JPH04197264A - Production of antithrombotic medical treating material and medical treating implement having antithrombotic medical treating material - Google Patents

Production of antithrombotic medical treating material and medical treating implement having antithrombotic medical treating material

Info

Publication number
JPH04197264A
JPH04197264A JP2328320A JP32832090A JPH04197264A JP H04197264 A JPH04197264 A JP H04197264A JP 2328320 A JP2328320 A JP 2328320A JP 32832090 A JP32832090 A JP 32832090A JP H04197264 A JPH04197264 A JP H04197264A
Authority
JP
Japan
Prior art keywords
antithrombotic
heparin
amino group
polyvinyl chloride
polyethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2328320A
Other languages
Japanese (ja)
Inventor
Noboru Saito
昇 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2328320A priority Critical patent/JPH04197264A/en
Publication of JPH04197264A publication Critical patent/JPH04197264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To produce the antithrombotic material which maintains a stable antithrombotic property over a long period of time by covalent bonding the amino group of a polyvinyl chloride(PVC) polymer and the one terminal glycidyl group of polyethylene glycol diglycidyl ether, then covalent bonding the other terminal glycidyl group and the amino group of heparin. CONSTITUTION:The amino group of the PVC polymer introduced with the amino group and the one terminal glycidyl group of the polyethylene glycol diglycidyl ether are first covalent bonded in order to produce the antithrombotic medical treating material. The PVC polymer introduced with the amino group is brought into contact with an aq. soln. of the polyethylene glycol diglycidyl ether for this purpose. The soln. is thereafter brought into contact with the aq. heparin soln., by which the other terminal glycidyl group and the amino group of the heparin are covalent bonded. The resulted antithrombotic treating material has the excellent adhesiveness to the base material and exhibits the antithrombotic property over a long period of time. In addition, the elution of the heparin is obviated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は抗血栓性材料の製造方法およびこれにより得ら
れた抗血栓性材料により抗血栓性を付与した医療器具に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing an antithrombotic material and a medical device imparted with antithrombotic properties by the antithrombotic material obtained thereby.

〈従来の技術〉 ポリ塩化ビニルは優れた物性とその安価さの故に成形用
材料として広く利用されているか、医療用材料として要
求される抗血栓性に劣り、これを血液と接触するカテー
テル、血液回路、シャントとして用いた場合血栓が形成
され、血流の停止か起こり合併症の原因となる危険性か
ある。
<Prior art> Polyvinyl chloride is widely used as a molding material due to its excellent physical properties and low cost, or it is used in catheters that come into contact with blood, as it has poor antithrombotic properties required as a medical material. When used as a circuit or shunt, there is a risk that a blood clot may form, stopping blood flow and causing complications.

従って血栓が形成されない材料すなわち抗血栓性材料で
ポリ塩化ビニル表面を被覆するか、またはヘパリンなど
の抗凝血剤を表面に結合するなどの試みが種々なされて
いる。 しかし従来のミクロ相分離構造を有する抗血栓
性材料はポリ塩化ビニルとの相溶性がわるいためにひび
割れを生じ易く、曲げ応力のかかった場合は剥離しやす
いうえ、軟質ポリ塩化ビニル表面へのコーティングは可
塑剤のコーティング層への移行により本来のミクロ相分
離構造を与えないため抗血栓性に劣るという欠点がある
Various attempts have therefore been made to coat the polyvinyl chloride surface with non-thrombotic or antithrombotic materials or to bind anticoagulants such as heparin to the surface. However, conventional antithrombotic materials with a microphase-separated structure tend to crack due to poor compatibility with polyvinyl chloride, easily peel off when subjected to bending stress, and coat the surface of soft polyvinyl chloride. has the disadvantage that it has poor antithrombotic properties because it does not provide the original microphase-separated structure due to the transfer of plasticizer to the coating layer.

また、ヘパリン結合材料についてはカチオン界面活性剤
のbenzalkoniumにイオン結合によってヘパ
リンを結合させる方法などが開示されているが、ヘパリ
ンとの結合が弱いため血液中にヘパリンが急速に放出さ
れるので抗血栓性か急激に失われる。 そこで長期にわ
たって抗血栓性を持たせるためポリマーのマトリックス
中にヘパリンをイオン結合させたヘパリン化親水性ポリ
マー(特開昭57−14358)か開発され、長期間ヘ
パリン溶出量を一定に保つことができ、長期にわたって
抗血栓性を保持できるようになったが、溶出ヘパリンに
よる異常出血、副作用の懸念がある。
Regarding heparin-binding materials, a method has been disclosed in which heparin is bound to benzalkonium, a cationic surfactant, through ionic bonding. Sexuality is rapidly lost. Therefore, in order to have long-term antithrombotic properties, a heparinized hydrophilic polymer (Japanese Patent Application Laid-open No. 57-14358), in which heparin is ionically bonded in the polymer matrix, was developed, and it was possible to maintain a constant amount of heparin elution over a long period of time. Although it has become possible to maintain antithrombotic properties over a long period of time, there are concerns about abnormal bleeding and side effects due to eluted heparin.

共有結合を形成させて医療材料とヘパリンを結合させる
方法(特開昭58−10053)も開示はされているが
、この方法によればヘパリンの活性部位も共有結合に関
与する可能性かあるため、ヘパリンの抗凝血活性が損な
われて血栓を形成させる可能性があり望ましくな〈発明
が解決しようとする問題点〉 したがって本発明の目的は上述した従来技術の問題点を
解消し、ヘパリンの抗凝血作用により長期にわたり安定
した抗血栓性を保持する抗血栓性材料の製造方法および
これにより得られた抗血栓性材料により抗血栓性を付与
した医療器具を提供することにある。
A method of binding medical materials and heparin by forming a covalent bond (Japanese Patent Application Laid-Open No. 58-10053) has also been disclosed, but according to this method, the active site of heparin may also be involved in the covalent bond. , the anticoagulant activity of heparin may be impaired, leading to thrombus formation, which is undesirable.<Problems to be Solved by the Invention> Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to improve the effectiveness of heparin. The object of the present invention is to provide a method for producing an antithrombotic material that maintains stable antithrombotic properties over a long period of time due to anticoagulant action, and a medical device imparted with antithrombotic properties by the antithrombotic material obtained thereby.

〈問題を解決するための手段〉 本発明の第1の態様によれば、アミノ基が導入されたポ
リ塩化ビニル系重合体のアミノ基とポリエチレングリコ
ールシダリンゾルエーテルの一方の末端グリシジル基と
を共有結合させた後、他方の末端グリシジル基とヘパリ
ンのアミン基を共有結合させることを特徴とする抗血栓
性医療材料の製造方法が提供される。
<Means for solving the problem> According to the first aspect of the present invention, the amino group of the polyvinyl chloride polymer into which the amino group has been introduced and the glycidyl group at one end of the polyethylene glycol sidaline sol ether are combined. A method for producing an antithrombotic medical material is provided, which comprises covalently bonding the other terminal glycidyl group and the amine group of heparin after the covalent bonding.

本発明の第2の態様によれば、血液と接触する部分を有
する医療用器具において、血液と接触する部分の表面の
少なくとも一部が前記血栓性医療材料で構成されている
ことを特徴とする医療用器具が提供される。
According to a second aspect of the present invention, in a medical device having a part that comes into contact with blood, at least a part of the surface of the part that comes into contact with blood is made of the thrombogenic medical material. Medical equipment is provided.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において抗血栓性医療材料を製造する方法は、ア
ミノ基が導入されたポリ塩化ビニル系重合体のアミノ基
とポリエチレングリコールシダリンゾルエーテルの一方
の末端グリシジル基とを共有結合させた後、他方の末端
グリシジル基とヘパリンのアミノ基を共有結合させるも
のである。 第1図にその概要を示す。
In the present invention, the method for producing an antithrombotic medical material includes covalently bonding the amino group of a polyvinyl chloride polymer into which an amino group has been introduced and the glycidyl group at one end of polyethylene glycol cydarin sol ether, and then The other terminal glycidyl group and the amino group of heparin are covalently bonded. Figure 1 shows the outline.

ヘパリンとはエステル状に結合した硫酸を含む多糖類の
一種であり、アミノ基、水酸基、カルボキシル基等の官
能基を有する。
Heparin is a type of polysaccharide containing ester-bonded sulfuric acid, and has functional groups such as amino groups, hydroxyl groups, and carboxyl groups.

アミン基を有するポリ塩化ビニル系重合体は、ポリ塩化
ビニルと低分子試剤との反応による高分子反応によって
合成することができ、従来公知の技術(大河原 信組、
高分子反応、共立出版、1978、など)が使用できる
Polyvinyl chloride-based polymers having amine groups can be synthesized by a polymer reaction between polyvinyl chloride and a low-molecular reagent, using conventionally known techniques (Okawara Shinkumi,
Polymer Reaction, Kyoritsu Shuppan, 1978, etc.) can be used.

その例としては次式 等で表されるポリ塩化ビニルと低分子試剤との反応があ
る。
An example of this is the reaction between polyvinyl chloride and a low-molecular reagent expressed by the following formula.

アミノ基の導入の割合はBOrnol1%以下、好まし
くは0.05〜40mol1%、更に好ましくは5〜2
0moρ%である。 このアミノ基のポリ塩化ビニルへ
の導入の割合は反応条件を変えることにより任意に変え
ることができる。 第2図にその具体例としてポリ塩化
ビニルとアジ化ナトリウムの反応時間とアジド基の導入
率の関係を示す。 これにより任意にアミン基の導入率
を変えたポリ塩化ビニルを合成できる。
The ratio of amino group introduction is BOrnol 1% or less, preferably 0.05 to 40 mol 1%, more preferably 5 to 2
It is 0moρ%. The ratio of amino groups introduced into polyvinyl chloride can be arbitrarily changed by changing the reaction conditions. As a specific example, FIG. 2 shows the relationship between the reaction time of polyvinyl chloride and sodium azide and the rate of introduction of azide groups. As a result, polyvinyl chloride can be synthesized with the introduction rate of amine groups arbitrarily changed.

このようにしてアミノ基が導入されたポリ塩化ビニル系
重合体のアミノ基とポリエチレングリコールシダリンゾ
ルエーテルの一方の末端グリシジル基とを共有結合させ
るには、第1図に示すように、アミノ基が導入されたポ
リ塩化ビニル系重合体をポリエチレングリコールシダリ
ンゾルエーテルの水溶液に接触させることにより達成さ
れる。
In order to covalently bond the amino group of the polyvinyl chloride polymer into which the amino group has been introduced and the glycidyl group at one end of the polyethylene glycol sidaline sol ether, as shown in Figure 1, the amino group This is achieved by bringing the polyvinyl chloride polymer into which has been introduced into contact with an aqueous solution of polyethylene glycol cydarine sol ether.

ポリエチレングリコールシダリンゾルエーテルの濃度は
0.05%〜5.0%、好ましくは0.1%〜3%であ
り、反応温度は20℃〜80℃、好ましくは30℃〜6
0℃である。
The concentration of polyethylene glycol cydarine sol ether is 0.05% to 5.0%, preferably 0.1% to 3%, and the reaction temperature is 20°C to 80°C, preferably 30°C to 6°C.
It is 0°C.

反応時間は条件によって異なるが、一般に8時間〜48
時間、好ましくは16時間〜36時間である。
The reaction time varies depending on the conditions, but is generally 8 hours to 48 hours.
time, preferably 16 hours to 36 hours.

これより反応温度、反応時間を大きくすると、ポリエチ
レングリコールシダリンゾルエーテルの両末端グリシジ
ル基のうち一方の末端グリシジル基がアミノ基が導入さ
れたポリ塩化ビニル系重合体のアミノ基と共有結合する
たけてなく、両末端のグリシジル基がアミノ基が導入さ
れたポリ塩化ビニル系重合体のアミン基と共有結合して
しまったり、グリシジル基の加水分解などの副反応が起
こり、ヘパリンのアミノ基と共有結合できなくなってし
まう可能性があり好ましくない。
When the reaction temperature and reaction time are increased, one of the glycidyl groups at both ends of polyethylene glycol sidaline sol ether covalently bonds with the amino group of the polyvinyl chloride polymer into which an amino group has been introduced. However, the glycidyl groups at both ends may covalently bond with the amine groups of the polyvinyl chloride polymer into which amino groups have been introduced, or side reactions such as hydrolysis of the glycidyl groups may occur, resulting in covalent bonds with the amino groups of heparin. This is not preferable since it may become impossible to combine.

本発明において、他方の末端グリシジル基とヘパリンの
アミノ基を共有結合させるには、アミノ基が導入された
ポリ塩化ビニル系重合体のアミノ基とポリエチレングリ
コールシダリンゾルエーテルの一方の末端グリシジル基
とを共有結合させた後、これをヘパリン水溶液と接触さ
せることにより達成される。 ヘパリンはヘパリンのナ
トリウム塩を用いるのが好ましい。
In the present invention, in order to covalently bond the other terminal glycidyl group and the amino group of heparin, the amino group of the polyvinyl chloride polymer into which the amino group has been introduced and the one terminal glycidyl group of polyethylene glycol sidaline sol ether are bonded together. This is achieved by covalently bonding and then contacting this with an aqueous heparin solution. Preferably, heparin is a sodium salt of heparin.

このときのヘパリン濃度は0.05%を50%、好まし
くは0.1%〜3%であり、反応温度は20℃〜80℃
、好ましくは30℃〜60℃である。 反応時間は条件
によって異なるが、一般に1日〜4日間、好ましくは2
日間〜3日間である。 これより反応温度、反応時間を
大きくするとヘパリンの持つ抗凝固活性が失われる可能
性があり好ましくない。
The heparin concentration at this time is 0.05% to 50%, preferably 0.1% to 3%, and the reaction temperature is 20°C to 80°C.
, preferably 30°C to 60°C. The reaction time varies depending on the conditions, but is generally 1 to 4 days, preferably 2 days.
The duration is between 1 and 3 days. If the reaction temperature and reaction time are made larger than this, the anticoagulant activity of heparin may be lost, which is not preferable.

血液と接触する部分を有する医療用器具において、血液
と接触する部分の表面の少なくとも一部が上記の抗血栓
性医療材料から構成されている医療用器具を製造する方
法として、アミノ基が導入されたポリ塩化ビニル系重合
体を他の樹脂・添加剤と共に押しだし、射出成形、また
は溶液からのキャスト成形、適当な凝固浴を用いる湿式
成形等により医療用成形物を得た後、ポリエチレングリ
コールジグリシジルエーテをカップリング剤として共有
結合せしめる方法がある。
As a method for manufacturing a medical device having a part that comes into contact with blood, at least a part of the surface of the part that comes into contact with blood is composed of the above-mentioned antithrombotic medical material, an amino group is introduced. After extruding the polyvinyl chloride polymer with other resins and additives to obtain medical moldings by injection molding, cast molding from a solution, wet molding using an appropriate coagulation bath, etc., polyethylene glycol diglycidyl There is a method of covalently bonding ether as a coupling agent.

これら上記抗血栓性医療材料は成形物基材と相溶性に優
れ、接着性がよく、ひび割れ、剥離の無いヘパリン結合
層を形成することができる。
These antithrombotic medical materials have excellent compatibility with the base material of the molded article, have good adhesive properties, and can form a heparin bonding layer without cracking or peeling.

このようにして得られた抗血栓性医療材料表面は基材医
療成形物の形状・物性を維持しながら長期に安定した抗
血栓性を有し、血管的留置カテーテル、血液回路、血液
濾過器、血漿分離器のような血液と接触するような医療
用具の材料として好適に使用される。
The surface of the antithrombotic medical material thus obtained has long-term stable antithrombotic properties while maintaining the shape and physical properties of the base medical molded material, and can be used in indwelling vascular catheters, blood circuits, blood filters, etc. It is suitably used as a material for medical devices that come into contact with blood, such as plasma separators.

〈実施例〉 以下に実施例によって本発明を説明するが、本発明はこ
れによって限定されるものではない。
<Examples> The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

(実施例1) 1) アミノ基が導入されたポリ塩化ビニル系重合体の
合成 ポリ塩化ビニル(重合度11000)20をN、N−ジ
メチルホルムアミド400mJ2に溶解し、20gのア
ジ化ナトリウムを添加し、60℃ 2時間反応せしめ、
水に再沈後メタノールで洗浄し、乾燥することによりア
ジド化ポリ塩化ビニルを得た。
(Example 1) 1) Synthesis of polyvinyl chloride polymer with amino groups introduced Polyvinyl chloride (degree of polymerization 11000) 20 was dissolved in 400 mJ2 of N,N-dimethylformamide, and 20 g of sodium azide was added. , reacted at 60°C for 2 hours,
After reprecipitation in water, the mixture was washed with methanol and dried to obtain azidated polyvinyl chloride.

このアジド化ポリ塩化ビニル20gをテトラヒドロフラ
ン660mρに溶解し、水素化リチウムアルミニウム8
gを添加し、窒素雰囲気下60℃、2時間反応せしめ、
反応終了後、水160mρを徐々に加えて残存する水素
化リチウムアルミニウムを分解し、無機塩を濾過・分離
した。
20 g of this azide polyvinyl chloride was dissolved in 660 mρ of tetrahydrofuran, and 8 g of lithium aluminum hydride was dissolved in 660 mρ of tetrahydrofuran.
g was added and reacted at 60°C for 2 hours under nitrogen atmosphere,
After the reaction was completed, 160 mρ of water was gradually added to decompose the remaining lithium aluminum hydride, and the inorganic salt was filtered and separated.

濾液を濃縮し、希塩酸中で透析することよりアミノ化ポ
リ塩化ビニル塩酸塩を得た。
The filtrate was concentrated and dialyzed in dilute hydrochloric acid to obtain aminated polyvinyl chloride hydrochloride.

この重合体の組成は元素分析の結果、塩化ビニルjlL
位81 、 6 mofL%、ビニルアミン単位18.
4moJ2%であった。 また炎光分析、ICP発光分
析によりアミノ化ポリ塩化ビニル中にはLiが0.2%
以下、Anが1%以下であり、精製が十分おこなわれて
いることがわ力じた。
As a result of elemental analysis, the composition of this polymer was found to be vinyl chloride.
position 81, 6 mofL%, vinylamine unit 18.
It was 4moJ2%. In addition, according to flame light analysis and ICP emission analysis, Li was found to be 0.2% in aminated polyvinyl chloride.
Hereinafter, it was emphasized that the An content was 1% or less, and that the purification was sufficiently performed.

2)抗血栓性医療材料の製造 1)で得られたアミン基が導入されたポリ塩化ビニル系
重合体をテトラヒドロフランに溶解した5重量%溶液か
らキャスティングにてシート状の成形物を得た。
2) Production of antithrombotic medical material A sheet-like molded product was obtained by casting from a 5% by weight solution of the polyvinyl chloride polymer into which amine groups obtained in 1) had been dissolved in tetrahydrofuran.

ポリエチレングリコールジグリシジルエーテル(数平均
分子量1.too)o、togを10mJ2の水に溶解
させ、先に得られたシートを浸漬し、45℃ 24時間
反応させることによりアミノ基が導入されたポリ塩化ビ
ニル系重合体のアミノ基とポリエチレングリコールシダ
リンゾルエーテルの一方の末端グリシジル基とを共有結
合した。 更に該シートをヘパリンナトリウムを1.0
wt%含む生理食塩水に浸漬し、45℃ 4日間反応さ
せることにより、他方の末端グリシジル基とヘパリンの
アミノ基を共有結合させた。 2.0MのNaCβで洗
浄する事により未共有結合ヘパリンを除去、蒸留水洗浄
し、乾燥した。
Polyethylene glycol diglycidyl ether (number average molecular weight 1.too) o, tog was dissolved in 10 mJ2 of water, the sheet obtained earlier was immersed, and reacted at 45°C for 24 hours to form a polychloride into which amino groups were introduced. The amino group of the vinyl polymer and the glycidyl group at one end of polyethylene glycol sidaline sol ether were covalently bonded. Furthermore, the sheet was coated with 1.0 heparin sodium.
The other terminal glycidyl group and the amino group of heparin were covalently bonded by immersing it in a physiological saline solution containing wt% and reacting at 45° C. for 4 days. Uncovalently bound heparin was removed by washing with 2.0 M NaCβ, followed by washing with distilled water and drying.

該シートのヘパリン共有結合層のヘパリンに由来する硫
黄の量をX線光電子分光法により測定したところ1.7
5原子IoOf1%であった。
The amount of sulfur derived from heparin in the heparin covalent bonding layer of the sheet was measured by X-ray photoelectron spectroscopy and was found to be 1.7.
The 5-atom IoOf was 1%.

(実施例2) 1)抗血栓性医療材料を備えた医療用器具の製造 実施例1の1)で得られたアミノ基が導入されたポリ塩
化ビニル系重合体をテトラヒドロフランの3重量%溶液
とし、軟質ポリ塩化ビニル製のシート(可塑剤ジエチル
へキシルフタレート含有率45部)の内面及び外面にデ
ィッピングによりコーティングを施した。
(Example 2) 1) Manufacture of medical device equipped with antithrombotic medical material The polyvinyl chloride polymer into which amino groups were introduced obtained in Example 1, 1) was dissolved in 3% by weight of tetrahydrofuran. The inner and outer surfaces of a soft polyvinyl chloride sheet (plasticizer content of diethylhexyl phthalate: 45 parts) were coated by dipping.

ポリエチレングリコールジグリシジルエーテル(数平均
分子量1.Zoo)0.10gをtomxの水に溶解さ
せ、先に得られた軟質ポリ塩化ビニルシートを浸漬し、
45℃ 24時間反応させることによりアミノ基が導入
されたポリ塩化ビニル系重合体のアミノ基とポリエチレ
ングリコールシダリンゾルエーテルの一方の末端グリシ
ジル基とを共有結合した。 更に該シートをヘパリンナ
トリウムを1wt%含む生理食塩水に浸漬し、45℃ 
4日間反応させることにより、他方の末端グリシジル基
とヘパリンのアミノ基を共有結合させた。  2.0M
のNaCnで洗浄する事により未共有結合ヘパリンを除
去、蒸留水洗浄し、乾燥した。
0.10 g of polyethylene glycol diglycidyl ether (number average molecular weight 1.Zoo) was dissolved in TOMX water, and the previously obtained soft polyvinyl chloride sheet was immersed.
By reacting at 45° C. for 24 hours, the amino group of the polyvinyl chloride polymer into which amino groups had been introduced was covalently bonded to one terminal glycidyl group of polyethylene glycol sidaline sol ether. Furthermore, the sheet was immersed in physiological saline containing 1 wt% heparin sodium and heated at 45°C.
By reacting for 4 days, the other terminal glycidyl group and the amino group of heparin were covalently bonded. 2.0M
Uncovalently bound heparin was removed by washing with NaCn, followed by washing with distilled water and drying.

該シートのヘパリン共有結合層のヘパリンに由来する硫
黄の量をX線光電子分光法により測定したところ1.2
1原子moj2%であった。
The amount of sulfur derived from heparin in the heparin covalent bonding layer of the sheet was measured by X-ray photoelectron spectroscopy and was found to be 1.2.
The moj per atom was 2%.

(実施例3) ■)抗血栓性を備えた医療用器具の製造実施例1の1)
で得られたアミノ基が導入されたポリ塩化ビニル系重合
体をテトラヒドロフランの3重量%溶液とし、軟質ポリ
塩化ビニル製のチューブ(内径1.4mm、長さ200
mm)にコーティングを行ない、実施例2と同様の方法
でヘパリンを結合した。
(Example 3) ■) Manufacturing of a medical device with antithrombotic properties Example 1-1)
The amino group-introduced polyvinyl chloride polymer obtained above was made into a 3% by weight solution in tetrahydrofuran, and a soft polyvinyl chloride tube (inner diameter 1.4 mm, length 200 mm
mm), and heparin was bound in the same manner as in Example 2.

該チューブの抗血栓性をChandlerの回転チュー
ブ法(A、 8. Chandler、 Labora
toryInvestigation、 7. pH0
(1958))により評価した。 該チューブに兎静脈
から採血した新鮮な血液を注入し、該チューブをシリコ
ンチューブで接続した後、毎分8回転の速度で回転させ
たところ、90分の回転においても血栓は形成されず閉
塞することはなかった。
The antithrombotic properties of the tube were determined by Chandler's rotating tube method (A, 8. Chandler, Labora
toryInvestigation, 7. pH0
(1958)). Fresh blood collected from the rabbit vein was injected into the tube, the tube was connected with a silicone tube, and the tube was rotated at a speed of 8 revolutions per minute. No thrombus was formed and the tube was occluded even after 90 minutes of rotation. That never happened.

また該チューブの抗血栓性を家兎A−Vシャント法によ
り評価した。 即ち該チューブで2、家兎頚部勤−静脈
間シヤントを形成し、所定時間ごとに採血し、フィブリ
ノーゲン、血小板数、ATm、A PTTを測定した。
Further, the antithrombotic properties of the tube were evaluated using the rabbit A-V shunt method. That is, a shunt between the rabbit neck and vein was formed using the tube, blood was collected at predetermined intervals, and fibrinogen, platelet count, ATm, and APTT were measured.

 第3図にその結果をそれぞれ第3図(a)、(b)、
(C)および(d)として示す。 該チューブによる循
環血液はフィブリノーゲン(第3図(a))、ATIr
l活性(第3図(C))とも高値を維持すると共にAP
TT(第3図(d))の延長も認められず、凝固系の活
性化が抑制されていることを示した。
The results are shown in Figure 3 (a), (b), respectively.
Shown as (C) and (d). The blood circulating through the tube contains fibrinogen (Fig. 3(a)), ATIr
AP activity (Fig. 3 (C)) remains high and AP
No prolongation of TT (Figure 3(d)) was observed, indicating that activation of the coagulation system was suppressed.

(比較例1) 実施例3で用いた軟質ポリ塩化ビニル製のチューブに本
発明の処理を施さず、そのまま実施例3と同様にCha
ndlerの回転チューブ法に従い評価したところ6〜
9分の回転で血栓が形成され、閉塞した。
(Comparative Example 1) The soft polyvinyl chloride tube used in Example 3 was not subjected to the treatment of the present invention, but was treated with Cha in the same manner as in Example 3.
When evaluated according to Ndler's rotating tube method, it was 6 ~
A thrombus formed and occluded after 9 minutes of rotation.

また、該チューブで家兎頚部動−静脈間シヤントを形成
し、所定時間ごとに採血し、フィブリノーゲン、血小板
数、A T Hl、APTTを測定した。 第3図にそ
の結果をそれぞれ示す。 該チューブによる環境血液は
フィブリノーゲン(第3図(a))、ATII+活性(
第3図(C))の低下、凝固因子の欠乏によるAPTT
(第3図(d))の延長が肥められ、凝固系が活性化さ
れていることを示した。
In addition, a rabbit cervical arterio-venous shunt was formed using the tube, blood was collected at predetermined intervals, and fibrinogen, platelet count, AT Hl, and APTT were measured. Figure 3 shows the results. The environmental blood from the tube contains fibrinogen (Fig. 3(a)), ATII+ activity (
Figure 3 (C)) decrease, APTT due to coagulation factor deficiency
The extension (Fig. 3(d)) became thicker, indicating that the coagulation system was activated.

〈本発明の効果〉 本発明法により得られる抗血栓性医療材料は、アミノ基
が導入されポリ塩化ビニル系重合体により基材との接着
性に優れ、これに結合したヘパリンの抗凝血活性により
長期にわたって抗血栓性を示し、かつヘパリンの溶出が
ないので異常出血、副作用などがなく、血管内留置カテ
ーテル、血液回路、血液濾過器、血漿分離器などの医療
用器具として好適に使用される。
<Effects of the present invention> The antithrombotic medical material obtained by the method of the present invention has excellent adhesion to the base material due to the polyvinyl chloride polymer into which amino groups have been introduced, and the anticoagulant activity of heparin bound to this material is excellent. It exhibits antithrombotic properties over a long period of time, and since there is no elution of heparin, there is no abnormal bleeding or side effects, and it is suitable for use as medical devices such as intravascular catheters, blood circuits, blood filters, and plasma separators. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施する手順を示す図である。 第2図は、ポリ塩化ビニル重合体にアジド基が導入され
る経時変化を示す図である。 第3図は、実施例および比較例における抗血栓性を示す
図であり、(a)はフィブリノーゲンノ、(b)は血小
板数の、(c)はA T IIIの、(d)はAPTT
のシャント時間との関係を示す図である。 F I G、 2 時 間(hr) F I G、 3 Shunt  Time (hr) Shunt  Time(hr)
FIG. 1 is a diagram showing the procedure for carrying out the method of the present invention. FIG. 2 is a diagram showing changes over time in the introduction of an azide group into a polyvinyl chloride polymer. FIG. 3 is a diagram showing the antithrombotic properties in Examples and Comparative Examples, in which (a) is fibrinogen, (b) platelet count, (c) AT III, and (d) APTT.
It is a figure which shows the relationship with shunt time. F I G, 2 hours (hr) F I G, 3 Shunt Time (hr) Shunt Time (hr)

Claims (2)

【特許請求の範囲】[Claims] (1)アミノ基が導入されたポリ塩化ビニル系重合体の
アミノ基とポリエチレングリコールシダリンゾルエーテ
ルの一方の末端グリシジル基とを共有結合させた後、他
方の末端グリシジル基とヘパリンのアミノ基を共有結合
させることを特徴とする抗血栓性医療材料の製造方法。
(1) After covalently bonding the amino group of the polyvinyl chloride polymer into which an amino group has been introduced and one terminal glycidyl group of polyethylene glycol sidaline sol ether, the other terminal glycidyl group and the amino group of heparin are bonded together. A method for producing an antithrombotic medical material characterized by covalent bonding.
(2)血液と接触する部分を有する医療用器具において
、血液と接触する部分の表面の少なくとも一部が請求項
1に記載の方法に製造された抗血栓性医療材料で構成さ
れていることを特徴とする医療用器具。
(2) In a medical device having a part that comes into contact with blood, at least a part of the surface of the part that comes into contact with blood is made of the antithrombotic medical material produced by the method according to claim 1. Characteristic medical equipment.
JP2328320A 1990-11-28 1990-11-28 Production of antithrombotic medical treating material and medical treating implement having antithrombotic medical treating material Pending JPH04197264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2328320A JPH04197264A (en) 1990-11-28 1990-11-28 Production of antithrombotic medical treating material and medical treating implement having antithrombotic medical treating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328320A JPH04197264A (en) 1990-11-28 1990-11-28 Production of antithrombotic medical treating material and medical treating implement having antithrombotic medical treating material

Publications (1)

Publication Number Publication Date
JPH04197264A true JPH04197264A (en) 1992-07-16

Family

ID=18208925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328320A Pending JPH04197264A (en) 1990-11-28 1990-11-28 Production of antithrombotic medical treating material and medical treating implement having antithrombotic medical treating material

Country Status (1)

Country Link
JP (1) JPH04197264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098344A1 (en) * 2001-06-05 2002-12-12 Toyo Boseki Kabushiki Kaisha Antithrombotic compositions and medical instruments containing the same
WO2015137259A1 (en) * 2014-03-11 2015-09-17 テルモ株式会社 Method for producing medical tool and medical tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098344A1 (en) * 2001-06-05 2002-12-12 Toyo Boseki Kabushiki Kaisha Antithrombotic compositions and medical instruments containing the same
WO2015137259A1 (en) * 2014-03-11 2015-09-17 テルモ株式会社 Method for producing medical tool and medical tool
JPWO2015137259A1 (en) * 2014-03-11 2017-04-06 テルモ株式会社 Method for manufacturing medical device and medical device

Similar Documents

Publication Publication Date Title
US4329383A (en) Non-thrombogenic material comprising substrate which has been reacted with heparin
US4880883A (en) Biocompatible polyurethanes modified with lower alkyl sulfonate and lower alkyl carboxylate
US5017664A (en) Biocompatible polyurethane devices wherein polyurethane is modified with lower alkyl sulfonate and lower alkyl carboxylate
EP1159302B1 (en) Non-thrombogenic silyl modified heparin coating composition and methods for using same
US4326532A (en) Antithrombogenic articles
US4415490A (en) Non-thrombogenic material
JPH01244763A (en) Material for medial treatment and production thereof
WO2000013718A1 (en) New process for preparing surface modification substances
US5035801A (en) Analysis membranes with improved compatibility
JPH04197264A (en) Production of antithrombotic medical treating material and medical treating implement having antithrombotic medical treating material
US5416198A (en) Selective sorbent removal system using polycation activated substrates
JP4626005B2 (en) Hemocompatible composition and medical device coated therewith
JPH0337073A (en) Anti-thrombogenic medical material and its manufacture
JP4032465B2 (en) Thrombogenic substance adsorbent and extracorporeal circulation column
Han et al. Bioinspired polyethersulfone membrane design via blending with functional polyurethane
JP2710444B2 (en) Manufacturing method of medical materials
KR19990038671A (en) Hemocompatible Polyurethane-Hydrophilic Polymer Blend
JP4258703B2 (en) Hemocompatible composition and medical device coated therewith
JPH032446B2 (en)
JPH0441432A (en) Heparin sustained release material and production thereof
JPS6351452B2 (en)
JPH0343424A (en) High-molecular material compatible with blood
JP2002355553A (en) Endotoxin removing membrane
JPS5952170B2 (en) Anticoagulant hydrogel substrate
JPS6020499B2 (en) Partial sulfate ester chlorination method for cellulose molded products