JPH04197444A - Catalyst for exhaust gas purification and its production - Google Patents

Catalyst for exhaust gas purification and its production

Info

Publication number
JPH04197444A
JPH04197444A JP2331256A JP33125690A JPH04197444A JP H04197444 A JPH04197444 A JP H04197444A JP 2331256 A JP2331256 A JP 2331256A JP 33125690 A JP33125690 A JP 33125690A JP H04197444 A JPH04197444 A JP H04197444A
Authority
JP
Japan
Prior art keywords
carrier
layer
honeycomb
metal
honeycomb carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2331256A
Other languages
Japanese (ja)
Inventor
Haruo Doi
土井 晴夫
Hideo Sofugawa
英夫 曽布川
Hiroshi Hamamoto
弘 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2331256A priority Critical patent/JPH04197444A/en
Publication of JPH04197444A publication Critical patent/JPH04197444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a catalyst for exhaust gas purification for gas exhausted at reduced engine exhaust pressure by enabling an alumina layer to be junctioned to a metal honeycomb carrier under dispersion reaction and further the alumina layer to carry a precious metal. CONSTITUTION:An alumina layer with a thickness of 2 to 20mum is junctioned to a metal honeycomb carrier of an Al alloy of 20wt.% and 5wt.% Cr in a non-oxidation atmosphere using dispersion reaction technique such as heating. Then a precious metal such as Pt or Rh is allowed to be carried by the alumina layer. This design enables the alumina layer to be made thinner than a wash coat layer. Subsequently, it is possible to enlarge the open area of the metal honeycomb carrier and reduce the exhaust pressure of an exhaust gas significantly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は担体を金属製ハニカム形状とし、エンジンの排
圧を低減した排気ガス浄化用触媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a catalyst body for exhaust gas purification that has a carrier in the shape of a metal honeycomb and that reduces the exhaust pressure of an engine.

(従来技術およびその問題点) 従来金属ハニカム担体への貴金属の担持は、■金属ハニ
カム担体に直接γ−アルミナ(Al2O3)をウォッシ
ュコートするか、■アルミニウム(1)からなる金属ハ
ニカム担体を空気中で加熱することによってその表面を
Al2O3生成させた後、γ−An2Chを約50μm
ウォッシュコートし、その後金属を担持する方法が取ら
れている。■の如(、金属ハニカム担体に直接ウォッシ
ュコートした場合には、金属ハニカム担体とウォッシュ
コートシたγ−A1203との間に、強い結合が生成し
にくいため、コートした厚いγ−AlvOsが剥離し易
いという欠点がある。■の場合は、金属ハニカム担体を
予め酸化処理する場合には、酸化処理によって担体表面
に生成たAlzOsと、その上にウォッシュコートした
γ−Altosとは、Altosという点では同一であ
るが、両者間に化学的結合が生じていないので、ウォッ
シュコートされたγ−AnzOsの耐剥離製は不十分で
ある。
(Prior art and its problems) Conventionally, noble metals were supported on metal honeycomb carriers by: 1. Wash-coating γ-alumina (Al2O3) directly on the metal honeycomb carrier, or 2. After generating Al2O3 on the surface by heating with
The method used is to wash coat and then support the metal. As shown in (2), when directly wash-coating a metal honeycomb carrier, it is difficult to form a strong bond between the metal honeycomb carrier and the wash-coated γ-A1203, so the thick coated γ-AlvOs may peel off. In the case of ■, when the metal honeycomb carrier is oxidized in advance, the AlzOs generated on the carrier surface by the oxidation treatment and the γ-Altos wash-coated thereon are different from each other in terms of Altos. Although they are identical, the peel resistance of washcoated γ-AnzOs is insufficient because there is no chemical bond between them.

■さらに、特開昭56−96726には、金属担体箔が
15〜25重量%のCr、3〜6重量%のA1、所望に
より0.3〜1.0重量%のY、そして残部がFeであ
るフェライトステンレス鋼合金である時、空気中で87
0〜970℃の間の適当な温度で加熱すると、金属箔の
加工面にAutosウィスカーが生成し、このウィスカ
ーはγ−AlzOsがウォッシュコートされた際に、コ
ーティング層を該箔に強固に結合するのに役立つと述べ
られている。
Furthermore, JP-A-56-96726 discloses that the metal carrier foil contains 15-25% by weight of Cr, 3-6% by weight of A1, optionally 0.3-1.0% by weight of Y, and the balance is Fe. 87 in air when the ferritic stainless steel alloy is
When heated at a suitable temperature between 0 and 970°C, Autos whiskers are formed on the processed surface of the metal foil, which firmly bond the coating layer to the foil when the γ-AlzOs is washcoated. It is said that it is useful for

しかし、金属箔上のAl2O5ウィスカーの役割はγ−
AlzOsコーティング層に該ウィスカーかからまって
コーティング層の剥離を妨げるというものに過ぎない。
However, the role of Al2O5 whiskers on metal foil is γ-
The whisker simply becomes entangled with the AlzOs coating layer and prevents the coating layer from peeling off.

従って、この技術によって厚さ50μmにもおよぶγ−
AI20sコーティング層の剥離を抑制できるものでは
ない。
Therefore, with this technology, γ-
It is not possible to suppress peeling of the AI20s coating layer.

また、前記したように、ウォッシュコートしたγ−Aj
7をO,コート層は厚さが50μmと厚い。
In addition, as mentioned above, wash coated γ-Aj
7 is O, and the coating layer is as thick as 50 μm.

従って、該コーティング層の存在は、ハニカム担体の開
口面積を減少させ、エンジンの排圧を高める原因となっ
ている。もっとも金属担体は、セラミック担体と比較す
ると開口面積はかなり小さい。
Therefore, the presence of the coating layer reduces the open area of the honeycomb carrier and causes an increase in exhaust pressure of the engine. However, the opening area of metal carriers is considerably smaller than that of ceramic carriers.

すなわちセラミック担体では、エンジンの排圧をセラミ
ックハニカム担体に比べかなり軽減できている。しかし
、γ−AI!tOsウォッシュコート層を無くすること
が出来れば、さらに開口面積を大きくすることが出来、
それによってさらにエンジンの排圧を低減できることと
なる。
In other words, the ceramic carrier can significantly reduce engine exhaust pressure compared to the ceramic honeycomb carrier. However, γ-AI! If the tOs wash coat layer can be eliminated, the opening area can be further increased,
This makes it possible to further reduce engine exhaust pressure.

(発明の目的) 本発明は上記従来技術の問題点を解決するために金属ハ
ニカム担体にウォッシュコートしたγ−Af20s層を
無くし、エンジンの排圧を低減した排気ガス浄化用触媒
体を提供しようとするものである。
(Object of the Invention) In order to solve the problems of the prior art described above, the present invention aims to provide an exhaust gas purifying catalyst body that eliminates the γ-Af20s layer wash-coated on a metal honeycomb carrier and reduces engine exhaust pressure. It is something to do.

(第1発明の説明) 本第1発明は、金属製ハニカム担体と、その上に形成し
た接合部が拡散反応によって結合している。2〜20μ
mのアルミナ層と、該アルミナ層に担持した貴金属から
なることを特徴とする排気ガス浄化用触媒体に関するも
のである。
(Description of the first invention) In the first invention, a metal honeycomb carrier and a joint portion formed thereon are bonded together by a diffusion reaction. 2~20μ
The present invention relates to an exhaust gas purifying catalyst body characterized by comprising an alumina layer of m and a noble metal supported on the alumina layer.

本発明に係る触媒体では、担体表面に形成したAf2O
i層の厚さを20μm以下に薄(出来るので、従来のγ
−AI!zOsウォッシュコート層に比べて厚さを1/
2以下に薄くすることが可能であり、これによって金属
ハニカム担体の開口面積を大きくすることができ、従来
の金属ハニカム担体と比べ、排気ガスの排圧を大幅に低
減できる。また、金属ハニカム担体とA 1220 s
層とは化学反応によって強固に結合しており、単にγ−
A1zOsをウォッシュコートしたに過ぎない従来の担
体に比較してAlzOs層の耐剥離性が著しく向上した
In the catalyst body according to the present invention, Af2O formed on the surface of the carrier
The thickness of the i-layer can be reduced to less than 20 μm (because it is possible to reduce the thickness of the conventional γ
-AI! The thickness is 1/1 compared to the zOs wash coat layer.
It is possible to make the metal honeycomb carrier as thin as 2 or less, thereby increasing the opening area of the metal honeycomb carrier and significantly reducing the exhaust gas exhaust pressure compared to the conventional metal honeycomb carrier. In addition, metal honeycomb carrier and A 1220 s
It is strongly bonded to the layer by a chemical reaction, and is simply γ-
The peeling resistance of the AlzOs layer was significantly improved compared to the conventional carrier which was merely wash-coated with AlzOs.

(第1発明のその他の発明の説明) 前記第1発明において、金属ハニカム担体は鉄基合金、
例えばFe−20重量%Cr−5重量%A1合金が用い
られる。該担体はコルゲート状に成形されるので、加工
性の良好な材質でなければならない。通常、箔の状態で
用いる。厚さは30〜100μm程度が望ましい。30
μmより薄いと金属ハニカム担体の強度が十分ではなく
なり、取扱が困難になる。また、100μmより厚いと
ハニカム担体の開口面積か小さ(リ、排気ガスの排圧低
減効果が小さくなり、金属ハニカム担体とすることのメ
リットおよび本発明を適用することの効果が小さくなる
(Description of other inventions of the first invention) In the first invention, the metal honeycomb carrier is an iron-based alloy,
For example, Fe-20% by weight Cr-5% by weight A1 alloy is used. Since the carrier is molded into a corrugated shape, it must be made of a material with good workability. Usually used in foil form. The thickness is preferably about 30 to 100 μm. 30
If it is thinner than μm, the strength of the metal honeycomb carrier will not be sufficient, making it difficult to handle. Moreover, if it is thicker than 100 μm, the opening area of the honeycomb carrier will be small (i.e., the effect of reducing the exhaust gas pressure will be small), and the advantage of using a metal honeycomb carrier and the effect of applying the present invention will be reduced.

AlzOs層の厚さは、2〜20μmで用いる。The thickness of the AlzOs layer used is 2 to 20 μm.

従来のウォッシュコート層に比べて著しく薄(できる。It is significantly thinner than conventional washcoat layers.

20μmより厚いと金属ハニカム担体の開口面積が小さ
くなり、排気ガスの排ガスの排圧低減効果が小さ(なる
。逆に2μmより薄いと貴金属を担持しにくくなる。
If it is thicker than 20 μm, the opening area of the metal honeycomb carrier will be small, and the effect of reducing the exhaust gas pressure of exhaust gas will be small. Conversely, if it is thinner than 2 μm, it will be difficult to support precious metals.

前記担体とAI!zOs層との接合部は、拡散反応によ
って結合している。該拡散反応処理は後述するように非
酸化性雰囲気中での加熱によって行う。
The carrier and AI! The junction with the zOs layer is bonded by a diffusion reaction. The diffusion reaction treatment is performed by heating in a non-oxidizing atmosphere as described below.

また、触媒金属である貴金属は、触媒において通常用い
るPt、Rh、Pd等を用いる。貴金属は通常PtとR
h又はPt、RhとPdの組合せで用いる。
Further, as the noble metal that is the catalyst metal, Pt, Rh, Pd, etc., which are commonly used in catalysts, are used. Precious metals are usually Pt and R
h or Pt, or a combination of Rh and Pd.

PtおよびRhの担持割合は、P t/Rh触媒の場合
、Ptは1.0〜2.0 g/A、Rhは0.10〜0
.5g/12担持する。望ましくはPtは1.2〜1.
6g/β、Rhは0.16〜0.4g/l担持する。P
t/Pd/Rh触媒の場合は、P 10.2〜1.og
/i!、PdO12〜1.2g/l、Rhを0.05〜
0.4g、#担持する。望ましくはptを0.3〜0.
7g/l、Pdを0.3〜1.Og/A、Rhを0.0
7〜0.3g/I!担持する。
In the case of Pt/Rh catalyst, the supporting ratio of Pt and Rh is 1.0 to 2.0 g/A for Pt and 0.10 to 0 for Rh.
.. Carrying 5g/12. Preferably, Pt is 1.2 to 1.
6 g/β, and Rh is supported at 0.16 to 0.4 g/l. P
In the case of t/Pd/Rh catalyst, P 10.2 to 1. og
/i! , PdO12~1.2g/l, Rh 0.05~
0.4g, # loaded. Preferably pt is 0.3 to 0.
7g/l, Pd 0.3-1. Og/A, Rh 0.0
7-0.3g/I! to carry.

Pt/Rh触媒において、Pt量量を1.0〜2.0g
/CRhの量を0.1〜0.5/lとする理由は、Pt
量か1.0#、Rh量が0.1g/jl!以下では、排
気ガスのエミッションが規制値を満足することが出来な
いからである。また、Pt量を2.0g/l、Rh量を
0.5g/A以上としてもそれに見合う効果が無いから
である。Pt/Pd/Rh触媒においても限定理由は同
様である。
In the Pt/Rh catalyst, the amount of Pt is 1.0 to 2.0 g.
The reason why the amount of /CRh is set to 0.1 to 0.5/l is that Pt
The amount is 1.0#, the Rh amount is 0.1g/jl! This is because the exhaust gas emission cannot satisfy the regulation value in the following manner. Further, even if the amount of Pt is 2.0 g/l and the amount of Rh is 0.5 g/A or more, there is no commensurate effect. The reason for the limitation is the same for the Pt/Pd/Rh catalyst.

また、前記A(22Ch層にCeをCen2の形で含有
せしめても良い。CaO2を含有させると、その酸素ス
トレージ能を利用して、理論空燃比近傍でのNO,HC
,COの浄化活性の幅を広げることができる。
In addition, Ce may be contained in the A(22Ch layer) in the form of Cen2. When CaO2 is contained, its oxygen storage ability is utilized to reduce NO, HC at near the stoichiometric air-fuel ratio.
, the range of CO purification activity can be expanded.

その含有量は0,13〜0.53モル/βが望ましい。The content is preferably 0.13 to 0.53 mol/β.

2.5%より少ないと前述したCeによる酸素ストレー
ジ能を発揮させることができない。一方lO%を越える
量を添加しても効果を期待できない。
If it is less than 2.5%, the aforementioned oxygen storage ability by Ce cannot be exhibited. On the other hand, no effect can be expected even if the amount exceeds 10%.

(第2発明の説明) 本第2発明は、鉄基合金薄板の表面に蒸着によってアル
ミニウム層を形成する工程と、該鉄基台金薄板をハニカ
ム形状の担体に成形する工程と、該ハニカム担体を非酸
化性雰囲気中で加熱してノ1ニカム担体とアルミニウム
層とを拡散によって結合する拡散処理工程と、該拡散処
理を行ったノ\ニカム担体を酸化雰囲気中で加熱し、ア
ルミニウムを酸化してアルミナに変える酸化工程と、該
ハニカム担体に貴金属を担持する工程とからなる排気ガ
ス浄化用触媒体の製造方法に関するものである。
(Description of the second invention) The second invention comprises a step of forming an aluminum layer on the surface of an iron-based alloy thin plate by vapor deposition, a step of forming the iron-based metal thin plate into a honeycomb-shaped carrier, and a step of forming the iron-based metal thin plate into a honeycomb-shaped carrier. a diffusion treatment step in which the Nicum carrier and the aluminum layer are bonded by diffusion by heating in a non-oxidizing atmosphere, and a diffusion treatment step in which the Nicum carrier subjected to the diffusion treatment is heated in an oxidizing atmosphere to oxidize the aluminum The present invention relates to a method for producing a catalyst body for exhaust gas purification, which comprises an oxidation step in which the honeycomb carrier is converted into alumina, and a step in which a noble metal is supported on the honeycomb carrier.

本第2発明の製造方法によれば、金属ハニカム担体の表
面に20μm以下の薄いAf2Chを容易に形成するこ
とができるので、エンジン排カスの排圧を低減化し得る
触媒体を容易に製造できる。また、蒸着によって形成し
たA1層を非酸化性雰囲気中で拡散処理した後に、該A
I!を酸化してA1.tOs層とするため、金属ハニカ
ム担体とA12Ch層が強固に結合した触媒体を得るこ
とができる。
According to the manufacturing method of the second invention, a thin Af2Ch of 20 μm or less can be easily formed on the surface of a metal honeycomb carrier, so a catalyst body that can reduce the exhaust pressure of engine exhaust residue can be easily manufactured. In addition, after the A1 layer formed by vapor deposition is subjected to a diffusion treatment in a non-oxidizing atmosphere, the A1 layer is
I! by oxidizing A1. Since the tOs layer is formed, a catalyst body in which the metal honeycomb carrier and the A12Ch layer are firmly bonded can be obtained.

(第2発明のその他の発明の説明) 前記第2発明においてAAの蒸着は真空蒸着によって行
う。鉄基合金薄板の両面に蒸着を行う。
(Description of other inventions of the second invention) In the second invention, AA is deposited by vacuum evaporation. Vapor deposition is performed on both sides of the iron-based alloy thin plate.

真空蒸着はスパッタあるいは電子ビーム蒸着等の通常の
方法によって行う。
Vacuum deposition is performed by a conventional method such as sputtering or electron beam deposition.

次に前記AJ7を蒸着した薄板の一部をコルゲート状に
成形する。該コルゲート状の薄板と前記Alを蒸着した
平板を重ねて、平板が内側になるように巻き取り、ハニ
カム状に成形し、ハニカム担体を得る。
Next, a part of the thin plate on which the AJ7 was deposited was formed into a corrugated shape. The corrugated thin plate and the Al-deposited flat plate are stacked and wound up so that the flat plate is on the inside, and formed into a honeycomb shape to obtain a honeycomb carrier.

このハニカム担体を真空中あるいはH2等の非酸化性気
流中300℃ないし650°Cの間で拡散処理を行う。
This honeycomb carrier is subjected to a diffusion treatment at a temperature between 300° C. and 650° C. in a vacuum or in a non-oxidizing gas flow such as H2.

処理時間は300℃近い低温では2時間程度の処理が必
要である。しかし温度と共に処理時間は短縮でき、65
0°Cでは処理時間は30分程度でもよい。この処理に
よってAfの一部が下地の鉄基合金中に拡散し、11層
と担体とは結合し、かつコルゲート状の箔の突起部と平
板との間も強固に結合される。
The treatment time is about 2 hours at a low temperature of close to 300°C. However, the processing time can be shortened with temperature, and 65
At 0°C, the processing time may be about 30 minutes. Through this treatment, a portion of Af is diffused into the underlying iron-based alloy, and the 11th layer is bonded to the carrier, and the protrusion of the corrugated foil and the flat plate are also firmly bonded.

次に、このハニカム担体を1000℃以上1200°C
以下の温度で酸化雰囲気中で1〜2時間程度加熱すると
、A1層は酸化されてAffi2CL層となる。
Next, this honeycomb carrier is heated to 1000°C or higher and 1200°C.
When heated in an oxidizing atmosphere at the following temperature for about 1 to 2 hours, the A1 layer is oxidized to become an Affi2CL layer.

このようにして生成したAI!203層は、下地の鉄基
合金と強固に結合しており、剥離することはない。
AI generated in this way! The 203 layer is strongly bonded to the underlying iron-based alloy and will not peel off.

次にこのようにして作製した金属製ハニカム担体に貴金
属を担持する。本発明では貴金属粒子径が微細でかつ均
一な状態で担持されるように貴金属の分子あるいはコロ
イドを用いる方法によって行う。
Next, a noble metal is supported on the metal honeycomb carrier produced in this manner. In the present invention, noble metal molecules or colloids are used so that noble metal particles are fine and uniformly supported.

貴金属の分子としては金属カルボニルクラスターがある
。Ptのカルボニルクラスターとしては(NE t 4
)[(P t 5(CO)s)  nコ (n=1〜5
)等がある。RhのカルボニルクラスターとしてはRh
a(Co)16やRh 4(CO)1□等がある。
Examples of noble metal molecules include metal carbonyl clusters. As a carbonyl cluster of Pt, (NE t 4
) [(P t 5(CO)s) n co (n=1~5
) etc. As a carbonyl cluster of Rh, Rh
Examples include a(Co)16 and Rh4(CO)1□.

これらのクラスターをテトラヒドロフラン等の溶媒に溶
解し、これを前記のハニカム担体に含浸担持する。その
後ハニカムを空気中で500℃、1時間加熱し、カルボ
ニルクラスターを分解し、貴金属を析出担持させる。
These clusters are dissolved in a solvent such as tetrahydrofuran, and impregnated and supported on the honeycomb carrier. Thereafter, the honeycomb is heated in air at 500° C. for 1 hour to decompose carbonyl clusters and deposit and support noble metals.

貴金属コロイドは塩化白金酸、塩化ロジウム、塩化パラ
ジウム等の水/アルコール溶液中で高分子(例えばN−
vinyl −2−pyrrolidone )の存在
下での環流によって得られる。このコロイド溶液を用い
て前記ハニカム担体にコロイドを含浸担持する。含浸後
学気中で約500℃で1時間加熱し、高分子を分解し、
ハニカム中に貴金属を担持する。
Noble metal colloids can be prepared using polymers (e.g. N-
vinyl-2-pyrrolidone). This colloid solution is used to impregnate and support the colloid on the honeycomb carrier. After impregnating, heat at about 500℃ for 1 hour in a chemical atmosphere to decompose the polymer.
Precious metals are supported in the honeycomb.

また、貴金属の担持は三元触媒において、ウォッシュコ
ートAnz03層に貴金属を担持する通常なされる方法
によって行ってもよい。
Further, the noble metal may be supported in a three-way catalyst by a commonly used method of supporting the noble metal on the wash coat Anz03 layer.

また、Ce 02を含むAltos層を形成するには、
AIを蒸着する際に同時にCeの蒸着を、例えば二元同
時真空蒸着によって行う。AI!、Ce同時蒸着後の処
理は前記Alのみを蒸着した場合と同様に行えばよい。
In addition, to form an Altos layer containing Ce 02,
When depositing AI, Ce is simultaneously deposited, for example, by dual simultaneous vacuum deposition. AI! , Ce may be simultaneously vapor-deposited in the same manner as in the case where only Al is vapor-deposited.

(実施例) まず、Fe−20重量%Cr−5重量%An鉄基合金を
冷間圧延し、厚さ50μmの箔を作製した。この箔を真
空蒸着装置の中に装入し、A1およびCeを蒸発源とし
二次元同時蒸着を行い、前記箔の両面に蒸着層を形成し
た。得られた層の厚さは約IOμmであり、数層にはC
eを0.3モル/l担持せしめた。
(Example) First, a Fe-20% by weight Cr-5% by weight An iron-based alloy was cold rolled to produce a foil with a thickness of 50 μm. This foil was placed in a vacuum evaporation apparatus, and two-dimensional simultaneous evaporation was performed using A1 and Ce as evaporation sources to form evaporation layers on both sides of the foil. The thickness of the layers obtained is approximately IO μm, with several layers containing C
0.3 mol/l of E was supported.

このようにAIとCeを同時に蒸着した箔をコルゲート
状に成形した。また、同条件で蒸着した別の箔は平板の
ままとした。前記コルゲート状の箔に平板の箔を重ねて
、平板の箔が内側になるように緊密に巻き取り、ハニカ
ム構造体とした。該ハニカム担体の容積は1.31、セ
ル密度は400Celh / sq、 1nch、セル
の壁厚さは50μmである。得られた層の厚さは約IO
μmであり、数層にはCeを0.3モル/l含有せしめ
た。
The foil on which AI and Ce were simultaneously deposited in this manner was molded into a corrugated shape. Further, another foil deposited under the same conditions was left as a flat plate. A flat foil was layered on the corrugated foil and tightly wound up so that the flat foil was on the inside to form a honeycomb structure. The volume of the honeycomb carrier is 1.31, the cell density is 400 Cellh/sq, 1 nch, and the cell wall thickness is 50 μm. The thickness of the layer obtained is approximately IO
μm, and several layers contained 0.3 mol/l of Ce.

次に該ハニカム構造体を真空中500℃で1時間加熱処
理を行った。この処理によって鉄基合金箔とAf−Ce
蒸着層の間で相互に拡散が生じ、鉄基合金箔との接触部
で凝着が生じ、ハニカム構造体は強固に一体化する。こ
の時点でハニカム構造体の端部を部分的に溶接し、ハニ
カム構造体を固定化する。
Next, the honeycomb structure was heat-treated in vacuum at 500° C. for 1 hour. Through this treatment, iron-based alloy foil and Af-Ce
Mutual diffusion occurs between the vapor deposited layers, adhesion occurs at the contact portion with the iron-based alloy foil, and the honeycomb structure is firmly integrated. At this point, the ends of the honeycomb structure are partially welded to fix the honeycomb structure.

こうして得られたハニカム構造体を大気中1100℃で
1時間加熱した。この加熱により鉄基合金箔に蒸着した
Af−Ce合金層は完全に酸化され、Al2O5とCe
 O2の混合層となる。この混合層は下地の鉄基合金層
と強固に結合しており、下地との間で剥離を生じること
はない。
The honeycomb structure thus obtained was heated in the air at 1100° C. for 1 hour. By this heating, the Af-Ce alloy layer deposited on the iron-based alloy foil is completely oxidized, and Al2O5 and Ce
It becomes a mixed layer of O2. This mixed layer is strongly bonded to the underlying iron-based alloy layer and does not peel off from the underlying layer.

次に、ハニカム構造体の表面にPt/Rh貴金属を担持
した。PtおよびRhの担持量はptが1.5g/lR
hが0.3g/lとした。PtおよびRhの担持は、P
tおよびRhのカルボニルクラスタである(NE t 
4) [(P t 5(Co)s) nコ(n=1〜5
’)ならびにRh s(CO)+2を溶媒であるテトラ
シトロフランに溶解し、この溶液をハニカム構造体の端
部から他端へ流してPtおよびRhが均一に担持された
触媒体(実施例触媒Na1)を得た。
Next, Pt/Rh noble metal was supported on the surface of the honeycomb structure. The supported amount of Pt and Rh is 1.5g/lR of pt.
h was set to 0.3 g/l. The loading of Pt and Rh is P
t and Rh carbonyl cluster (NE t
4) [(P t 5(Co)s) n co(n=1~5
) and Rh s(CO)+2 were dissolved in tetracitrofuran, a solvent, and the solution was flowed from one end of the honeycomb structure to the other to form a catalyst body (example catalyst) in which Pt and Rh were uniformly supported. Na1) was obtained.

次に比較触媒として実施例触媒で用いたのと同様の金属
製ハニカム担体にγ−Af20sをウォッシュコートし
、これにPt/Rh貴金属を実施例触媒と同量含浸担持
した触媒(比較例触媒NlIC1)を得た。ウォッシュ
コート層の厚さは50μmであった。
Next, as a comparison catalyst, γ-Af20s was wash-coated on a metal honeycomb carrier similar to that used in the example catalyst, and Pt/Rh precious metal was impregnated and supported thereon in the same amount as the example catalyst (comparative example catalyst NlIC1 ) was obtained. The thickness of the washcoat layer was 50 μm.

これら実施例触媒bt、比較例触媒NnC1の触媒体の
排気ガス流通抵抗を同一容積、セル密度で求め、比較し
た。流通抵抗は次のような方法によって行った。金属製
ハニカム担体を自動車に装置する際と同一の円筒状の保
持具内に排気ガスがハニカム内のみを通過するように装
着し、保持具の両端のフランジにパイプを接続した。一
方のパイプから空気を4rrl’/min、の流量でハ
ニカム中に流した。この時、両パイプに細管を取りつけ
、マノメータによって両端での圧力差を測定し、ハニカ
ムの流通抵抗を求めた。
The exhaust gas flow resistances of the catalyst bodies of the example catalyst bt and the comparative example catalyst NnC1 were determined and compared at the same volume and cell density. Distribution resistance was measured using the following method. The metal honeycomb carrier was installed in the same cylindrical holder that is used in automobiles so that exhaust gas passes only through the honeycomb, and pipes were connected to flanges at both ends of the holder. Air was flowed into the honeycomb from one pipe at a flow rate of 4 rrl'/min. At this time, thin tubes were attached to both pipes, and the pressure difference at both ends was measured using a manometer to determine the flow resistance of the honeycomb.

流量が4rrr/min、のもとで、比較例触媒階CI
の流通抵抗は75mmAqであったが、実施例触媒階1
は68mmAqであり、本実施例の触媒体によれば流通
抵抗を低下し得ることが分る。
At a flow rate of 4 rrr/min, the comparative example catalyst stage CI
The flow resistance was 75 mmAq, but the example catalyst stage 1
is 68 mmAq, which indicates that the catalyst body of this example can reduce the flow resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)金属製ハニカム担体と、 その上に形成した接合部が拡散反応によって結合してい
る2〜20μmのアルミナ層と、該アルミナ層に担持し
た貴金属からなることを特徴とする排気ガス浄化用触媒
体。
(1) For exhaust gas purification, comprising a metal honeycomb carrier, a 2-20 μm alumina layer formed on the carrier and bonded by a diffusion reaction, and a noble metal supported on the alumina layer. Catalyst body.
(2)鉄基合金薄板の表面に蒸着によってアルミニウム
層を形成する工程と、 該鉄基合金薄板をハニカム状の担体に成形する工程と、 該ハニカム担体を非酸化性雰囲気中で加熱してハニカム
担体とアルミニウム層とを拡散によって結合する拡散処
理工程と、 該拡散処理を行ったハニカム担体を酸化雰囲気中で加熱
し、アルミニウムを酸化してアルミナに変える酸化工程
と、 該ハニカム担体に貴金属を担持する工程と、からなる排
気ガス浄化用触媒体の製造方法。
(2) forming an aluminum layer on the surface of an iron-based alloy thin plate by vapor deposition; forming the iron-based alloy thin plate into a honeycomb-shaped carrier; and heating the honeycomb carrier in a non-oxidizing atmosphere to form a honeycomb. a diffusion treatment step of bonding the carrier and the aluminum layer by diffusion; an oxidation step of heating the honeycomb carrier subjected to the diffusion treatment in an oxidizing atmosphere to oxidize the aluminum into alumina; and supporting a noble metal on the honeycomb carrier. A method for producing a catalyst body for exhaust gas purification, comprising the steps of:
JP2331256A 1990-11-28 1990-11-28 Catalyst for exhaust gas purification and its production Pending JPH04197444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331256A JPH04197444A (en) 1990-11-28 1990-11-28 Catalyst for exhaust gas purification and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331256A JPH04197444A (en) 1990-11-28 1990-11-28 Catalyst for exhaust gas purification and its production

Publications (1)

Publication Number Publication Date
JPH04197444A true JPH04197444A (en) 1992-07-17

Family

ID=18241654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331256A Pending JPH04197444A (en) 1990-11-28 1990-11-28 Catalyst for exhaust gas purification and its production

Country Status (1)

Country Link
JP (1) JPH04197444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026561A (en) * 2004-07-16 2006-02-02 Japan Science & Technology Agency Catalyst body, catalyst body for purifying exhaust gas and manufacturing method for catalyst body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026561A (en) * 2004-07-16 2006-02-02 Japan Science & Technology Agency Catalyst body, catalyst body for purifying exhaust gas and manufacturing method for catalyst body

Similar Documents

Publication Publication Date Title
US6964697B2 (en) Metal solution-diffusion membrane and method for producing the same
JPS61245848A (en) Manufacture of catalyst for purifying waste gas
US3944504A (en) Catalyst for the diminution of automobile exhaust gases
JPH06126192A (en) Production of metallic foil coated with oxide
JP5019753B2 (en) Exhaust gas purification catalytic converter
JP4893992B2 (en) Hydrogen separation complex and method for producing the same
JPH067922B2 (en) Exhaust gas purification catalyst
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JPH04215853A (en) Heat resisting metal monolith and manufacture thereof
JPH08332394A (en) Exhaust gas-cleaning metal carrier catalyst, and its manufacture
JPH05154381A (en) Exhaust gas purifying catalyst forming process
JPH04197444A (en) Catalyst for exhaust gas purification and its production
JP3953944B2 (en) Metal foil and honeycomb structure
JPH04346824A (en) Hydrogen separating membrane
JPH0226643A (en) Catalyst carrier
EP3950130A1 (en) Exhaust gas-purification catalyst having multi-layer structure including precious metal thin layer as top layer, and method for producing same
JP3386848B2 (en) Exhaust gas purification device and method of manufacturing the same
JPS63232850A (en) Base material for catalytic converter
JP4697506B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4083548B2 (en) Metal honeycomb structure excellent in oxidation resistance and manufacturing method thereof
WO1994025206A1 (en) Corrosion resistant porous body and production process
JP2005313012A (en) Exhaust gas clarification catalyst, catalytic active particle and its production method
JP2502201B2 (en) Metal carrier for gas purification catalyst and method for producing the same
JPH054048A (en) Catalyst for treatment of exhaust gas and its production
JPH02149344A (en) Manufacture of catalyst for discharged gas purification