JPH04197334A - Wiring structure for solid image pick-up element in electronic endoscope - Google Patents

Wiring structure for solid image pick-up element in electronic endoscope

Info

Publication number
JPH04197334A
JPH04197334A JP2332707A JP33270790A JPH04197334A JP H04197334 A JPH04197334 A JP H04197334A JP 2332707 A JP2332707 A JP 2332707A JP 33270790 A JP33270790 A JP 33270790A JP H04197334 A JPH04197334 A JP H04197334A
Authority
JP
Japan
Prior art keywords
flexible substrate
endoscope
signal cable
electronic endoscope
ccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2332707A
Other languages
Japanese (ja)
Other versions
JP2610241B2 (en
Inventor
Toshiji Minami
逸司 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2332707A priority Critical patent/JP2610241B2/en
Publication of JPH04197334A publication Critical patent/JPH04197334A/en
Application granted granted Critical
Publication of JP2610241B2 publication Critical patent/JP2610241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To effectively utilize the space in an endoscope and permit the wiring state with high density by closely attaching a flexible substrate in double form in the state where a terminal part is arranged at one edge and connecting a signal cable with the terminal part. CONSTITUTION:A CCD 16 as solid image pick-up element is connected with an objective lens 6 through a prism 8, and a flexible substrate 17 on which a prescribed wiring pattern is printed is connected with the CCD 16. A terminal part (rand) 50a is formed on the surface 17a of the flexible substrate 17 having the CCD 16 mounted, and a rand 50b is formed on the reverse surface 17b, and the flexible substrate 17 is bent at the nearly center part, and superposed to a double form so that the rands 50a and 50b slightly deflect. A signal cable 18 is bonded with the rands 50a and 50b. Accordingly, the wiring density in two times of that in the conventional can be secured.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電子内視鏡内固体撮像素子への配線構造、特に
被観察体内へ挿入して画像を得るための固体撮像素子を
有する電子内視鏡内の配線構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wiring structure for a solid-state image sensor in an electronic endoscope, particularly for an electronic endoscope having a solid-state image sensor inserted into an object to be observed to obtain an image. Regarding the wiring structure within the endoscope.

[従来の技術] 電子内視鏡装置は、スコープである電子内視鏡を体腔内
あるいは空洞内等の被観察体内へ挿入し、被観察体内の
画像をモニタ」二に表示するもので、これは電子内視鏡
の先端に固体撮像素子、例えばCCD (Charge
 Coupled Device)を設けることによっ
て行われる。
[Prior Art] An electronic endoscope device is a device in which an electronic endoscope, which is a scope, is inserted into the body to be observed, such as a body cavity or cavity, and images inside the body to be observed are displayed on a monitor. is a solid-state image sensor, such as a CCD (Charge), at the tip of an electronic endoscope.
This is done by providing a Coupled Device.

第7図には、この種の電子内視鏡の先端部が示されてお
り、図(b)のように電子内視鏡1の先端面には照射窓
2a、2b、観察窓3、鉗子口4及び洗浄水供給口5が
設けられる。上記観察窓3の内側には、図(a)のよう
に対物レンズ6が設けられ、上記照射窓2a、2bから
被観察体内に光が照射されると、観察窓3から被観察体
内の映像が捕えられる。
FIG. 7 shows the tip of this type of electronic endoscope, and as shown in FIG. A port 4 and a wash water supply port 5 are provided. An objective lens 6 is provided inside the observation window 3 as shown in FIG. is captured.

また、上記開口4に連通して電子内視鏡1の内部には処
置具挿通チャンネル7が形成されており、この処置具挿
通チャンネル7に鉗子等を挿入することにより、体腔内
の組織を採取すること等ができる。なお、上記洗浄水供
給口5からは上記観察窓3方向に向けて洗浄水や空気を
噴出し、観察窓3の外表面を洗浄することができる。
Furthermore, a treatment instrument insertion channel 7 is formed inside the electronic endoscope 1 in communication with the opening 4, and by inserting forceps or the like into this treatment instrument insertion channel 7, tissues in the body cavity can be collected. I can do things like that. Incidentally, the outer surface of the observation window 3 can be washed by blowing out washing water or air from the above-mentioned washing water supply port 5 toward the above-mentioned observation window 3 .

そして、上記対物レンズ6の後段には、プリズム8を介
してCCDl0が設けられ、このCCD10は樹脂性の
回路基板11に接続されており、この回路基板11に信
号ケーブル12が接続される。従って、対物レンズ6で
捕えられた被観察体像はプリズム8によりCCDl0の
撮像面に供給されることになり、このC0DIOで得ら
れた画像信号は、回路基板11上に形成されたプリアン
プ等を介して信号ケーブル12を介して外部処理装置内
へ供給される。
A CCD 10 is provided downstream of the objective lens 6 via a prism 8, and the CCD 10 is connected to a resin circuit board 11, to which a signal cable 12 is connected. Therefore, the image of the object to be observed captured by the objective lens 6 is supplied to the imaging surface of the CCD10 by the prism 8, and the image signal obtained by this C0DIO is sent to the preamplifier etc. formed on the circuit board 11. via a signal cable 12 into an external processing device.

[発明が解決しようとする課題] しかしながら、従来における上記固体撮像素子への配線
・構造では、上記CCDl0を接続する回路基板11が
ガラスエポキシ等の比較的厚い樹脂板からなっており、
これでは内視鏡内に有効なスペースを確保できず、また
配線パターン密度を高くすることもできないという問題
があった。
[Problems to be Solved by the Invention] However, in the conventional wiring and structure for the solid-state image sensor, the circuit board 11 connecting the CCD10 is made of a relatively thick resin plate such as glass epoxy.
This poses a problem in that it is not possible to secure an effective space within the endoscope, and it is not possible to increase the wiring pattern density.

すなわち、電子内視鏡は狭い体腔内等に挿入して内部を
観察するだけでなく、処置具挿通チャンネル7を用いて
組織の採取、内視鏡的処置などを行っており、内視鏡内
空間を有効に使用することが要求される。従って、上記
CCDl0を接続する回路基板11であっても、できる
だけ薄くすることが必要である。
In other words, electronic endoscopes are not only used to observe the inside by inserting them into narrow body cavities, but also to collect tissues and perform endoscopic treatments using the treatment instrument insertion channel 7. Effective use of space is required. Therefore, even the circuit board 11 to which the CCD10 is connected needs to be made as thin as possible.

また、C0D10に接続される信号線は内視鏡の一方端
(図の右側)、すなわち手元操作部側へ向けて配線され
ることになり、従って回路基板11においても一方端へ
入出力端子が集中しており、端子部設定のために比較的
場所を採っている。従って、入出力端子の設定空間を縮
小するためには、配線パターンの密度を高くする必要が
ある。
In addition, the signal line connected to C0D10 will be wired toward one end of the endoscope (the right side in the figure), that is, toward the hand control unit, so the input/output terminal will also be connected to one end of the circuit board 11. It is concentrated and takes up a relatively large amount of space for setting the terminal section. Therefore, in order to reduce the setting space for input/output terminals, it is necessary to increase the density of the wiring pattern.

更に、第7図の硬性部IAの長さは信号ケーブル12の
回路基板11への接続位置によって影響を受け、図示の
ように信号ケーブル12が回路基板11の端部で接続さ
れることから、これ以」二に硬性部IAを短くすること
ができなかった。すなわち、硬性部IAは内部でワイヤ
14に接続され、このワイヤ14にてアングル部IBに
対して曲げられるようになっており、硬性部IAが短い
ほど大きい角度で曲った体腔内又は複雑に曲った体腔内
等へ挿入する内視鏡の操作性がよくなることになるが、
従来の構成ではこの操作性に限界があった。
Furthermore, the length of the rigid portion IA in FIG. 7 is affected by the connection position of the signal cable 12 to the circuit board 11, and since the signal cable 12 is connected at the end of the circuit board 11 as shown, From this point on, it was not possible to shorten the rigid portion IA any further. That is, the rigid part IA is internally connected to a wire 14 and can be bent with respect to the angle part IB by this wire 14, and the shorter the rigid part IA is, the more the rigid part IA is inside a body cavity bent at a large angle or complicatedly curved. This will improve the operability of endoscopes inserted into body cavities, etc.
With conventional configurations, there was a limit to this operability.

本発明は上記問題点に鑑みてなされたものであり、その
目的は、内視鏡内のスペースを有効に使用でき、かつ高
密度の配線状態を可能とする電子内視鏡内固体撮像素子
への配線構造を提供することにあり、また他の目的は、
電子内視鏡を大きい角度で又は複雑に曲った被観察体内
へ容易に挿入できる内視鏡を得ることができる固体撮像
素子への配線構造を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a solid-state image sensor in an electronic endoscope that can effectively use the space inside the endoscope and enable high-density wiring. Another purpose is to provide a wiring structure for
An object of the present invention is to provide a wiring structure for a solid-state image pickup device that allows an electronic endoscope to be easily inserted into an object to be observed at a large angle or into a complexly curved body.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る固体撮像素子
への配線構造は、電子内視鏡内に設けられた固体撮像素
子に、信号を入出力するための配線パターンが形成され
たフレキシブル基板を接続−へ − し、上記このフレキシブル基板は端子部が一方端に配置
される状態で少なくとも二重に重ねて密着し、上記端子
部に信号ケーブルを接続するようにしたことを特徴とす
る。
[Means for Solving the Problems] In order to achieve the above object, a wiring structure for a solid-state image sensor according to the present invention is provided for inputting and outputting signals to a solid-state image sensor provided in an electronic endoscope. A flexible board on which a wiring pattern has been formed is connected to -, the flexible board is closely stacked at least twice with the terminal part arranged at one end, and a signal cable is connected to the terminal part. It is characterized by the following.

また、他の発明は、上記固体撮像素子を接続したフレキ
シブル基板の端子部を内視鏡先端側へ折り曲げ、この折
曲げ端子部へ信号ケーブルを接続するようにしたことを
特徴とする。
Further, another invention is characterized in that the terminal portion of the flexible substrate to which the solid-state image sensor is connected is bent toward the distal end of the endoscope, and a signal cable is connected to this bent terminal portion.

[作用] 上記の構成によれば、例えばCCDに接続されたフレキ
シブル基板の一方端が折り曲げられ、両端部に設けられ
た端子部が位置を少しずらして密着された状態で重ねら
れ、この端子部に信号線が接続されることになる。従っ
て、回路基板自体が従来よりも薄くなると共に、配線パ
ターン密度が実質的に高められる。
[Function] According to the above configuration, for example, one end of the flexible substrate connected to the CCD is bent, and the terminal parts provided at both ends are overlapped with their positions slightly shifted and in close contact with each other, and this terminal part The signal line will be connected to. Therefore, the circuit board itself becomes thinner than before, and the wiring pattern density is substantially increased.

また、上記の場合、端子部を含むフレキシブル基板の端
部を、内視鏡先端部内において、例えばプリズムの裏側
へ折り曲げて信号線を接続することもでき、この場合は
硬性部の長さが短くなる。
In addition, in the above case, the end of the flexible board including the terminal part can be bent inside the tip of the endoscope, for example, to the back side of the prism to connect the signal line, and in this case, the length of the rigid part is short. Become.

−6= [実施例] 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
-6= [Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図には、第1実施例に係る電子内視鏡の内部構造が
示されており、従来と同様に、図(b)のように照射窓
2a、2b、観察窓3、鉗子口4が設けられ、図(a)
のように観察窓3の内側には対物レンズ6が設けられて
いる。
FIG. 1 shows the internal structure of the electronic endoscope according to the first embodiment, and as in the conventional case, as shown in FIG. is provided, and Figure (a)
An objective lens 6 is provided inside the observation window 3 as shown in FIG.

そして、上記対物レンズ6にプリズム8を介して固体撮
像素子であるCCD16が接続されており、このCCD
16には所定の配線パターンがプリントされたフレキシ
ブル基板17が接続され、このフレキシブル基板17は
、第2図(a)に示されるように二重に折り曲げられる
。すなわち、詳細は後述するが、C0D16を実装した
フレキシブル基板17の表面17aに端子部(ランド)
50aを、その裏面17bにランド50bを設け、この
フレキシブル基板17をほぼ中心部で折り曲げ、ランド
50a、50bが少しずれるように二重に重ねる。そし
て、このランド50a、50bに信号ケーブル18がボ
ンディングされることになり、これによれば従来の2倍
の配線密度を確保することができる。
A CCD 16, which is a solid-state image sensor, is connected to the objective lens 6 via a prism 8.
A flexible substrate 17 on which a predetermined wiring pattern is printed is connected to 16, and this flexible substrate 17 is folded double as shown in FIG. 2(a). That is, although the details will be described later, a terminal portion (land) is provided on the surface 17a of the flexible substrate 17 on which the C0D16 is mounted.
A land 50b is provided on the back surface 17b of the flexible substrate 50a, and the flexible substrate 17 is bent approximately at the center and overlapped so that the lands 50a and 50b are slightly shifted. Then, the signal cable 18 is bonded to these lands 50a and 50b, thereby making it possible to secure wiring density twice that of the conventional structure.

また、フレキシブル基板17は三重、四重に重ねてもよ
く、三重とする場合は、第2図(b)に示されるように
なり、この場合には表面17aの一箇所にランド50a
を、裏面17bの三箇所にランド50b、50cを設け
て重ねる。
Further, the flexible substrate 17 may be stacked three or four times, and when it is stacked three times, it becomes as shown in FIG.
are stacked with lands 50b and 50c provided at three locations on the back surface 17b.

上記によれば、回路基板が二重、三重に重ねられるので
、配線パターン密度が実質的に高まり、信号ケーブル1
8の接続密度も高くなる。また、フレキシブル基板17
を重ねることによって基板全体の剛性を強化することが
でき、組立が容易になるという利点もある。更には、重
ね合わせの際に接着剤等で接合させれば、平面としての
硬性強度が増すことになる。
According to the above, since the circuit boards are stacked double or triple, the wiring pattern density is substantially increased, and the signal cable 1
8 connection density also increases. In addition, the flexible substrate 17
By overlapping the substrates, the rigidity of the entire board can be strengthened, which also has the advantage of making assembly easier. Furthermore, if they are bonded using an adhesive or the like when stacking them, the rigidity and strength of the plane will increase.

第3図には、端子部を折り曲げて内視鏡先端側へ配設し
た第2実施例の構成が示されており、図のように、二重
に重ねたフレキシブル基板27のランド50を途中で更
にプリズム8側へ折り曲げる。第4図には、この場合の
フレキシブル基板の配線パターンが示されており、図示
されるように、フレキシブル基板27の表面27aには
、C0D16と接続する端子51が配線パターン(リー
ド線)と共に形成され[図(a)]、また裏面27bへ
接続するためのスルーホール52が形成されており[図
(b)]、上記表面27aと裏面27bの両端部には信
号ケーブル18をボンディングするランド(端子部)5
0a、50bが配設される。従って、中心線100で折
り曲げると、図(C)に示されるように、ランド50a
、50bが互に少しずれた状態で一方端に配設される。
FIG. 3 shows the configuration of the second embodiment in which the terminal portion is bent and placed on the distal end side of the endoscope. Then bend it further toward the prism 8 side. FIG. 4 shows the wiring pattern of the flexible board in this case, and as shown, on the surface 27a of the flexible board 27, a terminal 51 to be connected to the C0D 16 is formed together with the wiring pattern (lead wire). [Figure (a)], and a through hole 52 for connection to the back surface 27b is formed [Figure (b)], and lands (for bonding the signal cable 18) are formed at both ends of the front surface 27a and the back surface 27b. Terminal part) 5
0a and 50b are provided. Therefore, when bent along the center line 100, as shown in FIG.
, 50b are arranged at one end with a slight deviation from each other.

そして、第2実施例の場合は、上記のフレキシブル基板
27上の端子51にCCD16を接続した後に、ランド
50a、50bは第3図のようにプリズム8側へ折り曲
げられ、折曲げ端子部とされたランド50に信号ケーブ
ル18が接続される。
In the case of the second embodiment, after the CCD 16 is connected to the terminal 51 on the flexible substrate 27, the lands 50a and 50b are bent toward the prism 8 side as shown in FIG. The signal cable 18 is connected to the land 50.

これによれば、信号ケーブル18と回路基板との接続部
を従来よりも先端側へ移動することができ、この結果硬
性部IAの長さを短くすることができ−Q  − る。なお、この場合も配線パターン密度が実質的に高ま
ると共に、基板を重ねることによって基板全体の剛性を
強化することができる。
According to this, the connecting portion between the signal cable 18 and the circuit board can be moved toward the distal end side compared to the conventional case, and as a result, the length of the rigid portion IA can be shortened. Note that in this case as well, the wiring pattern density is substantially increased, and by stacking the substrates, the rigidity of the entire substrate can be strengthened.

また、上記第1実施例と第2実施例によれば、CCD1
6を接続する回路基板を、従来のような厚い樹脂板では
なくフレキシブル基板17.27としたので、回路基板
の厚さを薄くすることができ、その分、内視鏡内を広く
使うことが可能となる。従って、処置具挿通チャンネル
7の径を従来よりも大きくすることができ、組織の採取
や処置が行い易くなるという利点がある。
Further, according to the first embodiment and the second embodiment, the CCD 1
The circuit board that connects 6 is a flexible board 17.27 instead of the conventional thick resin board, so the thickness of the circuit board can be made thinner and the inside of the endoscope can be used more widely. It becomes possible. Therefore, there is an advantage that the diameter of the treatment instrument insertion channel 7 can be made larger than in the past, making it easier to perform tissue collection and treatment.

また、実施例では、内視鏡スペースを有効に利用するた
めに、第5図に示されるように、IC回路をプリズム8
側へ配設することができる。すなわち、第1実施例と同
様の構成にあっては、フレキシブル基板17の表面17
a側にプリアンプ等のIC回路29を取り付ける。また
、第2実施例にあっては、第3図に示されるように、I
C回路29を同様に表面27a側に取り付け、これによ
って内視鏡内空間を有効に使うことができる。
In addition, in this embodiment, in order to effectively utilize the endoscope space, the IC circuit is connected to the prism 8 as shown in FIG.
Can be placed on the side. That is, in a configuration similar to that of the first embodiment, the surface 17 of the flexible substrate 17
An IC circuit 29 such as a preamplifier is attached to the a side. Further, in the second embodiment, as shown in FIG.
The C circuit 29 is similarly attached to the surface 27a side, thereby making it possible to effectively use the space within the endoscope.

第6図には、第2実施例と同様に端子部を折り曲げて内
視鏡先端側へ配設した第3実施例が示されており、この
第3実施例は折曲げ部27cをプリズム18側ではなく
、その反対側へ折り曲げている。また、この場合は二枚
のフレキシブル基板37A、37Bを別個にCCD16
の端子に接続して重ねるようにしている。
FIG. 6 shows a third embodiment in which the terminal portion is bent and placed on the distal end side of the endoscope in the same way as the second embodiment. It is bent not to the side, but to the opposite side. In addition, in this case, the two flexible substrates 37A and 37B are separately connected to the CCD 16.
I connected it to the terminal of the terminal and stacked it.

この第3実施例の場合は、例えば処置具挿通チャンネル
が不要な医療用あるいは工業用の内視鏡に適用すること
ができ、この場合も、従来よりも硬性部IAの長さを短
くできる利点がある。
The third embodiment can be applied, for example, to medical or industrial endoscopes that do not require a treatment instrument insertion channel, and in this case also has the advantage that the length of the rigid part IA can be made shorter than before. There is.

[発明の効果] 以上説明したように、第1請求項の発明によれば、所定
の配線パターンが形成されたフレキシブル基板を固体撮
像素子に接続し、このフレキシブル基板は端子部が一方
端に配置される状態で少なくとも二重に重ねて密着し、
信号ケーブルを上記端子部に接続するようにしたので、
内視鏡内のスペースを有効に使用でき、この結果、処置
具挿通チャンネルの径等を大きく採ることが可能となる
[Effects of the Invention] As explained above, according to the invention of the first claim, a flexible substrate on which a predetermined wiring pattern is formed is connected to a solid-state image sensor, and the terminal portion of the flexible substrate is arranged at one end. At least double layered and close together,
Since the signal cable is connected to the terminal section above,
The space within the endoscope can be used effectively, and as a result, the diameter of the treatment instrument insertion channel can be increased.

また、配線パターンを実質的に高密度にすることができ
、信号ケーブルの接続密度も向上させることができる。
Moreover, the wiring pattern can be made substantially denser, and the connection density of the signal cables can also be improved.

更に、第2請求項の発明によれば、固体撮像素子を接続
したフレキシブル基板の端子部を内視鏡先端側へ折り曲
げ、この折曲げ端子部へ信号ケーブルを接続するように
したので、大きな角度で又は複雑に曲った被観察体内へ
内視鏡を容易に挿入可能となる。
Furthermore, according to the second aspect of the invention, the terminal portion of the flexible substrate to which the solid-state image sensor is connected is bent toward the distal end of the endoscope, and the signal cable is connected to this bent terminal portion. This allows the endoscope to be easily inserted into a complexly curved body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る電子内視鏡内固体撮
像素子への配線構造を示す図であり、図(a)は断面図
、図(b)は先端部前面の図、第2図はフレキシブル基
板の折曲げ状態を示す図、第3図は第2実施例の配線構
造を示す断面図、第4図は第2実施例のフレキシブル基
板の展開図、第5図はIC回路の実装状態を示す図、第
6図は第3実施例の配線構造を示す断面図、第7図は従
来の配線構造を示す図であり、図(a)は断面図、図(
b)は先端部前面の図である。 1・・・電子内視鏡、  IA・・・硬性部、1B・・
・アングル部、 3・・・観察窓、6・・・対物レンズ
、 7・・・処置具挿通チャンネル、10.16・・・
CCD、11・・・回路基板、12.18・・・信号ケ
ーブル、 17.27.37・・・フレキシブル基板、50・・・
ランド(端子部)、51・・・端子、52・・・スルー
ホール。
FIG. 1 is a diagram showing a wiring structure to a solid-state image sensor in an electronic endoscope according to a first embodiment of the present invention, in which FIG. 1A is a sectional view, FIG. Fig. 2 is a diagram showing the bent state of the flexible board, Fig. 3 is a sectional view showing the wiring structure of the second embodiment, Fig. 4 is a developed view of the flexible board of the second embodiment, and Fig. 5 is an IC FIG. 6 is a cross-sectional view showing the wiring structure of the third embodiment; FIG. 7 is a diagram showing the conventional wiring structure; FIG.
b) is a front view of the tip. 1...Electronic endoscope, IA...Rigid part, 1B...
・Angle part, 3... Observation window, 6... Objective lens, 7... Treatment instrument insertion channel, 10.16...
CCD, 11... Circuit board, 12.18... Signal cable, 17.27.37... Flexible board, 50...
Land (terminal part), 51...terminal, 52...through hole.

Claims (2)

【特許請求の範囲】[Claims] (1)電子内視鏡内に設けられた固体撮像素子に、信号
を入出力するための配線パターンが形成されたフレキシ
ブル基板を接続し、このフレキシブル基板は端子部が一
方端に配置される状態で少なくとも二重に重ねて密着し
、上記端子部に信号ケーブルを接続するようにした電子
内視鏡内固体撮像素子への配線構造。
(1) A flexible board on which a wiring pattern for inputting and outputting signals is formed is connected to a solid-state image sensor installed in an electronic endoscope, and the terminal part of this flexible board is placed at one end. A wiring structure for a solid-state image pickup device in an electronic endoscope, in which the signal cable is connected to the terminal portion in at least two layers, and a signal cable is connected to the terminal portion.
(2)上記固体撮像素子を接続したフレキシブル基板の
端子部を内視鏡先端側へ折り曲げ、この折曲げ端子部へ
信号ケーブルを接続するようにしたことを特徴とする上
記第1請求項記載の電子内視鏡内固体撮像素子への配線
構造。
(2) The terminal portion of the flexible substrate to which the solid-state image sensor is connected is bent toward the distal end of the endoscope, and a signal cable is connected to this bent terminal portion. Wiring structure to solid-state image sensor in electronic endoscope.
JP2332707A 1990-11-29 1990-11-29 Wiring structure to solid-state image sensor in electronic endoscope Expired - Lifetime JP2610241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332707A JP2610241B2 (en) 1990-11-29 1990-11-29 Wiring structure to solid-state image sensor in electronic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332707A JP2610241B2 (en) 1990-11-29 1990-11-29 Wiring structure to solid-state image sensor in electronic endoscope

Publications (2)

Publication Number Publication Date
JPH04197334A true JPH04197334A (en) 1992-07-16
JP2610241B2 JP2610241B2 (en) 1997-05-14

Family

ID=18257971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332707A Expired - Lifetime JP2610241B2 (en) 1990-11-29 1990-11-29 Wiring structure to solid-state image sensor in electronic endoscope

Country Status (1)

Country Link
JP (1) JP2610241B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323884A (en) * 2004-05-14 2005-11-24 Olympus Corp Electronic endoscope apparatus
JP2008118568A (en) * 2006-11-07 2008-05-22 Olympus Medical Systems Corp Imaging apparatus
JP2008227733A (en) * 2007-03-09 2008-09-25 Olympus Medical Systems Corp Imaging apparatus
JP2014045845A (en) * 2012-08-30 2014-03-17 Fujikura Ltd Harness for medical apparatus and method for assembling medical apparatus
US8853538B2 (en) 2011-05-17 2014-10-07 Olympus Corporation Cable connection structure and cable connection board
CN105223684A (en) * 2011-03-30 2016-01-06 富士胶片株式会社 Endoscope and camera head thereof
WO2016189679A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Image pickup apparatus and endoscope
CN112135557A (en) * 2018-03-14 2020-12-25 奥林巴斯株式会社 Image pickup unit and squint endoscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221719A (en) * 1984-03-29 1985-11-06 Olympus Optical Co Ltd Endoscope incorporating solid-state image pickup element
JPS62255913A (en) * 1986-04-30 1987-11-07 Olympus Optical Co Ltd Endoscope
JPS6340524A (en) * 1986-08-06 1988-02-20 オリンパス光学工業株式会社 Electronic endoscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221719A (en) * 1984-03-29 1985-11-06 Olympus Optical Co Ltd Endoscope incorporating solid-state image pickup element
JPS62255913A (en) * 1986-04-30 1987-11-07 Olympus Optical Co Ltd Endoscope
JPS6340524A (en) * 1986-08-06 1988-02-20 オリンパス光学工業株式会社 Electronic endoscope

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323884A (en) * 2004-05-14 2005-11-24 Olympus Corp Electronic endoscope apparatus
JP2008118568A (en) * 2006-11-07 2008-05-22 Olympus Medical Systems Corp Imaging apparatus
JP2008227733A (en) * 2007-03-09 2008-09-25 Olympus Medical Systems Corp Imaging apparatus
CN105223684A (en) * 2011-03-30 2016-01-06 富士胶片株式会社 Endoscope and camera head thereof
US8853538B2 (en) 2011-05-17 2014-10-07 Olympus Corporation Cable connection structure and cable connection board
JP2014045845A (en) * 2012-08-30 2014-03-17 Fujikura Ltd Harness for medical apparatus and method for assembling medical apparatus
US9198558B2 (en) 2012-08-30 2015-12-01 Fujikura Ltd. Harness for medical device and method for assembling medical device
WO2016189679A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Image pickup apparatus and endoscope
JPWO2016189679A1 (en) * 2015-05-27 2018-03-15 オリンパス株式会社 Imaging apparatus and endoscope
US10750940B2 (en) 2015-05-27 2020-08-25 Olympus Corporation Image pickup apparatus including solid-state image pickup device and electronic component mounted on folded flexible substrate and endoscope including the image pickup apparatus
CN112135557A (en) * 2018-03-14 2020-12-25 奥林巴斯株式会社 Image pickup unit and squint endoscope

Also Published As

Publication number Publication date
JP2610241B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP5945653B1 (en) Solid-state imaging device and electronic endoscope provided with the solid-state imaging device
US5365268A (en) Circuit board of solid-state image sensor for electronic endoscope
US8189062B2 (en) Image pick-up module and method for assembling such an image pick-up module
JP2735101B2 (en) Imaging device
JPS62255913A (en) Endoscope
JPH04218136A (en) Solid-state image sensor
JP5722512B1 (en) Endoscope imaging unit
JPH04197334A (en) Wiring structure for solid image pick-up element in electronic endoscope
JP6655634B2 (en) Imaging device and endoscope
JP3905152B2 (en) Imaging device for endoscope
JP2828116B2 (en) Solid-state imaging device
JP3157552B2 (en) Endoscope
JPH05161602A (en) Solid-state image pickup device and endoscope using the device
JP2684613B2 (en) Mounting structure for solid-state image sensor for electronic endoscope
JP7395277B2 (en) Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasonic transducer module
JPS62113123A (en) Endoscope containing solid-stage image pickup element
JPS60221719A (en) Endoscope incorporating solid-state image pickup element
WO2022269822A1 (en) Tip of endoscope, and endoscope
US20230052510A1 (en) Multilayer board, probe unit, and ultrasound endoscope
JP4699741B2 (en) Endoscopic imaging device
JPS6370820A (en) Electronic endoscope
JP4303008B2 (en) Solid-state image sensor, electronic endoscope
JPH09192091A (en) Image sensor assembly for electronic endoscope
JPS6266642A (en) Chip carrier
JP2816237B2 (en) Solid-state imaging device