JPH04197712A - Manufacture of prepreg - Google Patents

Manufacture of prepreg

Info

Publication number
JPH04197712A
JPH04197712A JP32548390A JP32548390A JPH04197712A JP H04197712 A JPH04197712 A JP H04197712A JP 32548390 A JP32548390 A JP 32548390A JP 32548390 A JP32548390 A JP 32548390A JP H04197712 A JPH04197712 A JP H04197712A
Authority
JP
Japan
Prior art keywords
solvent
base material
chamber
vacuum
solvent vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32548390A
Other languages
Japanese (ja)
Inventor
Norio Sayama
憲郎 佐山
Takeo Kaneoka
金岡 威雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP32548390A priority Critical patent/JPH04197712A/en
Publication of JPH04197712A publication Critical patent/JPH04197712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To attempt to decrease burden of vacuum suction and treatment of exhaust gas by substituting a solvent vapour for air by passing a base material through a heated solvent vapour, introducing then it into a vacuum room wherein remaining air and part of the solvent vapour are removed under vacuum and impregnating it with a resin soln. CONSTITUTION:A long base material 10 wound on a roll is introduced into a solvent condensing room A wherein the base material 10 is pinched by means of rolls 21 and a solvent vapour from a heated solvent vapour room D penetrates into the base material and air in the base material is substantially substituted with a heated solvent vapour. The base material 11 substituted with the solvent vapour is introduced into a vacuum room B wherein the pressure is set at several hundreds mmHg through vacuum seal rolls. Sealing by means of the inlet rolls 22 of the vacuum room B makes that air carried in the vacuum room B is extremely little and majority is the solvent vapour and the amt. of air corresponds to the partial pressure and an effect which is similar to substantial decrease in pressure to the partial pressure can be obtd. The base material 12 wherein the remaining air and part of the solvent are removed in the vacuum room B is introduced into a resin soln. bath C through outlet rolls 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、積層板類、構造材料、その他の用途に好適に
使用されるプlJ、7’レグの製造法の改良に関するも
のであり、基材を溶剤蒸気中を通過させ溶剤蒸気置換し
た後、この一部を密閉された減圧系で除去し、直ちに樹
脂溶液中に導入することを特徴とするものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement in the manufacturing method of PlJ, 7' leg, which is suitably used for laminates, structural materials, and other uses. The method is characterized in that after the base material is passed through solvent vapor to replace the solvent vapor, a portion of the base material is removed in a closed pressure reduction system and immediately introduced into the resin solution.

本発明の方法は、従来の真空含浸法に対しては、減圧室
に流入する空気が実質的に無いか又は極めて少ないので
、従来の減圧動力を冷却と加熱とに転換し所要動力を殆
ど無くすることが可能となり、かつ、排気ガス処理を殆
ど不要とする。又、溶剤予備含浸法に対しては、溶剤の
樹脂溶液槽への混入を1/200以下とすることが数百
mmHgの減圧度で達成され、補給て微量となるので実
質的に樹脂溶液(フェス)中に溶剤が流失することがな
くなるので、樹脂溶液濃度の制御を不要とする。しかも
、空気除去の操作を気体/気体の置換操作により行うも
のであるので液体を使用する方法に比較して格段の操作
性(速度、従って小型の機器で可能)を達成できるもの
である。
Compared to the conventional vacuum impregnation method, the method of the present invention has substantially no or very little air flowing into the decompression chamber, so the conventional decompression power is converted to cooling and heating, and the required power is almost eliminated. This makes it possible to do this, and almost eliminates the need for exhaust gas treatment. In addition, for the solvent pre-impregnation method, it is possible to reduce the amount of solvent mixed into the resin solution tank to 1/200 or less at a reduced pressure of several hundred mmHg, and since only a small amount is replenished, the resin solution ( Since the solvent does not flow out during the process (fabrication process), there is no need to control the resin solution concentration. Moreover, since the air removal operation is performed by a gas/gas replacement operation, it is possible to achieve much greater operability (speed, therefore, it is possible with small equipment) compared to a method using a liquid.

〔従来の技術およびその課題〕[Conventional technology and its problems]

電気用途に使用される積層板類、構造材料、その他の製
造に使用されるプリプレグの製造法は、従来、補強基材
を直接樹脂溶液に浸漬する方法(直接含浸法■)が主流
であったが、補強基材繊維の微細なモノフィラメントな
どの微細な連続的な間隙の一部に空気の残ったプリプレ
グができる問題がある。この解決策として、希釈した樹
脂溶液或いは溶剤を予備含浸させた後、本含浸する方法
(予備含浸法■)や減圧室を介して樹脂溶液に浸漬する
方法(真空含浸法■)などが提案されている。
Traditionally, the mainstream manufacturing method for prepreg used in the manufacture of laminates, structural materials, and other products used in electrical applications has been to directly immerse the reinforcing base material in a resin solution (direct impregnation method■). However, there is a problem in that air remains in the prepreg in some of the fine continuous gaps in the fine monofilaments of the reinforcing base fibers. As a solution to this problem, methods have been proposed such as preliminary impregnation with a diluted resin solution or solvent and then main impregnation (pre-impregnation method ■), and method of immersing the resin solution in a reduced pressure chamber (vacuum impregnation method ■). ing.

予備含浸法■の場合、予備含浸を完全に達成すれば微細
な間隙にまで浸透させれば良好なプリプレグかえられる
が、本含浸に用いる樹脂溶液槽に予備含浸に用いた過剰
分の溶剤が持ち込まれ樹脂溶液を希釈してしまうという
問題があり、しかも持ち込み溶剤量も温度その他の要因
により変動し易い為、樹脂溶液濃度の管理が難しいとい
う問題点があった。又、真空含浸法■の場合、減圧度を
充分に保つこと(例えば lQmmHg程度)により良
好なプリプレグとできる力1、補強基材が連続した間隙
(オリフィスモデル)を有することから、ロールによる
シールでは、真空ポンプを大型にすることが必須である
。しかも、真空吸引のだ約に発生する多量の排気ガス中
には、樹脂溶液槽からの溶剤の混入が避けられないこと
から、場合によっては爆発の危険かもあり、また、この
排気ガスの処理という新たな問題点が生じるものであっ
た。
In the case of the pre-impregnation method (■), if the pre-impregnation is completely achieved and it penetrates into the minute gaps, a good prepreg can be obtained. There is a problem in that the resin solution is diluted, and furthermore, the amount of the solvent carried in tends to fluctuate depending on temperature and other factors, making it difficult to control the concentration of the resin solution. In addition, in the case of the vacuum impregnation method (2), by maintaining a sufficient degree of vacuum (e.g. about 1QmmHg), a good prepreg can be obtained.Since the reinforcing base material has a continuous gap (orifice model), it is difficult to seal with a roll. , it is essential to increase the size of the vacuum pump. Moreover, in the large amount of exhaust gas generated during vacuum suction, it is inevitable that solvent from the resin solution tank will be mixed in, so there may be a risk of explosion in some cases. This created new problems.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記した課題の解決について鋭意検討した結
果、溶剤蒸気置換とその密閉室による除去とを組み合わ
せる方法を見出し、完成させたものである。
As a result of intensive studies to solve the above problems, the present invention has been completed by discovering a method that combines solvent vapor replacement and removal using a closed chamber.

すなわち、本発明は、基材に樹脂液を含浸し加熱乾燥す
るプリプレグの製造法において、該基材を加熱溶剤蒸気
中を通過させて実質的に空気を溶剤蒸気に置換し、続い
て減圧室に導き残余の空気と溶剤蒸気との一部分を減圧
除去した後、直ちに樹脂液を含浸することを特徴とする
プリプレグの製造法であり、該加熱蒸気が、樹脂液と同
じ溶剤を用いたものであること、又は該樹脂液が、無溶
剤の樹脂液であることである。
That is, the present invention provides a prepreg manufacturing method in which a base material is impregnated with a resin liquid and dried by heating, in which the base material is passed through a heated solvent vapor to substantially replace air with the solvent vapor, and then the base material is passed through a heated solvent vapor to substantially replace the air with the solvent vapor. A prepreg manufacturing method characterized by immediately impregnating with a resin liquid after removing a portion of the remaining air and solvent vapor under reduced pressure, and the method uses the same solvent as the resin liquid for the heated vapor. or the resin liquid is a solvent-free resin liquid.

また、本発明は、該含浸装置として、冷却器を備えた溶
剤凝縮室〔A〕、該溶剤凝縮室Aに隣接し、入口および
出口をロールにより密閉し加熱器を備えた加熱溶剤蒸気
室CD〕、該加熱溶剤蒸気室りに隣接し、入口および出
口をロールにより密閉した減圧室(B〕並びに該減圧室
Bの出口ロールに直結し、出口ロールの全面が樹脂液に
満たされた構造の樹脂液槽〔C〕を少なくとも有する含
浸装置を用いることを特徴とするプリプレグの製造法で
ある。
The present invention also provides, as the impregnation device, a solvent condensation chamber [A] equipped with a cooler, a heated solvent vapor chamber CD adjacent to the solvent condensation chamber A, the inlet and outlet of which are sealed with rolls, and equipped with a heater. ], a decompression chamber (B) adjacent to the heated solvent vapor chamber, the inlet and outlet of which are sealed by rolls, and a structure directly connected to the exit roll of the decompression chamber B, with the entire surface of the exit roll filled with resin liquid. This is a prepreg manufacturing method characterized by using an impregnating apparatus having at least a resin liquid tank [C].

以下、本発明の構成について説明する。The configuration of the present invention will be explained below.

本発明の基材とは、通常の電気、電子材料、構造材料、
その他に使用される長尺の補強基材であれば特に限定さ
れないものであり、クラフト紙、リンター紙;Eガラス
、Sガラス、Dガラス、石英ガラス、その他の各種ガラ
ス、炭化珪素その他の各種セラミックスなどの織布或い
は不織布;炭素繊維織布或いは不織布;アルミナ、マイ
カなどのヘー バー ;全芳香族ポリアミド、フッ素V
=、ポリフェニレンサルファイドポリエーテルエーテル
ケトン、ポリエーテルイミド、全芳香族ポリエステルな
どの耐熱性のエンジニエリングプラスチック繊維織布、
不織布或いは多孔質シート:上記の繊維を混合使用して
なる混合繊布、不織布或いはペーパー;上記の繊維を複
合してなる糸を用いた織布或いは不織布などが例示され
る。
The base material of the present invention refers to ordinary electrical, electronic materials, structural materials,
Other long reinforcing base materials used include, but are not limited to, kraft paper, linter paper; E glass, S glass, D glass, quartz glass, other types of glass, silicon carbide and other types of ceramics. Woven or non-woven fabrics such as carbon fiber woven fabrics or non-woven fabrics; fibers such as alumina and mica; wholly aromatic polyamides, fluorine V
=, heat-resistant engineering plastic fiber woven fabrics such as polyphenylene sulfide polyetheretherketone, polyetherimide, fully aromatic polyester, etc.
Non-woven fabric or porous sheet: Mixed fabric, non-woven fabric or paper made by mixing the above-mentioned fibers; Woven fabric or non-woven fabric using threads made by combining the above-mentioned fibers.

溶剤は、アセトン、メチルエチルケトン、トルエン、キ
シレン、ジメチルホルムアミド、N−メチルピロリドン
、メタノーノベその他の樹脂溶液の調製に通常使用され
る溶剤類があげられる。又、樹脂溶液に使用したものと
は異なるクロロセン、フレオン、ジクロロメタン、トリ
クロロエタン、水などのより安定な溶剤も減圧除去する
溶剤量を多くする場合(減圧度を大きくする場合)や用
いる基材がこれらの溶剤で犯されない場合には使用でき
る。
Examples of the solvent include acetone, methyl ethyl ketone, toluene, xylene, dimethylformamide, N-methylpyrrolidone, methanol, and other solvents commonly used for preparing resin solutions. In addition, more stable solvents such as chlorocene, freon, dichloromethane, trichloroethane, and water, which are different from those used in the resin solution, may be removed under reduced pressure when increasing the amount of solvent (increasing the degree of vacuum) or when the substrate used is one of these solvents. It can be used if it is not violated by solvents.

樹脂液は、溶剤を使用してなる樹脂溶剤溶液、無溶剤の
樹脂液の何れでも特に限定されないものであり、上記基
材と同様に各種用途に使用されているものが使用できる
。具体的に例示すれば、フェノール樹脂、エポキシ樹脂
、不飽和ポリエステル樹脂、ポリイミド樹脂、シアン酸
エステル樹脂またはシアン酸エステル−マレイミド樹脂
組成物、シアン酸エステル−エポキシ樹脂組成物、シア
ン酸エステル−マレイミド−エポキシ樹脂組成物などの
シアン酸エステル樹脂、ジメトキシメチルベンゼンを主
原料として重縮合させて製造される樹脂(商品名「ザイ
ロツクレジン」)又はこれらの樹脂を主体としてなる熱
硬化性樹脂組成物が挙げられる。
The resin liquid is not particularly limited, and can be either a resin solvent solution using a solvent or a solvent-free resin liquid, and those used for various purposes like the above-mentioned base material can be used. Specific examples include phenol resin, epoxy resin, unsaturated polyester resin, polyimide resin, cyanate ester resin or cyanate ester-maleimide resin composition, cyanate ester-epoxy resin composition, cyanate ester-maleimide. Examples include cyanate ester resins such as epoxy resin compositions, resins produced by polycondensation using dimethoxymethylbenzene as the main raw material (trade name "Zyrotsu Resin"), and thermosetting resin compositions mainly composed of these resins. .

次に、本発明の製造法の理解を容易とするために添付の
図面により説明する。
Next, in order to facilitate understanding of the manufacturing method of the present invention, a description will be given with reference to the accompanying drawings.

第1図、第2図は、本発明のプリプレグの製造装置の含
浸工程部分の模式図である。
FIGS. 1 and 2 are schematic diagrams of the impregnating process portion of the prepreg manufacturing apparatus of the present invention.

第1図、第2図において、ロールに巻かれた長尺の基材
〔10〕が、溶剤凝縮室(A〕に導入される。溶剤凝縮
室Aは、溶剤蒸気が環境中に実質的に放出されないため
に設けたもので、加熱溶剤蒸気室からの溶剤蒸気が冷却
されて液体となるに十分な長さ、滞留時間又は冷却度と
する。ついて、基材10はロール〔21〕に挟まれ、こ
こで常圧よりもやや加圧とした加熱溶媒蒸気室〔D〕か
らの溶剤蒸気が基材中に進入し、基材中の空気は実質的
に加熱溶剤蒸気に置換され、加熱溶媒蒸気室りに導入さ
れる。このロール21による溶剤蒸気と空気との置換操
作は、大気圧部分(凝縮室A)と加熱溶剤蒸気室りとの
圧力差を数mmHg〜数十mmHg程度と小さな値で実
施可能でありシール性等について大きな問題はないもの
であり、単なる間隙に置き換えることも可能である。
1 and 2, a long base material [10] wound on a roll is introduced into a solvent condensation chamber (A). The length, residence time, or degree of cooling is sufficient to ensure that the solvent vapor from the heated solvent vapor chamber is cooled and becomes a liquid.The base material 10 is then sandwiched between the rolls [21]. Here, the solvent vapor from the heated solvent vapor chamber [D] pressurized slightly higher than normal pressure enters the base material, and the air in the base material is substantially replaced by the heated solvent vapor, and the heated solvent The solvent vapor is introduced into the steam chamber.This operation of replacing the solvent vapor with air using the roll 21 reduces the pressure difference between the atmospheric pressure part (condensation chamber A) and the heated solvent vapor chamber to a small range of several mmHg to several tens of mmHg. It can be implemented with a small gap, there is no major problem with sealing properties, etc., and it is also possible to replace it with a simple gap.

加熱溶媒蒸気室りでは、溶剤蒸気を加熱するか又は加熱
蒸気状態を保つための加熱器が設けられている。ここで
は、さらに、より充分な溶剤蒸気による基材中の微細な
間隙の空気が溶剤蒸気中に拡散し溶剤蒸気により置換さ
れる。この結果、微細な間隙の空気は実質的に溶剤蒸気
に置換された基材〔ll〕となる。
The heated solvent vapor chamber is provided with a heater for heating the solvent vapor or maintaining the heated vapor state. Here, the air in the fine gaps in the substrate is further diffused into the solvent vapor and replaced by the solvent vapor. As a result, the air in the fine gaps becomes a base material [ll] that is substantially replaced by solvent vapor.

該基材11は真空シールロールC22〕(ダブルロール
で図示。基材の繋ぎ部分の通過を考慮したものである。
The base material 11 is a vacuum seal roll C22] (illustrated as a double roll, in consideration of the passage of the joint portion of the base material.

)を経て、通常、圧力数百mmHg以下に設定された減
圧室〔B〕に導入される。減圧室Bの入口ロール22に
よるシールは、従来の真空含浸法のような減圧度(真空
度)を保つ必要はない。
), and is introduced into a reduced pressure chamber [B] which is usually set at a pressure of several hundred mmHg or less. The sealing by the inlet roll 22 of the reduced pressure chamber B does not require maintaining the degree of reduced pressure (degree of vacuum) as in the conventional vacuum impregnation method.

すなわち、減圧室B中に搬入される空気は極めて微量で
大部分は溶剤蒸気であるので空気の量はその分圧分とな
り、実質的に分圧分まで減圧したことと同様の効果を得
ることを可能とする。減圧室B中で残余の空気と溶剤蒸
気との一部を除かれた基材〔12〕は、出口ロール〔2
3〕を経て樹脂溶液槽Cに導入される。また、ンールに
用いるロール21.22.23は、少なくとも表面が耐
溶剤性の優れたフッ素樹脂、ポリオレフィン樹脂、シリ
コン樹体製のものが好適である。
In other words, since the amount of air carried into the decompression chamber B is very small and most of it is solvent vapor, the amount of air is equivalent to its partial pressure, and the same effect can be obtained as substantially reducing the pressure to the partial pressure. is possible. The base material [12] from which residual air and solvent vapor have been partially removed in the vacuum chamber B is transferred to the exit roll [2].
3] into the resin solution tank C. The rolls 21, 22, and 23 used in the roll are preferably made of a fluororesin, a polyolefin resin, or a silicone resin with at least the surface having excellent solvent resistance.

樹脂溶液槽Cでは、通常、室温〜80℃、数秒〜10分
間程度の条件で基材の微細間隙まで樹脂溶液が含浸され
た樹脂含浸基材〔13つとされ、加熱乾燥工程に導かれ
る。ここに、樹脂溶液槽Cから減圧室B側への出口ロー
ルからの樹脂溶液の滲み出しが圧力差が大きい場合1乎
は問題となる。しかし、本発明は通常、減圧室の圧力が
従来に比較して大幅に高く、又、フェスに使用したと同
じ溶剤を使用できることから、特に有害とはならない。
In the resin solution tank C, 13 resin-impregnated substrates (13 in number) are impregnated with the resin solution to the minute gaps of the substrate under conditions of room temperature to 80° C. for several seconds to 10 minutes, and are led to a heat drying step. Here, if the resin solution oozes out from the exit roll from the resin solution tank C to the decompression chamber B side, it becomes a problem if the pressure difference is large. However, the present invention is not particularly harmful because the pressure in the vacuum chamber is usually much higher than in the past, and the same solvent used in the festival can be used.

なお、減圧室の減圧度としては、樹脂溶液槽Cの入口ロ
ールに溶剤蒸気が結露しないような圧力に設定すること
が好ましい。
The degree of vacuum in the vacuum chamber is preferably set to such a pressure that solvent vapor does not condense on the inlet roll of the resin solution tank C.

以上の操作において、減圧室Bには、真空ポンプが冷却
器を介して接続され、溶剤蒸気は冷却器で液体とされて
回収され、溶剤蒸発器で加熱溶剤蒸気とされ、加熱溶剤
蒸気室りに循環される。また、凝縮室Aで凝縮された溶
剤も溶剤蒸発器に導入され、蒸気とされた後、加熱溶剤
蒸気室りの加熱器に導入され循環使用される。真空ポン
プよりの排気ガスは使用した溶剤の種類に応じた処理を
行われる。
In the above operation, a vacuum pump is connected to the decompression chamber B via a cooler, and the solvent vapor is recovered as a liquid in the cooler, converted into heated solvent vapor in the solvent evaporator, and then returned to the heated solvent vapor chamber. is circulated. Further, the solvent condensed in the condensation chamber A is also introduced into the solvent evaporator, where it is turned into vapor, and then introduced into the heater in the heated solvent vapor chamber for circulation use. The exhaust gas from the vacuum pump is treated depending on the type of solvent used.

本図に示した装置による加熱蒸気置換、減圧処理により
、真空シール、真空ポンプ負荷、排気ガス処理などの負
荷を大幅に軽減し、樹脂溶液濃度制御などを不用とし、
基材の微細な間隙にも十分に樹脂が含浸された基材含浸
プリプレグの製造を可能とする。
By heating steam displacement and depressurization using the equipment shown in this figure, the load on vacuum sealing, vacuum pump load, exhaust gas treatment, etc. is significantly reduced, and resin solution concentration control is no longer required.
It is possible to manufacture a base material impregnated prepreg in which even minute gaps in the base material are sufficiently impregnated with resin.

なお、樹脂溶液濃度の制御が不用となる理由は以下によ
る。即ち、通常の有機溶剤は、液体に比較して気体の体
積は、常圧下、沸点〜沸点+5℃程度の範囲で100〜
250倍程度(水等の分子量の小さいものの場合 数百
倍)である。従って、基材と共に樹脂溶液槽Cに搬入さ
れる溶媒の量は、減圧室の圧力を常圧の1/2〜1/1
0程度とした場合に、溶剤予備含浸法に比較して1/1
00/(2−10)−1/(200〜1000)以下に
低減されるので樹脂溶液槽C中の樹脂溶液の濃度の低下
も実質的にない。
The reason why control of the resin solution concentration is unnecessary is as follows. In other words, the volume of a gas in a normal organic solvent compared to a liquid is 100 to 100°C in the range of boiling point to boiling point +5°C under normal pressure.
It is about 250 times (several hundred times in the case of small molecular weight substances such as water). Therefore, the amount of solvent carried into the resin solution tank C together with the base material is such that the pressure in the decompression chamber is 1/2 to 1/1 of normal pressure.
When it is about 0, it is 1/1 compared to the solvent pre-impregnation method.
Since the concentration is reduced to 00/(2-10)-1/(200-1000) or less, there is substantially no decrease in the concentration of the resin solution in the resin solution tank C.

しかも、微量の溶剤の混入は、微細な基材間への樹脂溶
液の浸透を促進する効果も期待される。
Moreover, the mixing of a small amount of solvent is expected to have the effect of promoting the penetration of the resin solution between fine base materials.

以上、本発明を図面により説胡したが、本発明は上記し
た図面に限定されるものではなく、基材を先ず溶剤蒸気
中を通過させて空気の大部分を除いた基材とし、該基材
を密閉系で処理して過剰の溶剤蒸気と共に空気を除去し
、樹脂溶液を含浸させることを除き、種々の変更を行う
ことができる。
Although the present invention has been explained above with reference to the drawings, the present invention is not limited to the above-described drawings. First, the base material is passed through solvent vapor to remove most of the air. Various modifications can be made, except that the material is treated in a closed system to remove air along with excess solvent vapor and impregnated with resin solution.

例えば、通常、ロール211貴代えて単なる狭間隙部を
用いることなどで溶剤蒸気置換を行うこと;加熱溶剤蒸
気室などの加熱手段を公知方法、例えば加熱ロール接触
、加圧蒸気加熱盤、電熱、赤外線加熱、その他から適宜
選択すること;ロールシールを適宜、ダブルローノペベ
ルトロールその他に変更すること;減圧室の出口ロール
の上に樹脂溶液槽を配置すること;樹脂含浸槽Cを加圧
とすること;その他、凝縮室、加熱溶剤蒸気室、樹脂溶
液槽等の大きさ、上下左右の位置関係を適宜変更するこ
となどである。また、樹脂溶液に混合溶剤を使用し、加
熱溶剤蒸気として単一溶媒を使用することも加熱溶剤蒸
気の圧力が常圧より心持ち高い程度で十分に操作可能な
ことから、蒸発器として蒸留器の能力を一部賦与するこ
とが容易であり容易に実施可能である。さらにこの場合
、樹脂溶液含浸基材の乾燥工程にも溶剤回収工程を設け
、この工程の蒸留器からの塔頂ガスを加熱溶媒蒸気とし
て使用することは好ましい実施態様である。
For example, solvent vapor displacement is usually performed by replacing the roll 211 with a simple narrow gap; heating means such as a heated solvent vapor chamber are replaced by known methods such as heating roll contact, pressurized steam heating plate, electric heating, infrared rays, etc. Select as appropriate from heating and others; Change the roll seal to a double-rope belt roll or other as appropriate; Place a resin solution tank on the exit roll of the vacuum chamber; Pressurize the resin impregnation tank C. In addition, the sizes of the condensation chamber, heated solvent vapor chamber, resin solution tank, etc., and the vertical and horizontal positional relationships may be changed as appropriate. It is also possible to use a mixed solvent for the resin solution and a single solvent as the heated solvent vapor, since the pressure of the heated solvent vapor is comfortably higher than normal pressure, so it is possible to operate the distiller as an evaporator. Imparting a portion of the ability is easy and easily implementable. Furthermore, in this case, it is a preferred embodiment to provide a solvent recovery step in the drying step of the resin solution-impregnated base material and to use the overhead gas from the distiller in this step as heated solvent vapor.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

検討例 1 第1図のフローにおいて、凝縮室Aへの溶剤蒸気の流入
量並びに減圧室Bへの溶剤蒸気の流入量を検討した。
Study Example 1 In the flow shown in FIG. 1, the amount of solvent vapor flowing into the condensing chamber A and the amount of solvent vapor flowing into the decompression chamber B were studied.

まず、凝縮室Aへ加熱溶剤蒸気が移動するための最低圧
力は、基材の移動速度を30m/min = 0.5m
/sec、溶剤をメチルエチルケトン(=MEK)とし
た場合、この基材の移動に抗して溶剤蒸気が移動すため
の圧力差(ΔP)の下限は下記式から算出され、ΔP 
” 4X10−6ataである。
First, the minimum pressure for the heated solvent vapor to move to the condensation chamber A is the moving speed of the base material of 30 m/min = 0.5 m.
/sec, when the solvent is methyl ethyl ketone (=MEK), the lower limit of the pressure difference (ΔP) for the solvent vapor to move against the movement of the base material is calculated from the following formula, ΔP
” 4X10-6ata.

■ ・ (2零g本△P/r)” 二の結果より、やや加圧状態にすれば、減圧室中への空
気の流出は実質的に阻止できることとなる。従って、加
熱溶剤蒸気が凝縮室へ流出する量をシールロールとの組
合せにより必要最低限とし、かつ空気を基材中からほぼ
完全に除去することが極めて容易であることが理解でき
る。
■ ・ (20g book △P/r)" From the second result, it is possible to substantially prevent air from flowing into the decompression chamber by creating a slightly pressurized state. Therefore, the heated solvent vapor condenses. It can be seen that it is extremely easy to reduce the amount of air flowing into the chamber to the necessary minimum by combining it with a seal roll and to remove air almost completely from the base material.

次に、減圧室へのMEK l気の流出も容易に産出され
る。溶剤をMEK(M=72.11> 、圧力(PL)
 1ataの蒸気とし、減圧室圧力(P2) 0.23
3 ata、基材の厚み0.2mm、巾1050ルの基
材て、空間率0.5とした場合、減圧室中への溶剤蒸気
の流入量Gは、近似的に同様の断面積を有するオリフィ
スを通過する流量と同等に取り扱えるものとなる。この
結果、流入量Gは下式で算出される。
Then, an outflow of MEK gas into the vacuum chamber is also easily produced. Solvent to MEK (M=72.11>, pressure (PL)
1ata steam, vacuum chamber pressure (P2) 0.23
3 ata, the thickness of the base material is 0.2 mm, the width of the base material is 1050 mm, and when the void ratio is 0.5, the inflow amount G of the solvent vapor into the decompression chamber has approximately the same cross-sectional area. It can be treated in the same way as the flow rate passing through an orifice. As a result, the inflow amount G is calculated by the following formula.

G=μ*’!、 * alI* Pi /(R本Tl)
”’式中の μ:流出係数 G =74.06 kg/h(1,Q3kgmol/h
、 or 23.0 Nm’/h)となる。
G=μ*'! , * alI * Pi / (R book Tl)
μ in the formula: runoff coefficient G = 74.06 kg/h (1, Q3 kgmol/h
, or 23.0 Nm'/h).

この蒸気は、加熱及び冷却によって、凝縮、蒸発を行う
ことによりリサイクルする。熱量はMEKの蒸発潜熱(
410kcal/kg)で8.1910’ kcal/
hである。これをスチーム、冷却水として換算すると0
.0157 Ton/h、冷却水量 0.819 To
n/hとなる。
This vapor is recycled by being condensed and evaporated by heating and cooling. The amount of heat is the latent heat of vaporization of MEK (
410kcal/kg) and 8.1910'kcal/
It is h. If this is converted into steam or cooling water, it is 0.
.. 0157 Ton/h, cooling water amount 0.819 To
n/h.

さらに、樹脂液槽に搬入される基材1mあたりのMEK
の量(ま、1.05本10−’ X (1,549本0
.233)  −0,0379g以下となり、無視しう
る量である。
Furthermore, MEK per meter of base material carried into the resin liquid tank
The amount (well, 1.05 pieces 10-' X (1,549 pieces 0
.. 233) -0,0379g or less, which is a negligible amount.

また、比較のために、従来の真空含浸法の場合について
10mmHg=0.013ataまでの減圧が必須とし
て検討すると、上記において、 a、  :           −7,35本10−
’m’であり、G =51.79 kg/h、(1,7
85gmol/h、 or 33.4 Nm’/h) 
 となる。
Also, for comparison, when considering the case of the conventional vacuum impregnation method, assuming that pressure reduction to 10 mmHg = 0.013 ata is essential, in the above, a,: -7,35 pieces 10-
'm', G = 51.79 kg/h, (1,7
85 gmol/h, or 33.4 Nm'/h)
becomes.

〔発明の作用および効果〕[Operation and effects of the invention]

以上、発明の詳細な説明および検討例から明らかなよう
に、本発明のプリプレグの製造法によれば、加熱溶剤蒸
気により空気が実質的に除かれるので、真空含浸法に見
られる極めて高度な減圧度も必要とされず、真空吸引の
負担、排気ガス処理を極めて少なくすることが可能であ
る。
As is clear from the above detailed description of the invention and study examples, according to the prepreg manufacturing method of the present invention, air is substantially removed by heated solvent vapor. It is possible to extremely reduce the burden of vacuum suction and exhaust gas treatment.

また、溶剤予備含浸法のような樹脂溶液中に溶剤が混入
することによる樹脂溶液濃度の変化とそれによる基材へ
の樹脂付着量のバラツキの問題はない。
In addition, there is no problem of changes in the concentration of the resin solution due to the mixing of a solvent into the resin solution as in the solvent pre-impregnation method, and variations in the amount of resin adhered to the substrate due to this.

しかも、得られるプリプレグは高度の減圧を保った真空
含浸法と同等以上なものであることから、その工業的意
義は極めて高いものである。
In addition, the prepreg obtained is equivalent to or better than that obtained by vacuum impregnation method, which maintains a high degree of reduced pressure, so its industrial significance is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、本発明のプリプレグの製造法の主要
部である含浸装置の模式図である。 図中の番号及び符号はA:凝縮室、B:減圧室、C:樹
脂溶液槽、D:加熱溶剤蒸気室、10:基材、11:溶
剤蒸気置換基材、12:溶剤蒸気除去基材、13:樹脂
含浸基材をそれぞれ示す。 特許出願人   三菱瓦斯化学株式会社代理人(907
0)弁理士  小堀 貞文第  1  図 真空ポンプ 凝flit溶剤j
FIGS. 1 and 2 are schematic diagrams of an impregnating apparatus which is the main part of the prepreg manufacturing method of the present invention. Numbers and symbols in the figure are A: Condensation chamber, B: Decompression chamber, C: Resin solution tank, D: Heating solvent vapor chamber, 10: Base material, 11: Solvent vapor displacement base material, 12: Solvent vapor removal base material , 13: each shows a resin-impregnated base material. Patent applicant Mitsubishi Gas Chemical Co., Ltd. agent (907
0) Patent Attorney Sadafumi Kobori 1st Figure Vacuum Pump Flit Solvent J

Claims (1)

【特許請求の範囲】 1 基材に樹脂液を含浸し加熱乾燥するプリプレグの製
造法において、該基材を加熱溶剤蒸気中を通過させて実
質的に空気を溶剤蒸気に置換し、続いて減圧室に導き残
余の空気と溶剤蒸気との一部分を減圧除去した後、直ち
に樹脂液を含浸することを特徴とするプリプレグの製造
法。 2 該加熱蒸気が、樹脂液と同じ溶剤である請求項1記
載のプリプレグの製造法。 3 該樹脂液が、無溶剤の樹脂液である請求項1記載の
プリプレグの製造法。 4 冷却器を備えた溶剤凝縮室〔A〕、該溶剤凝縮室A
に隣接し、入口および出口をロールにより密閉され加熱
器を備えた加熱溶剤蒸気室〔D〕、該加熱溶剤蒸気室D
に隣接し、入口および出口をロールにより密閉した減圧
室〔B〕並びに該減圧室Bの出口ロールに直結し、出口
ロールの全面が樹脂液に満たされた構造の樹脂液槽〔C
〕を少なくとも有する含浸装置を用いる請求項1記載の
プリプレグの製造法。
[Claims] 1. A prepreg manufacturing method in which a base material is impregnated with a resin liquid and dried by heating, in which the base material is passed through heated solvent vapor to substantially replace air with solvent vapor, and then the pressure is reduced. A method for producing prepreg, which comprises introducing the prepreg into a chamber and removing a portion of residual air and solvent vapor under reduced pressure, and immediately impregnating it with a resin liquid. 2. The prepreg manufacturing method according to claim 1, wherein the heated steam is the same solvent as the resin liquid. 3. The prepreg manufacturing method according to claim 1, wherein the resin liquid is a solvent-free resin liquid. 4 Solvent condensation chamber [A] equipped with a cooler, the solvent condensation chamber A
A heated solvent vapor chamber [D] adjacent to the inlet and outlet of which is sealed by a roll and equipped with a heater, said heated solvent vapor chamber D
A decompression chamber [B] whose inlet and outlet are sealed by rolls, and a resin liquid tank [C] which is directly connected to the outlet roll of the decompression chamber B and whose entire surface is filled with resin liquid.
] The method for producing a prepreg according to claim 1, wherein an impregnating device having at least the following is used.
JP32548390A 1990-11-29 1990-11-29 Manufacture of prepreg Pending JPH04197712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32548390A JPH04197712A (en) 1990-11-29 1990-11-29 Manufacture of prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32548390A JPH04197712A (en) 1990-11-29 1990-11-29 Manufacture of prepreg

Publications (1)

Publication Number Publication Date
JPH04197712A true JPH04197712A (en) 1992-07-17

Family

ID=18177382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32548390A Pending JPH04197712A (en) 1990-11-29 1990-11-29 Manufacture of prepreg

Country Status (1)

Country Link
JP (1) JPH04197712A (en)

Similar Documents

Publication Publication Date Title
Ren et al. Modification on glass fiber surface and their improved properties of fiber-reinforced composites via enhanced interfacial properties
US5789757A (en) Malemide containing formulations and uses therefor
KR20110089269A (en) Improved processing of polymer matrix composites
EP0057908B1 (en) Fiber-reinforced composite materials
US4937132A (en) Laminating material for printed circuit board of low dielectric constant
EP0192510A1 (en) A method for the preparation of a laminate
US3991481A (en) Process for recovering volatile organic liquids
KR840001153B1 (en) Method for the thermal treatment of impregnated material webs
US3630660A (en) Process for removal of moisture and/or solvents from textile materials
EP0178762B1 (en) Composites
JPH04197712A (en) Manufacture of prepreg
US3998588A (en) Process for continuously transferring heat to a moving band
CA1254455A (en) Process and device for the preparation of fiber composite materials
JPH02103238A (en) Production of prepreg
US3595205A (en) Coating apparatus
JPH0192233A (en) Resin impregnated sheet
EP0416474A2 (en) Process for powder impregnation of woven fiber reinforcement
JPS5946526B2 (en) molding composition
US4348817A (en) Drying apparatus
JPH02218751A (en) Composition for laminating material
KR940003307B1 (en) Cleaning equipment
JPH03260177A (en) Fiber sheet-like article having excellent heat resistance and chemical resistance
US4278703A (en) Method and means for producing fluorocarbon finishes on fibrous structures
JP3685125B2 (en) Manufacturing method of prepreg
JPH04192496A (en) Manufacture of laminated boards