JPH04197497A - Treatment of sewage - Google Patents

Treatment of sewage

Info

Publication number
JPH04197497A
JPH04197497A JP33123790A JP33123790A JPH04197497A JP H04197497 A JPH04197497 A JP H04197497A JP 33123790 A JP33123790 A JP 33123790A JP 33123790 A JP33123790 A JP 33123790A JP H04197497 A JPH04197497 A JP H04197497A
Authority
JP
Japan
Prior art keywords
aerobic
tank
anaerobic
level time
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33123790A
Other languages
Japanese (ja)
Other versions
JP2587726B2 (en
Inventor
Shinji Oba
真治 大庭
Hideki Iwabe
岩部 秀樹
Yasuo Kobayashi
康男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2331237A priority Critical patent/JP2587726B2/en
Publication of JPH04197497A publication Critical patent/JPH04197497A/en
Application granted granted Critical
Publication of JP2587726B2 publication Critical patent/JP2587726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To properly hold reaction times in an oxygen free state and an aerobic state and to effectively perform nitrification, denitrification and dephos phorization by repeatedly changing over both states by setting the anaerobic level time and aerobic level time in one cycle of intermittent aeration. CONSTITUTION:Sewage is intermittently aerated under continuous stirring in a single reaction tank 1 and the tank 1 is alternately changed over to an anaerobic state and an aerobic state to treat sewage. At this time, operation is executed so that the ratio A/B of an anaerobic level time A bringing DO in the liquid mixture in the tank to 0.2mg/l or less and an aerobic level time B bringing said DO to 0.5mg/l or more in one cycle of intermittent aeration becomes 0.5-1.0. As a result, nitrification, denitrification and dephosphorization can be effectively performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、下水や産業廃水等の小規模な汚水の硝化−脱
窒処理に適した。単槽方式による汚水の処理方法に関し
、特に間欠曝気の効果的な制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is suitable for small-scale nitrification-denitrification treatment of wastewater such as sewage and industrial wastewater. The present invention relates to a method for treating wastewater using a single tank system, and in particular to an effective control method for intermittent aeration.

1従来の技術) 汚水を硝化−脱窒処理する方法としては、好気状態また
は嫌気状態に維持される各反応槽に交互に汚水を流入さ
せて、硝化−脱窒処理を行なう回分法や、反応槽を隔壁
によって仕切り。
1. Prior Art) Methods for nitrification-denitrification treatment of wastewater include a batch method in which wastewater is alternately introduced into reaction tanks maintained in an aerobic or anaerobic state to perform nitrification-denitrification treatment; The reaction tank is partitioned by partition walls.

一方な好気状態、他方を嫌気状態として槽内水を循環さ
せることにより、硝化−脱窒処理を行なう循環変法、或
は1反応槽を長くして曝気装置の供給酸素量を調節する
ことにより、反応槽を一周する方向に沿って好気状態と
嫌気状態の部分を作り出し、反応槽内を回流させること
により、硝化−脱窒処理を行なうOD法が広く知られて
いる。
A modified circulation method that performs nitrification-denitrification treatment by circulating the water in the tank in an aerobic state on one side and an anaerobic state on the other, or adjusting the amount of oxygen supplied by the aeration device by lengthening one reaction tank. The OD method is widely known in which nitrification-denitrification treatment is performed by creating aerobic and anaerobic regions along the circumference of the reaction tank and circulating the flow inside the reaction tank.

しかし、回分法は、複数の反応槽を必要とするため、設
置面積が広くなるばかりでなく、汚水の流入量が変動す
ると処理が不安定となるため、調整槽を設けて流量を調
整しなければならな−いという欠点がある。また、循環
変4法は、仕切られた反応槽内を別々に管理しながら、
槽内水を循環させる必要があり、制御が複雑で高価とな
る欠点がある。また、OD法は、反応槽内に好気状態で
も嫌気状態でもない中間的な境界部が生じ、その境界部
は硝化にも脱窒にも寄与しないため無駄なスペースとな
り、不経済であるという欠点がある。
However, the batch method requires multiple reaction tanks, which not only increases the installation area, but also makes the treatment unstable if the amount of wastewater flowing in fluctuates, so an adjustment tank must be installed to adjust the flow rate. It has the disadvantage that it cannot be used. In addition, in the 4-cycle circulation method, while separately managing the inside of the partitioned reaction tank,
It is necessary to circulate the water in the tank, which has the disadvantage that control is complicated and expensive. In addition, the OD method creates an intermediate boundary between neither aerobic nor anaerobic conditions in the reaction tank, and this boundary does not contribute to nitrification or denitrification, resulting in wasted space and is uneconomical. There are drawbacks.

そこで、広い設置面積を必要とせず、単一の反応槽で汚
水を効率よく硝化−脱窒処理することができ、操作も容
易で、特に小規模な汚水の硝化−脱窒処理に適用して有
効な、汚水処理方法として、特開平1−310798号
公報に記載の方法が提案され、実験により他方式に対す
る優位性が認められている。この方法は反応槽の内部に
撹拌装置と曝気装置とを併設し、撹拌装置により反応槽
内の汚水を連続的に撹拌しながら、曝気装置により間欠
的に曝気して、所要時間ごとに同一反応槽内を嫌気状態
と好気状態とに交互に切換えることにより、汚水を硝化
−脱窒処理するものである。
Therefore, it is possible to efficiently nitrify and denitrify wastewater in a single reaction tank without requiring a large installation area, and it is easy to operate, making it particularly suitable for small-scale nitrification and denitrification treatment of wastewater. As an effective sewage treatment method, the method described in Japanese Patent Application Laid-Open No. 1-310798 has been proposed, and its superiority over other methods has been confirmed through experiments. In this method, a stirring device and an aeration device are installed inside the reaction tank, and while the stirring device continuously stirs the wastewater inside the reaction tank, the aeration device intermittently aerates the water, and the same reaction is carried out at each required time. By alternately switching the inside of the tank between an anaerobic state and an aerobic state, wastewater is nitrified and denitrified.

この方法の実験では、これまで、嫌気、好気は、あらか
じめ、タイマーにより設定した時間に従い、ブロワ−の
運転停止、稼動を繰返すことによりサイクリックに行っ
てきた。
In experiments using this method, anaerobic and aerobic conditions have been carried out cyclically by repeatedly stopping and starting the blower according to a time set in advance using a timer.

(発明が解決しようとする課題) ところが、実際の汚水処理では、負荷変動により、実質
的な好気時間と嫌気時間とは、タイマーの設定時間と太
き(くい違うことがある。
(Problem to be Solved by the Invention) However, in actual wastewater treatment, due to load fluctuations, the actual aerobic time and anaerobic time may differ from the timer setting time.

例えば、夜間、流入水が少なく負荷が小さい場合は、D
Oが高くなりすぎ、ブロワ−を停止しても曝気槽内が無
酸素状態となるまでの時間を多く要し、結果的に嫌気時
間が僅かとなって、窒素除去の効果が低下するなどの現
象がみられた。このような状況から、実施設の汚水処理
においては、流入汚水の負荷変動に対応した制御を如何
にするかに問題点のあることが判かった。
For example, at night, when there is little inflow water and the load is small, D
O becomes too high, and even if the blower is stopped, it takes a long time for the inside of the aeration tank to become anoxic, resulting in a short anaerobic time, which reduces the effectiveness of nitrogen removal. A phenomenon was observed. Under these circumstances, it has been found that there is a problem in how to perform control in response to load fluctuations in inflowing sewage in sewage treatment at actual facilities.

本発明は、このような従来技術の問題点を解決し、汚水
を効果的に処理することができる新規な汚水処理方法を
提供しようとするものである。
The present invention aims to solve the problems of the prior art and provide a novel wastewater treatment method that can effectively treat wastewater.

(課題を解決するための手段) 本発明者は、上記問題点を解決するため、鋭意研究を重
ねた結果、間欠曝気の1サイクルにおける好気レベル時
間に対する嫌気レベル時間の比を所定の範囲とすること
により、良好な処理成績が得られることを見出し、本発
明を形成するに至った。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the inventor of the present invention has conducted extensive research and determined that the ratio of the anaerobic level time to the aerobic level time in one cycle of intermittent aeration is within a predetermined range. It has been discovered that good processing results can be obtained by doing so, and the present invention has been developed.

即ち、本発明の汚水処理方法は、単一の反応槽内におい
て、汚水を連続的に撹拌しながら間欠的に曝気し、該槽
内な嫌気状態と好気状態とに交互に切換差ることにより
汚水を処理す為方法において、間欠曝気の1サイクルに
おける、槽内混合液のDOが0.2■g/β以下となる
嫌気レベル時間Aと、同じくDOが0.5B/β以上と
なる好気レベル時間Bとの割合であるA/B比が0.6
〜1.0の範囲内となるように運転することを特徴とす
るものである。
That is, the wastewater treatment method of the present invention involves intermittently aerating wastewater while continuously stirring it in a single reaction tank, and alternately switching between an anaerobic state and an aerobic state in the tank. In a method for treating sewage, in one cycle of intermittent aeration, the anaerobic level time A at which the DO of the mixed liquid in the tank becomes 0.2 g/β or less, and the DO at the same time becomes 0.5 B/β or more. The A/B ratio, which is the ratio to the aerobic level time B, is 0.6.
It is characterized by operating within the range of 1.0 to 1.0.

本発明においては、間欠曝気槽に混合撹拌と酸素供給と
を行なう装置、例えば水中エアレーダを設置するととも
に、DO計及びこれと関連して動作するタイマーを設置
し、タイマーのON、OFFにより嫌気状態、好気状態
を形成できるものとし、嫌気時にはコンプレッサーから
の空気供給を停止して撹拌のみ、好気時には混合撹拌と
同時に酸素供給が行えるようにする。
In the present invention, an intermittent aeration tank is equipped with a device that performs mixing and agitation and oxygen supply, such as an underwater air radar, as well as a DO meter and a timer that operates in conjunction with it. It is assumed that an aerobic state can be formed, and when anaerobic, the air supply from the compressor is stopped and only stirring is performed, and when aerobic, oxygen supply can be performed at the same time as mixing and stirring.

間欠曝気方式によって、効果的な窒素除去を促す必要条
件は、曝気サイクルによって無酸素状態と好気状態での
反応時間を適正に保持し、−それを繰り返すことであり
、1サイクルにおける好気レベル時間に対する嫌気レベ
ル時間の比が重要である。
A necessary condition to promote effective nitrogen removal by intermittent aeration is to maintain appropriate reaction times in anoxic and aerobic conditions through the aeration cycle, and to repeat this cycle. The ratio of anaerobic level time to time is important.

上記の嫌気レベル時間Aを混合液のDOが0゜2■g/
I2以下の時“とし、好気レベル時間Bを混合液のDo
が0.5B/β以上の時として、このAZB比とK j
e −N除去率、処理水中のN0x−N濃度、T−N除
去率の各関係について多くの実験を行ってきたが、第2
〜4図に示すような結果が得られた。それによると、A
/B比が増加する、すなわち嫌気レベル時間が増えるに
つれて硝化反応が抑制され、第3図に示すように、Kj
e−N除去率が低下して行くことになる。一方、A/B
比が小さい、すなわち嫌気時間が短くなると脱窒反応が
阻害され、第4図に示すように、処理水中のN0x−N
21度が高くなる。また、T−N除去率を示した第5図
からみると、A/B比が小さいと、脱窒が不十分でT−
N除去率が低下し、逆にA/B比が高すぎると硝化が不
十分となり、同様にT−N除去率が減少する。
The above anaerobic level time A is set to 0゜2■g/
When the temperature is below I2, set the aerobic level time B to the Do of the mixed liquid.
is 0.5B/β or more, this AZB ratio and K j
Many experiments have been conducted on the relationship between the e-N removal rate, the NOx-N concentration in treated water, and the T-N removal rate.
The results shown in Figure 4 were obtained. According to it, A
/B ratio increases, that is, as the anaerobic level time increases, the nitrification reaction is suppressed, and as shown in Figure 3, Kj
The e-N removal rate will continue to decrease. On the other hand, A/B
When the ratio is small, that is, when the anaerobic time is short, the denitrification reaction is inhibited, and as shown in Figure 4, the N0x-N in the treated water is
21 degrees will be high. Also, looking at Figure 5, which shows the T-N removal rate, when the A/B ratio is small, denitrification is insufficient and T-N removal rate is small.
The N removal rate decreases, and conversely, if the A/B ratio is too high, nitrification becomes insufficient, and the TN removal rate similarly decreases.

上記のKje−N除去率、処理水中の残存N0x−N濃
度及びT−N除去率より総合的に判断する妻、好気レベ
ル時間に対する嫌気レベル時間の比、すなわちA/B比
は、0.6〜1.0の範囲が適当であり、好気レベル時
間と嫌気レベル時間が等しいか、好気レベル時間の若干
長いほうが良好な結果が得られることになる。
Judging comprehensively from the above Kje-N removal rate, residual NOx-N concentration in treated water, and TN removal rate, the ratio of anaerobic level time to aerobic level time, that is, the A/B ratio, is 0. A range of 6 to 1.0 is appropriate, and better results will be obtained if the aerobic level time is equal to the anaerobic level time, or if the aerobic level time is slightly longer.

上記の曝気サイクルは、−船釣な生下水の場合について
長短各種の時間で実験を行ったが、処理の安定性、除去
性能から120分程度が妥当と判断される0例えば、曝
気サイクル120分(曝気60分、曝気停止60分)の
時、最大DO(II気停止直前)が2〜3 yag/1
2になるように風量調整を行えば、この時の酸素消費速
度から、無酸素状態、好気状態の明瞭な運転が可能であ
る。
The above aeration cycle was tested with various lengths and short lengths for the case of raw sewage caught by boat, but it was judged that about 120 minutes was appropriate from the viewpoint of treatment stability and removal performance.For example, an aeration cycle of 120 minutes (60 minutes of aeration, 60 minutes of aeration stop), the maximum DO (just before II aeration stop) is 2 to 3 yag/1
If the air volume is adjusted to 2, it is possible to operate clearly in an anoxic state and an aerobic state based on the oxygen consumption rate at this time.

(作用) 上記構成の本発明の方法では、反応槽内に連続的に流入
した汚水は、曝気、撹拌装置により連続的に撹拌されな
がら間欠的に曝気され、所定の好気状態と嫌気状態とが
繰返されることにより、硝化、脱窒や脱リン処理が効果
的に行われることになる。
(Function) In the method of the present invention having the above configuration, the wastewater that has continuously flowed into the reaction tank is intermittently aerated while being continuously stirred by the aeration and stirring device, and is kept in a predetermined aerobic state and anaerobic state. By repeating this, nitrification, denitrification, and dephosphorization treatments are effectively performed.

(実施例) 次に、本発明の実施例を、添付した図面を参照して説明
する。
(Example) Next, an example of the present invention will be described with reference to the attached drawings.

第1図は装置のフローシートを示したもので、1は反応
槽として使用する7間欠曝気槽で、その内部の中央下部
には、水中エアレータ2が設置されており1.コンプレ
ッサCからの空気を供給すると、槽1内は好気状態とな
り、停止すると撹拌のみが行われ、槽1内は嫌気状態と
なるようにされており、空気の供給、停止は、図示を略
したDO計の所定値により動作するタイマーの0N−O
FFにより行われるようになっている。そして、この反
応槽1に隣接して沈澱槽3が設けられ、反応槽1から排
出される処理汚水を受入れ固液分離する。沈澱槽3の底
部に沈澱した汚泥4の一部は汚泥ポンプPにより返送管
4aを通って反応槽lに返送され、残余の汚泥は余剰汚
泥として排出4bされる。そして、処理水は、沈澱槽3
の上部より放流5されることになる。また、流入下水は
原水貯留槽6に入り、そこから原水供給ポンプPにより
反応槽1に連続的に供給される。
Fig. 1 shows the flow sheet of the device, in which 1 is a 7 intermittent aeration tank used as a reaction tank, and a submersible aerator 2 is installed in the center lower part of the tank. When air is supplied from compressor C, the inside of tank 1 becomes an aerobic state, and when it is stopped, only stirring is performed, and the inside of tank 1 becomes an anaerobic state. Air supply and stop are not shown in the diagram. 0N-O of the timer that operates according to the predetermined value of the DO meter
This is done by FF. A settling tank 3 is provided adjacent to the reaction tank 1, and receives the treated wastewater discharged from the reaction tank 1 and separates it into solid and liquid. A part of the sludge 4 settled at the bottom of the settling tank 3 is returned to the reaction tank 1 through a return pipe 4a by a sludge pump P, and the remaining sludge is discharged 4b as surplus sludge. Then, the treated water is sent to settling tank 3.
The water will be discharged from the top of the tank. Further, the inflowing sewage enters the raw water storage tank 6, and is continuously supplied from there to the reaction tank 1 by the raw water supply pump P.

実験は窒素除去を主目的したもので、実験に使用した反
応槽(間欠曝気槽)における実験条件は表−1のとおり
である。
The main purpose of the experiment was to remove nitrogen, and the experimental conditions in the reaction tank (intermittent aeration tank) used in the experiment are as shown in Table 1.

表−1 また、この実験における供試原水及び処理水の水質を示
すと表−2のとありである。
Table 1 In addition, Table 2 shows the water quality of the sample raw water and treated water in this experiment.

表−2 この実験での反応槽l内のDOとORPの経時変化の一
例を第2図に示す、これは曝気サイクル120分(曝気
60分、停止60分)の時のものである。曝気サイクル
の曝気開始後、槽内のDOは急激に上昇し始め、曝気停
止とともに汚泥の呼吸に伴う酸素消費により減少する。
Table 2 An example of the temporal changes in DO and ORP in the reaction tank 1 in this experiment is shown in Fig. 2, which is during an aeration cycle of 120 minutes (60 minutes of aeration, 60 minutes of stopping). After the aeration of the aeration cycle begins, the DO in the tank begins to rise rapidly, and when the aeration stops, it decreases due to oxygen consumption as the sludge breathes.

この増容、DOが零になる時間は、Doの最大値と混合
液の酸素消費速度によって異なる。この図にみられるよ
うに、間欠曝気プロセスでは嫌気、好気状態が時間的に
交互に繰返される。また、ORPは酸素(空気)の供給
停止と連動して酸化還元状態の変化をよく反映している
This volume increase and the time for DO to become zero vary depending on the maximum value of Do and the oxygen consumption rate of the mixed liquid. As seen in this figure, in the intermittent aeration process, anaerobic and aerobic conditions alternate over time. Furthermore, ORP closely reflects changes in the redox state in conjunction with the stoppage of oxygen (air) supply.

この実験では、処理水のBODはそのすべてが811g
/J2以下であり、また、90%が6腸gi以下を示し
、良好な処理水質が得られた。BOD−VSS$負荷で
みると0.05〜0.30Kg/VSS−Kg・日の範
囲内でBOD除去率90%以上、処理水BOD6+wg
/12以下が得られた。また、処理水T−Nはすべてが
711gノβ以下であり、T−N5mg/β以下の累積
頻度も80%と高く、安定した窒素除去性能が得られた
。また、Kje−N除去率も高く、特にBOD−VSS
負荷が0.15Kg/VSS−Kg−日以下では、概h
85〜95%のKje−N除去率が安定して得られた。
In this experiment, the BOD of the treated water was 811g.
/J2 or less, and 90% showed 6 intestinal gi or less, and good treated water quality was obtained. In terms of BOD-VSS$ load, BOD removal rate is 90% or more within the range of 0.05 to 0.30Kg/VSS-Kg・day, treated water BOD6+wg
/12 or less was obtained. In addition, the treated water T-N was all below 711 g/β, and the cumulative frequency of T-N below 5 mg/β was as high as 80%, and stable nitrogen removal performance was obtained. In addition, the Kje-N removal rate is high, especially for BOD-VSS.
When the load is less than 0.15Kg/VSS-Kg-day, approximately h
A Kje-N removal rate of 85 to 95% was stably obtained.

上記の実験結果によれば、閃欠曝気プロセスでは窒素除
去に関し、曝気条件が重要な操作因子となっていること
が判かる。
According to the above experimental results, it is clear that aeration conditions are an important operating factor regarding nitrogen removal in the flash aeration process.

(発明の効果) 以上説明したように、本発明方法によれば、次のように
優れた効果を奏するものである。
(Effects of the Invention) As explained above, the method of the present invention provides the following excellent effects.

(1)間欠曝気の1サイクルにおける嫌気レベル時間と
好気レベル時間との設定により、無酸素状態と好気状態
での反応時間が適正に保持され、その繰返しによって、
めりはりのついた嫌気・好気運転ができ、特に窒素除去
が高効率で安定して行える0、 (2)有機物及びSSの除去率も良好である。
(1) By setting the anaerobic level time and aerobic level time in one cycle of intermittent aeration, the reaction time in anoxic state and aerobic state is maintained appropriately, and by repeating this,
It is capable of efficient anaerobic and aerobic operation, and in particular, nitrogen removal can be performed stably with high efficiency. (2) The removal rate of organic matter and SS is also good.

゛(3)同一の反応槽で嫌気・好気を繰返して処理する
ので、広い設置面積を必要とせず、施設費・が安く、特
に小規模な汚水処理に適している。
(3) Anaerobic and aerobic treatment is repeated in the same reaction tank, so it does not require a large installation area, and the facility cost is low, making it particularly suitable for small-scale wastewater treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による装置のフローシート図
≦第2図は反応槽内のDo、ORPの経時変化を示した
図、第3図はlサイクルにおける好気レベル時間に対す
る嫌気レベル時間の比とKje−N除去率との関係を示
した図、第4図は同処理水N0x−N濃度との関係を示
した図、第5図は同T−N除去率との関係を示した図で
ある。 l・・・反応槽、    2・・・水中エアレータ。 3・・・最終沈澱池 $1図 第2図
Figure 1 is a flow sheet diagram of an apparatus according to an embodiment of the present invention ≦ Figure 2 is a diagram showing changes over time in Do and ORP in the reaction tank, Figure 3 is an anaerobic level versus aerobic level time in 1 cycle Figure 4 shows the relationship between the time ratio and Kje-N removal rate, Figure 4 shows the relationship with the treated water N0x-N concentration, and Figure 5 shows the relationship with the TN removal rate. FIG. 1...Reaction tank, 2...Underwater aerator. 3...Final sedimentation tank $1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 単一の反応槽内において、汚水を連続的に撹拌しながら
間欠的に曝気し、該槽内を嫌気状態と好気状態とに交互
に切換えることにより汚水を処理する方法において、間
欠曝気の1サイクルにおける、槽内混合液のDOが0.
2mg/l以下となる嫌気レベル時間Aと、同じくDO
が0.5mg/l以上となる好気レベル時間Bとの割合
であるA/B比が0.6〜1.0の範囲内となるように
運転することを特徴とする、汚水処理方法。
In a method of treating wastewater by aerating the wastewater intermittently while continuously stirring it in a single reaction tank, and switching the tank alternately between an anaerobic state and an aerobic state, one method of intermittent aeration is During the cycle, the DO of the mixed liquid in the tank is 0.
Anaerobic level time A below 2 mg/l and DO
A sewage treatment method, characterized in that the operation is carried out so that the A/B ratio, which is the ratio of the aerobic level time B at which the aerobic level is 0.5 mg/l or more, is within the range of 0.6 to 1.0.
JP2331237A 1990-11-29 1990-11-29 Sewage treatment method Expired - Lifetime JP2587726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331237A JP2587726B2 (en) 1990-11-29 1990-11-29 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331237A JP2587726B2 (en) 1990-11-29 1990-11-29 Sewage treatment method

Publications (2)

Publication Number Publication Date
JPH04197497A true JPH04197497A (en) 1992-07-17
JP2587726B2 JP2587726B2 (en) 1997-03-05

Family

ID=18241433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331237A Expired - Lifetime JP2587726B2 (en) 1990-11-29 1990-11-29 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP2587726B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702604A (en) * 1995-09-06 1997-12-30 Sharp Kabushiki Kaisha Apparatus and method for waste water treatment utilizing granular sludge
US7850850B2 (en) * 2001-03-02 2010-12-14 Daniel Robert Miklos Apparatus and methods for control of waste treatment processes
US7854842B2 (en) * 2001-03-02 2010-12-21 Daniel Robert Miklos Apparatus and methods for control of waste treatment processes
US8002986B2 (en) * 2001-03-02 2011-08-23 Daniel R. Miklos Apparatus and methods for control of waste treatment processes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154296A (en) * 1984-08-24 1986-03-18 Suido Kiko Kk Treatment of sewage
JPH01310798A (en) * 1988-06-07 1989-12-14 Kinichiro Azuma Treatment of sewage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154296A (en) * 1984-08-24 1986-03-18 Suido Kiko Kk Treatment of sewage
JPH01310798A (en) * 1988-06-07 1989-12-14 Kinichiro Azuma Treatment of sewage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702604A (en) * 1995-09-06 1997-12-30 Sharp Kabushiki Kaisha Apparatus and method for waste water treatment utilizing granular sludge
US7850850B2 (en) * 2001-03-02 2010-12-14 Daniel Robert Miklos Apparatus and methods for control of waste treatment processes
US7854842B2 (en) * 2001-03-02 2010-12-21 Daniel Robert Miklos Apparatus and methods for control of waste treatment processes
US8002986B2 (en) * 2001-03-02 2011-08-23 Daniel R. Miklos Apparatus and methods for control of waste treatment processes
US8454830B2 (en) 2001-03-02 2013-06-04 Siemens Industry, Inc. Apparatus and methods for control of waste treatment processes

Also Published As

Publication number Publication date
JP2587726B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US6426004B1 (en) Continuous flow completely mixed waste water treatment method
KR20030054810A (en) A Waste Water Purifier Using Overflow Sediment and Method
KR100566321B1 (en) Membrane combined Advanced wastewater treatment system which applies Trisectional aeration and Changed inflow course and it's operation methods
JPH07100486A (en) Method for treating drainage
JP2587726B2 (en) Sewage treatment method
JP4579450B2 (en) Operation control method of oxidation ditch
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
JP3293218B2 (en) Biological nitrification denitrification treatment method
KR100329069B1 (en) A removal method of organics and nitrogen compounds of wastewater using sequence batch reactor
JP2668467B2 (en) Sewage treatment method
JP2587726C (en)
JPH04371295A (en) Treatment of sewage by activated sludge
JPS6154295A (en) Denitrifying and dephosphorizing method of sewage
KR100195903B1 (en) Nitrogen and phosphor removal method and device of organic wastewater
JP2971662B2 (en) Sewage treatment method
KR100198028B1 (en) Nitrogen removal method of organic wastewater with high concentration in liquid phase corrosive method
JP3396959B2 (en) Nitrification method and apparatus
KR100721682B1 (en) A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)
JPH04193399A (en) Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method
JPH11216493A (en) Intermittent-aeration activated sludge treatment
JPH01310798A (en) Treatment of sewage
KR100357771B1 (en) The advanced wastewater treatment method and equipment using the circular oxidation ditch of intermittent aeration method to improve the removal of nitrogen and phosphorus
KR0178670B1 (en) Nitrogen removal method of organic wastewater in the water phase corrosion method
JPH11685A (en) Circulating device for treated effluent in oxidation ditch
JPH08117789A (en) Operation control of two-stage activated sludge circulation variation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14

EXPY Cancellation because of completion of term