9を通っ
て油タンク4に流入するようになっている。81は高圧
アキュムレータ8の内圧を検出する圧力センサである。
The oil discharged from the oil pump 5 passes through the check valve 7 and is accumulated in the high-pressure accumulator 8, and when one or more of the control valves is switched to the resident side, the oil is discharged from the control valve switched to the injection side. High pressure oil is supplied to the oil chamber of one or more suspensions, and when one or more of the control valves is switched to the discharge side, one of the control valves switched to the discharge side Alternatively, the oil in the oil chambers of two or more suspensions is drained and flows into the oil tank 4 through the oil cooler 9. 81 is a pressure sensor that detects the internal pressure of the high pressure accumulator 8.

10はリリーフ弁、11はロード・アンロード弁で、該
ロード・アンロード弁11はエンジン始動時にコントロ
ーラ3から指示を受けて図示のアンロード状態としエン
ジンスタートの負荷を低減させ、エンジン始動が完了し
たらロード状態に切換わるものである。
10 is a relief valve, 11 is a load/unload valve, and the load/unload valve 11 receives an instruction from the controller 3 at the time of starting the engine, sets it to the unload state shown in the figure, reduces the engine start load, and completes the engine start. Then it will switch to load state.

上記各サスペンションl 1,12,13.14には、
ばね上の上下加速度を検出する上下2センサ12及びば
ね上とばね下の上下相対変位即ちサスペンションの伸縮
ストローク変化を検出するサスストロークセンサ13が
それぞれ設けられ、該上下2センザ12及びサスストロ
ークセンサ13の検出信号はコントローラ3にそれぞれ
入力され、又車体の前後方向加速度(前後2)を検出す
る前後2センサ14.車体の横方向加速度(横2)を検
出する横2センサ15(車速センサと転舵角センサが検
出する車速と転舵角とから演算で横2を求めるもの或は
操舵トルクや操舵補助力等から横2を求めるもの等を含
む)等が設けられ、これらの検出信号も前記コントロー
ラ3に入力され、これらの信号入力によりコントローラ
3は以下に述べるような制御を行う。
Each suspension l 1, 12, 13.14 above has the following:
Two upper and lower sensors 12 for detecting the vertical acceleration on the spring and a suspension stroke sensor 13 for detecting the vertical relative displacement between the sprung mass and the unsprung mass, that is, changes in the expansion and contraction stroke of the suspension, are provided respectively. Detection signals are input to the controller 3, respectively, and the two front and rear sensors 14. detect the longitudinal acceleration (front and rear 2) of the vehicle body. Lateral 2 sensor 15 that detects the lateral acceleration (lateral 2) of the vehicle body (a device that calculates lateral 2 by calculation from the vehicle speed and steering angle detected by the vehicle speed sensor and steering angle sensor, or a steering torque, steering assist force, etc.) These detection signals are also input to the controller 3, and based on these signal inputs, the controller 3 performs the control described below.

次にコントローラ3の制御ロジックの第1の実施例を第
2図を参照して説明する。
Next, a first embodiment of the control logic of the controller 3 will be described with reference to FIG.

第2図において鎖線で囲んだ部分は前後左右のサスペン
ションのうちの1つ例えば左前輪のサスペンション11
の制御ブロック図であって、該第2図では図示を省略し
ているがこれと同じ制御ロジックを4組備えており、各
サスペンション毎に独立して制御を行うようになってい
る。
In Fig. 2, the part surrounded by a chain line is one of the front, rear, left, and right suspensions, for example, the left front wheel suspension 11.
Although not shown in FIG. 2, four sets of the same control logic are provided, and each suspension is controlled independently.

各サスペンション部において上下方向加速度およびサス
ストローク変化をそれぞれのセンサ12および13で検
知すると、上下加速度信号に対してはローパスフィルタ
LPFを通して高周波成分を低減させ、不感帯回路工1
を通してゼロ近傍の設定範囲の信号を取除き、ゲインG
1を掛算して制御弁の特性に合せた制御指示量Q1を得
る。
When the vertical acceleration and the suspension stroke change are detected by the respective sensors 12 and 13 in each suspension part, the vertical acceleration signal is passed through a low-pass filter LPF to reduce high frequency components.
The signal in the setting range near zero is removed through the gain G
Multiply by 1 to obtain a control instruction amount Q1 that matches the characteristics of the control valve.

サスストローク変化信号は微分回路DCを通るものとそ
のままのものとの2通りに分かれ、微分回路DCを通っ
た信号はサスストローク変化速度信号となり不感帯回路
工2を通ってゼロ近傍の設定範囲の信号を除去され更に
ゲインG2を掛けられて制御弁特性に合せた制御指示量
Q2となり、サスストローク変化信号は基準車高信号発
生回路Hにより車高調整スイッチ16の状態を読んで指
示された基準車高信号との差をとって実サスストローク
変化信号となり、不感帯回路工3を通してゼロ近傍の設
定範囲の信号を除去されゲインG3を掛けられて制御弁
特性に合せた制御指示量Q3となる。
The suspension stroke change signal is divided into two types: one that passes through the differentiation circuit DC and one that remains as is.The signal that passes through the differentiation circuit DC becomes a suspension stroke change speed signal that passes through the dead band circuit 2 and becomes a signal in the setting range near zero. is removed and further multiplied by gain G2 to obtain a control instruction amount Q2 that matches the control valve characteristics, and the suspension stroke change signal is generated by the reference vehicle height signal generation circuit H that reads the state of the vehicle height adjustment switch 16 and outputs the reference vehicle command. The difference from the high signal is taken to obtain an actual suspension stroke change signal, which is passed through a dead band circuit 3 to remove signals in the setting range near zero, and multiplied by a gain G3 to become a control instruction amount Q3 matching the control valve characteristics.

上記した制御弁特性に合せた制御指示量Q+。Control instruction amount Q+ in accordance with the control valve characteristics described above.

Q2.Q3とは1例えば制御弁が流量制御弁であった場
合は弁開閉特性を考慮して注入又は排出すべきオイル量
を制御弁の注入側又は排出側の開弁指示時間又は弁開度
におきかえることを意味する。
Q2. What is Q3? 1 For example, if the control valve is a flow control valve, consider the valve opening/closing characteristics and replace the amount of oil to be injected or discharged with the valve opening instruction time or valve opening degree on the injection side or discharge side of the control valve. It means that.

以上3つの制御指示量Ql、Q2.Q3は加算され制御
量補正回路Rを通して温度とか管長の違いによる圧力損
失とかの環境条件を考慮した補正指示量Qに変換し、弁
駆動信号発生回路Wを通して制御弁開閉信号を発し、制
御弁21を注入側又は排出側に切換え、サスペンション
11に指示量通りの油の注入又は排出を行う。
The above three control instruction amounts Ql, Q2. Q3 is added and converted through the control amount correction circuit R into a correction instruction amount Q that takes into account environmental conditions such as temperature and pressure loss due to differences in pipe length, and a control valve opening/closing signal is issued through the valve drive signal generation circuit W, and the control valve 21 is switched to the injection side or the discharge side, and the specified amount of oil is injected or discharged into the suspension 11.

上記の制御において、上下加速度による制御では上向き
の加速度に対してはサスペンションll内の油を排出し
下向きの加速度に対してはサスペンション11内に油を
注入すると言う制御を行うことにより、路面からの突き
上げ等下からの力に対しては柔らかく且つ減衰の高いサ
スペンション特性を、上(即ち車体)からの力に対して
は車高を基準車高に維持する方向に油を注、排制御する
サスストローク変化速度およびサスストローク変化によ
る制御と協働して車高を維持するよう見かけ上剛いサス
ペンション特性をつくりだす働らきをし、又上下加速度
信号をローパスフィルタLPFを通すことでばね下共振
のように高い周波数領域の振動に対してはあまり反応せ
ず、ばね上共振近傍の低い周波数領域の振動に制御が集
中してエネルギーを消費する低消費型乗心地、バウンシ
ング優先の制御仕様となる。
In the above control, in the control based on vertical acceleration, the oil in the suspension 11 is drained in response to upward acceleration, and the oil is injected into the suspension 11 in response to downward acceleration. The suspension has a soft and highly damped suspension characteristic against forces from below, such as thrusting up, and maintains the vehicle height at the standard vehicle height against forces from above (i.e. the vehicle body), and controls the oil discharge. It works in conjunction with the stroke change speed and suspension stroke change control to create apparently stiff suspension characteristics to maintain the vehicle height, and also allows vertical acceleration signals to pass through a low-pass filter LPF to reduce unsprung resonance. The control specification prioritizes bouncing and a low-consumption ride that does not react much to vibrations in the high frequency range, and concentrates control on vibrations in the low frequency range near sprung mass resonance, consuming energy.

尚上記車高調整スイッチ16は、例えばノーマル車高か
らハイ車高に切換える切換スイッチであり、ノーマル車
高を選択しているときは基準車高信号発生回路Hは低い
基準車高信号を発し、車高調整スイッチ16をハイ車高
側に切換えると基準車高信号発生回路Hは高い基準車高
信号を発し、サスストローク変化信号による制御は車高
を基準車高に維持しようとする制御であるから、基準車
高が低いノーマル基準車高からハイ基準車高に切換わる
と目標の基準車高との偏差に応じて油注入の制御指示量
Q3を発しテサスペンションllに油を注入して車高を
上記ハイ基準車高に等しい高さまで北げ、車高調整スイ
ッチ16をノーマル車高側に戻せば目標の基準車高との
偏差に応じて油排出の制御指示量Q3を発してサスペン
ション11内の油を排出し車高をノーマル基準車高まで
丁げる働きをする。この車高調整スイッチ16の切換え
による油の出し入れはすべてのサスペンションで同時に
行われる。
The vehicle height adjustment switch 16 is, for example, a switch for switching from normal vehicle height to high vehicle height, and when the normal vehicle height is selected, the reference vehicle height signal generation circuit H generates a low reference vehicle height signal. When the vehicle height adjustment switch 16 is switched to the high vehicle height side, the reference vehicle height signal generation circuit H generates a high reference vehicle height signal, and the control based on the suspension stroke change signal is a control that attempts to maintain the vehicle height at the reference vehicle height. When the standard vehicle height is switched from the low standard vehicle height to the high standard vehicle height, the oil injection control instruction amount Q3 is issued according to the deviation from the target standard vehicle height, and oil is injected into the suspension 1 to control the vehicle. If you raise the vehicle height to a height equal to the high standard vehicle height and return the vehicle height adjustment switch 16 to the normal vehicle height side, the oil discharge control instruction amount Q3 is issued according to the deviation from the target standard vehicle height, and the suspension 11 It works to drain the oil inside and lower the vehicle height to the normal standard vehicle height. The oil is put in and taken out of all the suspensions at the same time by changing the vehicle height adjustment switch 16.

車高調整スイッチ16で車高を3段階以上の複数段又は
無段階的に切換調整することもできる。
With the vehicle height adjustment switch 16, the vehicle height can be adjusted in multiple stages of three or more stages or steplessly.

L記の通常走行状態における制御に加え4急制動時、急
加速成は急旋回時のように、前後方向或は左右方向に大
きな加速度が急激に作用した場合、遅れのない的確な車
体姿勢制御を行うために前後2センサ14.横2センサ
15の検出信号に基づく制御ロジックが設けられている
In addition to the control in normal driving conditions described in L, 4. Accurate vehicle posture control without delay when large accelerations are applied suddenly in the longitudinal or lateral direction, such as during sudden braking, sudden acceleration, and sharp turns. 14. 2 sensors front and rear to carry out. A control logic based on detection signals from the two lateral sensors 15 is provided.

即ち、第2図に示すように、前後2センサ14で検知し
た前後方向加速度信号をヒステリシス17.不感帯回路
18により通常走行中の通常の前後2変動程度では反応
せず、フルアクセルや中程度以上のブレーキング時のよ
うに車体のピッチングが大きく発生する場合に作用する
ように信号を変換し前後荷重移動量算出回路19及び基
準車高変更回路28に入力する。
That is, as shown in FIG. 2, the longitudinal acceleration signal detected by the two front and rear sensors 14 is converted into a hysteresis 17. The dead band circuit 18 converts the signal so that it does not respond to normal two-way changes in the front and back during normal driving, but acts when the vehicle body pitches significantly, such as during full acceleration or moderate or higher braking. It is input to the load movement amount calculation circuit 19 and the reference vehicle height change circuit 28.

基準車高変更回路28は、インプットされた信号に基づ
き1例えば第3図に示すように前後2の絶対値1x1 
(加速時の前向きの2を+。
Based on the input signal, the reference vehicle height changing circuit 28 adjusts the absolute value of the front and rear heights to 1x1, for example, as shown in FIG.
(+ 2 forward when accelerating.

減速時の後向きの2を−というように前後2の方向によ
って+、−の符号をつけて表わすものとする)に応じて
基準車高を変更設定し、基準車高変更量信号で、前記サ
スストロークセンサ13と車高調整スイッチ16とに基
づく実サスストローク変化信号を補正し、4輪すべての
車高目標値をIXIが大なるほど大きく下げる。
The reference vehicle height is changed and set according to the direction of the front and rear (the backward direction 2 during deceleration is expressed as -, and the reference vehicle height is indicated by a + or - sign depending on the direction of the front and rear 2), and the reference vehicle height change amount signal is used to adjust the suspension An actual suspension stroke change signal based on a stroke sensor 13 and a vehicle height adjustment switch 16 is corrected, and vehicle height target values for all four wheels are lowered more as IXI increases.

前後荷重移動量算出回路19は、該入力された信号と予
じめ記憶している車両諸元と前記車高調整スイッチ16
と上記前後2に応じた基準車高変更のデータとから求め
た車体重心の地1−高の情報から前後方向の荷重移動量
を算出しその算出結果をサス反力増算出回路20に出力
する。サス反力増算出回路20は、入力された前後方向
の荷重移動量の情報と、各サスペンショ、・の形式、駆
動形式(前輪駆動形式、後輪駆動形式或は4輪駆動形式
等)等より、タイヤに加わる駆動力、制動力を考慮し且
つ前後2に応ITた基準車高変化によるサスジオメトリ
の変化分を見込んだ各サスペンション位置での上記荷重
移動量によって生ずるであろうところのサス反力増減量
を各サスペンション毎に算出する。
The longitudinal load movement calculation circuit 19 calculates the input signal, vehicle specifications stored in advance, and the vehicle height adjustment switch 16.
The amount of load movement in the longitudinal direction is calculated from the ground 1-height information of the center of gravity of the vehicle obtained from the reference vehicle height change data corresponding to the front and back 2, and the calculation result is output to the suspension reaction force increase calculation circuit 20. . The suspension reaction force increase calculation circuit 20 calculates the amount of load movement in the longitudinal direction from the input information, the type of each suspension, the drive type (front wheel drive type, rear wheel drive type, four wheel drive type, etc.), etc. , the suspension reaction that would occur due to the amount of load movement mentioned above at each suspension position, taking into consideration the driving force and braking force applied to the tires, and taking into account the change in suspension geometry due to the change in the reference vehicle height corresponding to the front and rear. Calculate the force increase/decrease for each suspension.

横2センサ15で検知した前後方向加速度1号も上記前
後2センサ14の場合と同様ヒステリシス回路21.不
感帯回路22を通して通常走行中のわずかな横2変動程
度には反応しないようにし所定値以上の信号だけがロー
ルモーメント算出回路23にインプットされるようにす
る。ロールモーメント算出回路23はインプットされた
横2の信号から予じめ記憶している車両諸元、前記車高
調整フィー、・チ16から求めた重体重心の地上高の情
報に基づき発生ロールモー・メントを算出し、更に狙い
の左右荷重移動量前後配分比に合せて発生ロールモーメ
ントを前後輪のモーメントに分配し、車体重心地上高と
前後輪トレッド情報から前後輪の左右荷重移動量を前後
輪左右荷重移動量分配回路24にて算出しサス反力増算
出回路25に出力する。サス反力増算出回路25では、
各車輪での荷重移動量とタイヤ横力、車高、サスペンシ
ョンリング形式等を考慮してサス反力増減量をそれぞれ
算出する。
The longitudinal acceleration No. 1 detected by the two lateral sensors 15 is also processed by the hysteresis circuit 21 as in the case of the two longitudinal sensors 14 described above. Through the dead zone circuit 22, the vehicle is made not to react to slight lateral fluctuations during normal running, and only signals exceeding a predetermined value are input to the roll moment calculation circuit 23. The roll moment calculation circuit 23 calculates the generated roll moment based on the vehicle specifications stored in advance from the input lateral 2 signal, the vehicle height adjustment fee, and the information on the ground clearance of the center of gravity obtained from 16. Furthermore, the generated roll moment is distributed between the moments of the front and rear wheels according to the target front and rear load transfer ratio, and the left and right load transfer of the front and rear wheels is calculated based on the height of the vehicle's center of gravity and the front and rear wheel tread information. The load movement amount distribution circuit 24 calculates the amount and outputs it to the suspension reaction force increase calculation circuit 25. In the suspension reaction force increase calculation circuit 25,
Calculate the suspension reaction force increase/decrease by taking into consideration the amount of load movement at each wheel, tire lateral force, vehicle height, suspension ring type, etc.

上記の2つのサス反力増算出回路20および25にてそ
れぞれ算出された前後2発生に基づくサス反力増減量と
横2発生に基づくサス反力増減量は制御量算出回路26
にインプットされ、こ1で2つのサス反力増減量を各サ
スペンション毎に加算して各サスペンション毎の総サス
反力増減量を求めると共に、その総サス反力増減量に見
合うサスペンショー′内圧(サスペンションの気体室の
内圧)を維持すべきオイルの柱入、排出の制御量を各サ
スペンション毎に算出する。そしてその制御量は制御量
変換回路27にて弁仕様に合せた各サスペンション毎の
制御指示量Q4(例えば制御弁が流量制御弁であった場
合は弁開閉特性を考慮した注入側又は排出側の開弁指示
時間におきかえることを意味する)に変換され、前記ば
ね上の上下加速度。
The control amount calculation circuit 26 calculates the suspension reaction force increase/decrease based on the front and rear 2 occurrences and the suspension reaction force increase/decrease based on the lateral 2 occurrence calculated by the two suspension reaction force increase calculation circuits 20 and 25, respectively.
In this step, the two suspension reaction force increases and decreases are added for each suspension to obtain the total suspension reaction force increase and decrease for each suspension, and the suspension show' internal pressure corresponding to the total suspension reaction force increase and decrease ( The amount of control for oil injection and discharge to maintain the internal pressure of the suspension's gas chamber is calculated for each suspension. Then, the control amount is determined by the control amount conversion circuit 27 for each suspension according to the valve specifications. (means changing to the valve opening instruction time), and the vertical acceleration on the spring.

ばね上とばね下の上下相対変位速度および上下相対変位
量に基づく各サスペンション毎の制御指示量Ql、Q2
.Q3の加算値に加算され、これらQ 1. Q 2 
、 Q 3 、 Q aの加算値を前記したように制御
量補正回路Rを通して補正指示量Qとし、弁駆動信号発
生回路Wが制御弁開閉信号を発しテ各すスペンション毎
にオイルの注入又は排出を制御する。
Control instruction amount Ql, Q2 for each suspension based on the vertical relative displacement speed and vertical relative displacement amount of the sprung mass and unsprung mass
.. These Q1. Q2
, Q 3 , and Q a are passed through the control amount correction circuit R as described above and set as the correction instruction amount Q, and the valve drive signal generation circuit W issues a control valve opening/closing signal to perform oil injection or injection for each suspension. Control emissions.

車体に前後2又は横2が作用するとその前後2又は横2
に基づき前後方向又は横方向の荷重移動が生じその結果
ノーズダイブ、スフオート等ピッチング方向の車体姿勢
変化又はロール方向の車体姿勢変化が生じることになる
ので、これらの車体姿勢変化を例えば発生した前後2゜
横2の結果的現象であるサスペンションのストローク変
化を検知するサスストロークセンサの信号で正常姿勢に
制御するというフィードバック制御のみでは、制御が遅
れぎみとならざるを得す、特に比較的大きな前後2又は
横2が急激に且つ極く短時間だけ作用したような場合は
制御が間に合わず一度車体姿勢が変化した後正常姿勢に
戻るという特性にならざるを得ないと言う問題を生じる
おそれがあるが、上記のように車体姿勢変化の原因であ
る前後2.横2を検出し、これに基づき車体の荷重移動
量を求めると共にサスペンションの形式、駆動形式等か
らタイヤに加わる制動力、駆動力、或は横力等を考慮し
て前後左右の各サスペンションにそれぞれ生じるであろ
うサス反力増減量を各サスペンション毎に算出し、この
算出結果により油の注入、排出を各サスペンション毎に
独立して制御すると言うフィードフォワード制御を前記
フィードバック制御に追加することにより、制御の遅れ
を著しく少くし且つ正確なる車体姿勢制御を実現するこ
とができる。
When the front and rear 2 or lateral 2 acts on the vehicle body, the front and rear 2 or lateral 2
Based on this, load shifts in the longitudinal or lateral direction, resulting in changes in vehicle body posture in the pitching direction or in the roll direction, such as nose dive or swivel.゜If only feedback control is used to control the normal posture using the signal from the suspension stroke sensor that detects changes in the stroke of the suspension that are a result of lateral 2, the control will be delayed, especially for relatively large front and rear 2. Or, if the lateral 2 is applied suddenly and only for a very short time, there is a risk that the control will not be done in time and the vehicle body attitude will have to change once and then return to its normal attitude. , front and rear 2. which is the cause of changes in vehicle body posture as mentioned above. Detects the lateral position 2, calculates the amount of load movement of the vehicle body based on this, and also calculates the amount of load movement on the front, rear, left, and right suspensions, taking into account the braking force, driving force, or lateral force applied to the tires from the suspension type, drive type, etc. By adding feedforward control to the feedback control that calculates the increase or decrease in suspension reaction force that will occur for each suspension, and independently controls oil injection and discharge for each suspension based on the calculation result, Control delay can be significantly reduced and accurate vehicle body attitude control can be achieved.

しかし、車両加減速時フィードフォワード制御の追加に
より単に制御の遅れを著しく少なくしただけでは、車両
加速時又は減速時に後輪又は前輪の沈み込みがほとんど
生じないので特に急加速時又は急減速時ドライバを含む
乗員に不自然なつっばり感を与えるという課題が生じる
However, simply reducing the control delay significantly by adding feedforward control during vehicle acceleration or deceleration will hardly cause the rear wheels or front wheels to sink when the vehicle accelerates or decelerates. A problem arises in that it gives an unnatural feeling of stiffness to the occupants including the occupants.

そこで本発明においては、上記のように車両加減速時前
後2センサ14が検出した前後2の絶対値に応じて基準
車高を変更して全体の車高を下げる制御を追加し、前後
2の絶対値が大きい程車体が全体として大きく沈み込む
よう制御することにより、車両加減速時車体はほぼ水平
状態を保ったままであるが、前後2が大きいときは車体
が全体的に比較的大きく沈み込み、前後2が小さいとき
は車体の沈み込みも小となるというように、前後2の大
きさに応じて車体全体の沈み込み量が変化し、それによ
って不自然なつっばり感は解消され得る。
Therefore, in the present invention, as described above, control is added to lower the overall vehicle height by changing the reference vehicle height according to the absolute value of the two front and rear sensors 14 detected by the two front and rear sensors 14 during vehicle acceleration and deceleration. By controlling the car so that the larger the absolute value is, the more the car body sinks as a whole, the car body remains almost horizontal when the vehicle accelerates or decelerates, but when the front and back 2 are large, the car body sinks relatively largely overall. , the amount of sinking of the entire vehicle body changes depending on the size of the front and rear 2, such that when the front and rear 2 are small, the car body sinks less, and thereby the unnatural feeling of stiffness can be eliminated.

更に前後2が大きくなるに従って車高をより低くするこ
とにより、前後2が大きい程車体重心地上高が下がり前
後方向荷重移動量が減少しタイヤ接地反力の変化量が従
来のものより小さくなり、摩擦係数の低い路面(低ル路
)を含むあらゆる路面での加減速時のタイヤのすべりが
少なくなり、加速及び制動能力(加減速時の限界2)の
高い車両を得ることができる。
Furthermore, by lowering the vehicle height as the front and rear 2 become larger, the larger the front and rear 2, the lower the height of the vehicle's center of gravity and the lower the amount of load movement in the front and back direction, and the amount of change in tire ground reaction force becomes smaller than the conventional one. Tire slippage during acceleration and deceleration is reduced on all road surfaces including roads with a low coefficient of friction (low friction roads), and a vehicle with high acceleration and braking capabilities (limit 2 during acceleration and deceleration) can be obtained.

上記実施例では、前後2の絶対値IXIが大となるに従
って車体全体の車高を低くしていく制御を行うようにし
た例を示しており、このようにすれば加速時及び減速時
のつっばり感をなくし、加速時及び減速時のタイヤのす
べりが少なくなり加速及び減速能力の高い車両を得るこ
とができるが、フィードバック制御にフィードフォワー
ド制御を組合せて加減速時スフオート及びノーズダイブ
等の車両姿勢変化を制御遅れなく抑制するようにした従
来のアクティブサスペンションにおいて、ドライバが感
じるつっばり感は主として急制動時であり、又タイヤの
すべりが問題となるのも主として制動時であることを考
慮し、制動時のみ発生2の大きさに応じて車高を下げる
ようにしても良い。
The above embodiment shows an example in which the vehicle height of the entire vehicle body is controlled to be lowered as the absolute value IXI of the front and rear 2 becomes larger. It is possible to eliminate the feeling of burr, reduce tire slippage during acceleration and deceleration, and obtain a vehicle with high acceleration and deceleration capabilities. With conventional active suspensions that suppress changes in attitude without delay, the stiffness felt by the driver is mainly experienced during sudden braking, and tire slippage becomes a problem mainly during braking. , the vehicle height may be lowered depending on the magnitude of occurrence 2 only during braking.

すなわち前記基準車高変更回路28を、前後2センサ1
4から入力される信号に基づき、第4図に示すように3
前後2のうち後向き即ち一符号の2に対してのみその絶
対値が大となるに従って基準車高を低く変更設定し、前
向き即ち十符号の2に対しては基準車高を変更しないと
いう制御特性とし、前後荷重移動量算出回路19及びサ
ス反力増算出回路2oもこの第4図に示す基準車高変更
のデータによる基準車高の変更を見込んで前後方向荷重
移動量及びサス反力増減量の算出を行うよう設定するこ
とにより、制動時のみ後向き夕が大なる程全体が大きく
沈み込むよう制御するようにしても良い。
That is, the reference vehicle height changing circuit 28 is connected to the front and rear two sensors 1.
Based on the signal input from 4, as shown in FIG.
A control characteristic in which the reference vehicle height is changed and set lower as the absolute value increases only for the rearward direction, that is, the 2 of one sign among the front and rear 2, and the reference vehicle height is not changed for the forward direction, that is, the 2 of the tens sign. Then, the longitudinal load movement amount calculation circuit 19 and the suspension reaction force increase calculation circuit 2o also calculate the longitudinal load movement amount and the suspension reaction force increase/decrease in anticipation of the change in the standard vehicle height based on the reference vehicle height change data shown in FIG. By setting the calculation to be performed, control may be performed so that the entire vehicle sinks more as the backward direction increases only during braking.

尚第1図の実施例ではハイドロニューマチックサスペン
ションを用いたアクティブサスペンションに本発明を適
用した例を示しているが、本発明は空気又は他の気体を
ばねとして用い(低減衰力の補助ダンパな有している)
該空気又は他の気体を注入又は排出することにより車体
の制振9乗心地の向上および車体の姿勢制御を行うよう
にしたアクティブサスペンションにも適用可能である。
The embodiment shown in Fig. 1 shows an example in which the present invention is applied to an active suspension using a hydropneumatic suspension, but the present invention also uses air or other gas as a spring (such as an auxiliary damper with low damping force). have)
The present invention can also be applied to an active suspension in which the vibration damping of the vehicle body is improved and the posture of the vehicle body is controlled by injecting or discharging the air or other gas.

発明の効果 以上のように本発明によれば、各サスペンション毎に少
なくともばね上とばね下の上下相対変位量を検出しサス
ペンションを基準車高に保持するよう各サスペンション
毎に独立して流体の注入、排出を制御するフィードバッ
ク制御系をもち、少なくとも車体に発生する前後2を検
出して流体の注入、排出を各サスペンション毎に行い、
加減速時の車体のピッチングを抑制するよう制御するフ
ィードフォワード制御系をもった自動車のアクティブサ
スペンションにおいて、前後2の絶対値又は前後2のう
ちの減速時の2が大となるに従って上記基準車高を低く
していく基準車高変更回路を設け、加減速時車体のビー
2チングを抑制すると共に、前後2の絶対値又は減速時
の2が大となるに従って車体全体の車高を低くしていく
制御を行うようにしたことにより、急加速時又は急制動
時は全体的に車体がより大きく沈み込み、不自然なつっ
ばり感は解消され得ると共に、減速時の2が大きくなる
に従って全体の車高が低くなるので低p路を含むあらゆ
る路面で制動時のタイヤのすべりが少なくなり、制動能
力(制動時の限界2)の高い車両を得ることができるも
ので、実用上多大の効果をもたらし得るものである。
Effects of the Invention As described above, according to the present invention, at least the vertical relative displacement of the sprung mass and unsprung mass is detected for each suspension, and fluid is injected independently for each suspension so as to maintain the suspension at the reference vehicle height. , has a feedback control system that controls the discharge, detects at least the front and back 2 that occurs on the vehicle body, and injects and discharges fluid for each suspension.
In the active suspension of a car that has a feedforward control system that controls pitching of the vehicle body during acceleration and deceleration, the above reference vehicle height increases as the absolute value of the two front and back or two of the two front and rear during deceleration increases. A reference vehicle height change circuit is installed to lower the vehicle height, suppressing beeching of the vehicle body during acceleration and deceleration, and lowering the vehicle height of the entire vehicle body as the absolute value of front and rear 2 or 2 during deceleration increases. As a result, the overall car body sinks more during sudden acceleration or sudden braking, eliminating the unnatural feeling of stiffness, and as 2 increases during deceleration, the overall Since the vehicle height is lower, tire slippage during braking is reduced on all road surfaces including low-P roads, making it possible to obtain a vehicle with high braking ability (braking limit 2), which has a great practical effect. It is something that can be brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す流体の注入、排出系統
説明図、第2図は本発明の制御ロジックの一実施例を示
すブロック図、第3図及び第4図は前後2に対する基準
車高の変更特性の第1及び第2の例をそれぞれ示す図で
ある。 11.12,13,1 a・・・サスペンション、21
゜22.23.24・・・制御弁、3・・・コントロー
ラ、12・・・上下加速度センサ、13・・・サススト
ロークセンサ、14・・・前後2センサ、15・・・横
2センサ、16・・・車高調整スイッチ、19・・・前
後荷重移動量算出回路、20・・・サス反力増算出回路
、26・・・制御量算出回路、27・・・制御量変換回
路、28・・・基準車高変更回路。 以   上
Fig. 1 is an explanatory diagram of a fluid injection and discharge system showing an embodiment of the present invention, Fig. 2 is a block diagram showing an embodiment of the control logic of the present invention, and Figs. 3 and 4 are for the front and rear two. FIG. 6 is a diagram showing first and second examples of change characteristics of the reference vehicle height, respectively. 11.12,13,1 a...Suspension, 21
゜22.23.24...Control valve, 3...Controller, 12...Vertical acceleration sensor, 13...Suspension stroke sensor, 14...2 front and rear sensors, 15...2 lateral sensors, 16... Vehicle height adjustment switch, 19... Front-rear load movement amount calculation circuit, 20... Suspension reaction force increase calculation circuit, 26... Controlled amount calculation circuit, 27... Controlled amount conversion circuit, 28 ...Reference vehicle height change circuit. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)、各サスペンション毎に少なくともばね上とばね
下の上下相対変位量を検出し、サスペンションを基準車
高に保持するよう各サスペンション毎に独立して流体の
注入、排出を制御するフィードバック制御系と、少なく
とも車体に発生する前後方向加速度を検出してこれで流
体の注入、排出を各サスペンション毎に独立して行い、
加減速時の車体のピッチングを抑制するよう制御するフ
ィードフォワード制御系とをもった自動車のアクティブ
サスペンションにおいて、上記前後方向加速度のうち減
速時の加速度が大となるに従って上記基準車高を低くし
ていく基準車高変更回路を設け、加減速時車体のピッチ
ングを抑制すると共に、減速時の加速度が大となるに従
って車体全体の車高を低くしていく制御を行うことを特
徴とする自動車用アクティブサスペンションの制御方法
(1) A feedback control system that detects at least the vertical relative displacement of the sprung and unsprung parts of each suspension, and controls fluid injection and discharge independently for each suspension to maintain the suspension at the reference vehicle height. The system detects at least the longitudinal acceleration generated in the vehicle body, and uses this to inject and discharge fluid independently for each suspension.
In an active suspension of an automobile having a feedforward control system that controls pitching of the vehicle body during acceleration and deceleration, the reference vehicle height is lowered as the acceleration during deceleration increases among the longitudinal accelerations. An active vehicle for an automobile, which is equipped with a standard vehicle height change circuit, suppresses pitching of the vehicle body during acceleration and deceleration, and controls the vehicle height of the entire vehicle body to be lowered as the acceleration during deceleration increases. How to control the suspension.
(2)、請求項(1)に記載した自動車のアクティブサ
スペンションにおいて、前後方向加速度の絶対値が大と
なるに従って基準車高を低くしていく基準車高変更回路
を設け、加減速時車体のピッチングを抑制すると共に、
前後方向加速度の絶対値が大となるに従って車体全体の
車高を低くしていく制御を行うことを特徴とする自動車
用アクティブサスペンションの制御方法。
(2) In the active suspension for a vehicle according to claim (1), a reference vehicle height change circuit is provided that lowers the reference vehicle height as the absolute value of longitudinal acceleration increases, and In addition to suppressing pitching,
A control method for an active suspension for an automobile, characterized in that the vehicle height of the entire vehicle body is controlled to be lowered as the absolute value of longitudinal acceleration increases.
JP33222690A 1990-11-29 1990-11-29 Method for controlling active suspension for vehicle Pending JPH04197812A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33222690A JPH04197812A (en) 1990-11-29 1990-11-29 Method for controlling active suspension for vehicle
GB9124484A GB2251412B (en) 1990-11-29 1991-11-18 Method and system for controlling a vehicle suspension system
DE4143599A DE4143599C2 (en) 1990-11-29 1991-11-26 Regulating active suspension of motor vehicle
DE4138831A DE4138831C2 (en) 1990-11-29 1991-11-26 Method and system for regulating an active suspension of a vehicle
US08/358,547 US5515277A (en) 1990-11-29 1994-12-14 Method and system for controlling active suspensions of a vehicle during acceleration and deceleration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33222690A JPH04197812A (en) 1990-11-29 1990-11-29 Method for controlling active suspension for vehicle

Publications (1)

Publication Number Publication Date
JPH04197812A true JPH04197812A (en) 1992-07-17

Family

ID=18252585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33222690A Pending JPH04197812A (en) 1990-11-29 1990-11-29 Method for controlling active suspension for vehicle

Country Status (1)

Country Link
JP (1) JPH04197812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986132A (en) * 1995-09-21 1997-03-31 Mitsubishi Motors Corp Suspension device
JP2007223361A (en) * 2006-02-21 2007-09-06 Toyota Motor Corp Steering device of vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986132A (en) * 1995-09-21 1997-03-31 Mitsubishi Motors Corp Suspension device
JP2007223361A (en) * 2006-02-21 2007-09-06 Toyota Motor Corp Steering device of vehicle

Similar Documents

Publication Publication Date Title
JP3179079B2 (en) Active suspension control method for vehicle
US5515274A (en) Method and system for controlling active suspensions of a vehicle
US5515277A (en) Method and system for controlling active suspensions of a vehicle during acceleration and deceleration
US10308091B2 (en) Suspension system
US5033770A (en) Controlling apparatus for active suspension system for automotive vehicle
JP3056748B2 (en) Active suspension control system for vehicles
US5113345A (en) System for controlling active suspensions of a vehicle
US5287277A (en) Method and apparatus for controlling height of a vehicle
JPH02124310A (en) Method for controlling active suspension of automobile
JPH03511A (en) Car height control method for vehicle with car height adjuster
JPH0295910A (en) Control device for automotive active suspension
JPH06247126A (en) System for closed and/or open loop control of car chassis
JP3160032B2 (en) System for controlling a spring cylinder of a traveling mechanism
JPH04197812A (en) Method for controlling active suspension for vehicle
JPH05278429A (en) Lateral acceleration detecting method for vehicle and active suspension device using such method
JPH02128910A (en) Control device for automobile active suspension
JPH05185820A (en) Active suspension system for vehicle
JP3056749B2 (en) Active suspension control system for vehicles
JPH0538922A (en) Control and deice for automotive active suspension
JP3814056B2 (en) Ground load control device
JP2831393B2 (en) Active suspension
JP2846012B2 (en) Vehicle suspension device
JP3026096B2 (en) Active suspension control system for vehicles
JP2798282B2 (en) Height adjustment device
JPH02151513A (en) Active suspension for vehicle