JPH04196496A - Controller for co2 laser oscillator - Google Patents

Controller for co2 laser oscillator

Info

Publication number
JPH04196496A
JPH04196496A JP32728690A JP32728690A JPH04196496A JP H04196496 A JPH04196496 A JP H04196496A JP 32728690 A JP32728690 A JP 32728690A JP 32728690 A JP32728690 A JP 32728690A JP H04196496 A JPH04196496 A JP H04196496A
Authority
JP
Japan
Prior art keywords
concentration
chamber
control valve
mixed gas
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32728690A
Other languages
Japanese (ja)
Inventor
Koichi Shimizu
宏一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Amada Co Ltd
Original Assignee
Amada Co Ltd
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd, Okuma Machinery Works Ltd filed Critical Amada Co Ltd
Priority to JP32728690A priority Critical patent/JPH04196496A/en
Publication of JPH04196496A publication Critical patent/JPH04196496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To reduce the amount of consumption of laser gas without lowering oscillating efficiency by operating a control valve based on compared values between a set point and a detected value by an O2 concentration sensor within a chamber. CONSTITUTION:O2 concentration in an oscillator chamber is detected by an O2 concentration sensor 8, and its detected value is input to a comparative processing unit 9 and compared to a set point previously input. Based on the results of the comparison, a control valve of a mixed gas supply way is operated and mixed gas supply to the chamber 3 is interrupted or continued. When the supply is interrupted, O2 concentration rises up gradually. When the supply is started, the O2 concentration is lowered by the new mixed gas. By doing this, the gas consumption is controlled in conformity with the running situation of the oscillator and the gas consumption is reduced within the range not adversely affecting the oscillating efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はCO2レーザ発振器の効率運転のための制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a control device for efficient operation of a CO2 laser oscillator.

従来の技術 従来使用されているC Oe レーザ発振器はCO9、
N、、Heのそれぞれのガスボンベから供給されたガス
が第5図に示すようにガス混合装置1において一定の混
合比例えばCO7・Nt:He=1+12+15に混合
されて発振器チャンバ3に送られる。発振器チャンバ3
内はCO2分子に励起エネルギーを与えるためにグロー
放電を行う放電電極、ガスを循環・冷却するための送風
機、熱交換器、COt分子から発生する光を誘導放出し
増幅するための光共振器等が含まれた公知のものである
。レーザ出力指令を受ける放it源2によってチャンバ
3内の放電電極に電力が供給されグロー放電が行われる
。このグロー放電を安定して維持するためにチャンバ3
内の圧力を検出する圧力センサ6が設けられており、こ
の検出値a1は比較演算装置7に入力され圧力設定値a
0と比較演算されて真空ポンプ5への排気路中に設けた
制御弁4を制御してチャンバ3内を数十torrの真空
に保っている。
Conventional technology The C Oe laser oscillator conventionally used is CO9,
Gases supplied from respective gas cylinders of N, , and He are mixed in a gas mixing device 1 at a constant mixing ratio, for example, CO7.Nt:He=1+12+15, as shown in FIG. 5, and sent to the oscillator chamber 3. Oscillator chamber 3
Inside are a discharge electrode that performs glow discharge to give excitation energy to CO2 molecules, a blower to circulate and cool the gas, a heat exchanger, an optical resonator to stimulately emit and amplify the light generated from COt molecules, etc. This is a well-known one that includes. Electric power is supplied to the discharge electrode in the chamber 3 by the radiation source 2 which receives a laser output command, and glow discharge is performed. In order to maintain this glow discharge stably, chamber 3
A pressure sensor 6 is provided to detect the internal pressure, and this detected value a1 is inputted to a comparator 7 and set as a pressure set value a.
0 and controls the control valve 4 provided in the exhaust path to the vacuum pump 5 to maintain the chamber 3 at a vacuum of several tens of torr.

発明が解決しようとする課題 この従来のものではチャンバ3内の真空所定値に保たれ
る。しかし発振器チャンバ3内でグロー放電か起きると
CO2分子にエネルギーか与えられるために、CO2→
CO+(1/2)0*の反応か起こり放−電流とチャン
バ3内の0.濃度は第6図のような関係て上昇する。
Problems to be Solved by the Invention In this conventional device, the vacuum inside the chamber 3 is maintained at a predetermined value. However, when a glow discharge occurs in the oscillator chamber 3, energy is given to CO2 molecules, so CO2→
A reaction of CO+(1/2)0* occurs, causing a discharge current and 0. The concentration increases as shown in FIG.

放電電流とレーザ出力は比例関係にあってレーザ出力は
放電電流によって制御されるためレーザ出力の小さい時
には発振器−チャンバ3内の0.濃度は低く、レーザ出
力が大きい時には発振器チャンバ内のO2濃度は高くな
る。 O2濃度か高くなると発振効率を低下させるとい
う問題かある。
There is a proportional relationship between the discharge current and the laser output, and the laser output is controlled by the discharge current, so when the laser output is small, the 0. The concentration is low, and when the laser power is high the O2 concentration in the oscillator chamber is high. There is a problem that as the O2 concentration increases, the oscillation efficiency decreases.

また発振器特有の最大レーザ出力に相当する放電電流に
おいてO2濃度を発振効率に影響を及ぼさないレベル以
下に押さえる必要かあったためガス消費量は放電電流(
レーザ出力)にかかわらず第7図のように一定値であり
不経済になる問題かあった。
In addition, at the discharge current corresponding to the maximum laser output peculiar to the oscillator, it was necessary to suppress the O2 concentration below a level that does not affect the oscillation efficiency, so the gas consumption was reduced by the discharge current (
As shown in FIG. 7, the value remains constant regardless of the laser output (laser output), which may be uneconomical.

本発明は従来の技術の有するこのような問題点に鑑みな
されたもので、その目的とするところは発振効率を低下
させることなくレーザガスの消費量を少なくしてランニ
ングコストか低いC○、レーザ発振器の制御装置を提供
しようとするものである。
The present invention was made in view of the above-mentioned problems of the conventional technology, and its purpose is to reduce the consumption of laser gas without reducing the oscillation efficiency, thereby reducing the running cost of a C○ laser oscillator. The present invention aims to provide a control device for the following.

課題を解決するための手段 上述の目的を達成するために本発明は、チャンバ内のO
7a度を検出するO7濃度センサと、前記チャンバへの
混合ガス供給流路を開閉又は調整する制御弁と、前記○
、a度センサの検出値と設定値とを比較しこの比較値に
もとづき前記制御弁を作動させる比較演算装置とを含む
ものである。
Means for Solving the Problems To achieve the above-mentioned objects, the present invention provides
an O7 concentration sensor that detects 7a degrees; a control valve that opens, closes, or adjusts the mixed gas supply flow path to the chamber;
, a comparison calculation device that compares the detected value of the a degree sensor with a set value and operates the control valve based on this comparison value.

作用 発振器チャンバ内のO1濃度かO2濃度センサて検出さ
れ、その検出値か比較演算装置に入力され、予め入力さ
れている設定値と比較される。その比較結果にもとづき
混合ガス供給流路の制市弁を作動させチャンバへの混合
ガス供給を断続させる。供給か断たれると次第に○、濃
度か上昇し、供給か始められると新しい混合ガスにより
O7濃度は低くなる。
The O1 concentration in the active oscillator chamber is detected by the O2 concentration sensor, and the detected value is input to a comparator and compared with a previously input set value. Based on the comparison result, the control valve of the mixed gas supply channel is operated to interrupt the mixed gas supply to the chamber. When the supply is cut off, the O7 concentration gradually increases, and when the supply starts, the O7 concentration decreases due to the new mixed gas.

実施例 以下その実施例を第1図〜第4図にもとつき説明する。Example Examples thereof will be described below with reference to FIGS. 1 to 4.

従来構成の第5図と同し部分につい゛て同符号を付して
説明を省略する。
The same parts as in FIG. 5 of the conventional configuration are designated by the same reference numerals, and the explanation thereof will be omitted.

チャンバ3のO2濃度を検出子る○、濃濃度センサ8を
付加し、その出力は比較演算装置9に入力される。この
比較演算装置9は圧力設定値a。の他に発振効率に悪影
響を及はさない最大の0,111度しベルIのす、と、
レベルIより少し低いO2濃度レヘル■のb2とか予め
設定されてO2濃度設定値として入力されている。そし
て演算装置内では圧力センサ6の検出値aiとo2濃*
センサ8の検出値biとそれぞれの設定値ao+b++
b2との比較演算は時分割によって行う。O2濃度セン
サ8の検出値と設定値との比較結果にもとづきガス混合
装置1よりの供給流路に設けた制御弁10か開閉される
A concentration sensor 8 is added to detect the O2 concentration in the chamber 3, and its output is input to a comparator 9. This comparison calculation device 9 calculates the pressure setting value a. In addition, there is a maximum of 0,111 degrees that does not adversely affect the oscillation efficiency.
The O2 concentration level b2, which is a little lower than level I, is set in advance and inputted as the O2 concentration set value. Then, in the calculation device, the detected value ai of the pressure sensor 6 and the o2 concentration *
Detected value bi of sensor 8 and respective set value ao+b++
The comparison operation with b2 is performed by time division. Based on the comparison result between the detected value of the O2 concentration sensor 8 and the set value, the control valve 10 provided in the supply flow path from the gas mixing device 1 is opened or closed.

このように構成されたものを制御の流れを示す第3図に
もとづき説明する。
The system configured as described above will be explained based on FIG. 3 showing the flow of control.

レーザ発振器の放電電源2か人とされガス混合装ftl
より混合ガスか供給され放電電流(レーザ出力)の増大
とともにO2濃度か第2図のように上昇し、またチャン
バ3内の混合ガス圧も次第に上昇する。電源人とともに
制御動作か開始されステップS1においてチャンバ3の
圧力を圧力センサ6か検出して検出値aiを比較演算装
置9に入力し、ステップS2において時分割の演算によ
って装置に予め入力されている設定値a0とaiとか比
較される。ai≧aOかYESであればステップS3に
おいて、制御弁4を開く。ステップS2においてNoで
あればステップS4において、制御弁4を閉しステップ
Slに移行して制御を繰り返す。一方比較演算装置9内
では時分割に重複しない時間において以下の縞算か前記
の演算と交互に行われる。 即ちステップS y、!’
 、1において、O2濃度センサ8か検出した検出値b
1か比較演算装置9に入力され、ステップS12におい
て予め入力されたレベルI〉レベル■対応の設定値bl
 >t)、のす、と検出値biとかb1≦biの比較を
される。放電電流の上昇につれて02a度も上昇中で始
めは濃度かレベル1より低いからNOてあり、ステップ
S13において、制御弁10か閉しるか閉じたままであ
る。再びステップS11で検出値か比較演算装置9に入
力され、ステップS12の比較かなされしばらくはこの
ループか繰り返される。チャンバ3に混合ガスか供給さ
れないのでチャンバ内の○、濃度は次第に上昇し遂にス
テップS12においてYESとなり、ステップS14に
おいて制御弁10を開く。制御弁lOか開くかれると新
しい混合ガスが混合ガス制御装置Iより供給され○、濃
度は次第に低くなるか直ちには低くならずステップS1
5において検出値biとレベルiより少し低いレベル■
のb2とが比較されb2≦b1かYESであって、ステ
ップS14に移行し制御弁10か開きつづけ、このルー
プか繰り返される。制御弁10の開放によりO7濃度か
下かりステップS15てNOとなればステップS13に
移行して制御弁10か閉じられステップS11.SI2
に移行し、ステップSll。
Laser oscillator discharge power supply with two people and gas mixing device ftl
More mixed gas is supplied, and as the discharge current (laser output) increases, the O2 concentration increases as shown in FIG. 2, and the mixed gas pressure in the chamber 3 also gradually increases. A control operation is started together with the power supply person, and in step S1, the pressure in the chamber 3 is detected by the pressure sensor 6, and the detected value ai is input to the comparison calculation device 9, and in step S2, it is previously input to the device by time-sharing calculation. The set values a0 and ai are compared. If ai≧aO or YES, the control valve 4 is opened in step S3. If No in step S2, the control valve 4 is closed in step S4, and the process moves to step Sl to repeat the control. On the other hand, in the comparison calculation device 9, the following fringe calculation or the above calculation is performed alternately at times that do not overlap in time division. That is, step S y,! '
, 1, the detection value b detected by the O2 concentration sensor 8
1 or the set value bl corresponding to level I>level ■ is inputted to the comparison calculation device 9 and inputted in advance in step S12.
>t), then the detected value bi or b1≦bi is compared. As the discharge current rises, the concentration also rises by 02a degrees, and since the concentration is initially lower than level 1, the answer is NO, and in step S13, the control valve 10 is closed or remains closed. Again in step S11, the detected value is input to the comparison calculation device 9, and a comparison is made in step S12, and this loop is repeated for a while. Since no mixed gas is supplied to the chamber 3, the concentration in the chamber gradually increases, and finally the answer is YES in step S12, and the control valve 10 is opened in step S14. When the control valve lO is opened, a new mixed gas is supplied from the mixed gas control device I, and the concentration gradually decreases or does not decrease immediately at step S1.
5, detection value bi and level slightly lower than level i■
b2 is compared, and if b2≦b1 or YES, the process moves to step S14, the control valve 10 continues to open, and this loop is repeated. If the O7 concentration decreases due to the opening of the control valve 10 and the answer is NO in step S15, the process moves to step S13 where the control valve 10 is closed and step S11. SI2
The process moves to step Sll.

12.13のループか繰り返される。そして第2図のよ
うに02濃度はレベルI、Hの間を波状に進行し設定値
内で安定した濃度となる。したかつて放電電流を充分に
供給した状態の運転か常に持続されるわけてはないから
低出力時には放it流も小さくなり混合ガス消費量を低
くおさえることかでき第4図のような消費量となる。
12.13 loop is repeated. Then, as shown in FIG. 2, the 02 density progresses in a waveform between levels I and H, and becomes a stable density within the set value. However, since the operation in which a sufficient discharge current is supplied cannot always be maintained, the discharge current also becomes small at low output, and the mixed gas consumption can be kept low, resulting in the consumption as shown in Figure 4. Become.

尚本実施例では制御弁を開閉動作となしたか開閉としな
い流量制御弁を用いることもできる。
In this embodiment, it is also possible to use a flow rate control valve that either opens and closes the control valve or does not open and close the control valve.

発明の効果 上述のように構成したので本発明は以下の効果を奏する
み 発振器の運転状況に合わせたガス消費量か制御され、発
振効率に悪影響を及はさない範囲てガス消費量か少なく
てきる。即ちランニングコストを低くできる。
Effects of the Invention As configured as described above, the present invention has the following effects.The gas consumption is controlled in accordance with the operating conditions of the oscillator, and the gas consumption is reduced to the extent that the oscillation efficiency is not adversely affected. Ru. In other words, running costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御ブロック線図、第2図は本発明の
放電電流と02濃度の関係を示す図、第3図は制御の流
れ図、第4図は本発明の放電電流とガス消費量の関係を
示す図、第5図は従来の制御ブロック図、第6図は放電
電流と02濃度の関係図、第7図は従来のガス消費量を
示す図である。
Fig. 1 is a control block diagram of the present invention, Fig. 2 is a diagram showing the relationship between discharge current and 02 concentration of the present invention, Fig. 3 is a control flow chart, and Fig. 4 is a diagram showing the discharge current and gas consumption of the present invention. FIG. 5 is a conventional control block diagram, FIG. 6 is a diagram showing the relationship between discharge current and 02 concentration, and FIG. 7 is a diagram showing conventional gas consumption.

Claims (1)

【特許請求の範囲】[Claims] (1)レーザ発振器チャンバ内を一定圧力に保ちグロー
放電を行わせてレーザビームを発生させるCO_2レー
ザ発振器において、前記チャンバ内のO_2濃度を検出
するO_2濃度センサと、前記チャンバへの混合ガス供
給流路を開閉又は調整する制御弁と、前記O_2濃度セ
ンサの検出値と設定値とを比較しこの比較値にもとづき
前記制御弁を作動させる比較演算装置とを含むことを特
徴とするCO_2レーザ発振器の制御装置。
(1) In a CO_2 laser oscillator that generates a laser beam by keeping the inside of the laser oscillator chamber at a constant pressure and causing glow discharge to occur, there is an O_2 concentration sensor that detects the O_2 concentration in the chamber, and a mixed gas supply flow to the chamber. A CO_2 laser oscillator characterized in that it includes a control valve that opens, closes or adjusts a passage, and a comparison calculation device that compares a detected value of the O_2 concentration sensor with a set value and operates the control valve based on this comparison value. Control device.
JP32728690A 1990-11-28 1990-11-28 Controller for co2 laser oscillator Pending JPH04196496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32728690A JPH04196496A (en) 1990-11-28 1990-11-28 Controller for co2 laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32728690A JPH04196496A (en) 1990-11-28 1990-11-28 Controller for co2 laser oscillator

Publications (1)

Publication Number Publication Date
JPH04196496A true JPH04196496A (en) 1992-07-16

Family

ID=18197431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32728690A Pending JPH04196496A (en) 1990-11-28 1990-11-28 Controller for co2 laser oscillator

Country Status (1)

Country Link
JP (1) JPH04196496A (en)

Similar Documents

Publication Publication Date Title
KR100289097B1 (en) Gas laser device
JPH04196496A (en) Controller for co2 laser oscillator
JP3297108B2 (en) Excimer laser device control method
JPH0429386A (en) Excimer laser
EP0374164B1 (en) Laser gas flow control apparatus and method
JP2539835B2 (en) Gas laser device
JP3044060B2 (en) Laser gas supply control device in gas laser oscillator
JPH04176177A (en) Laser gas supply control method of gas laser oscillator
JPH0250837B2 (en)
JPS62282478A (en) Gas laser oscillator
JP2657808B2 (en) Gas laser device
JPH04137576A (en) Discharge-pumped gas laser oscillator
JPS63204683A (en) Gas laser device
JPS62214686A (en) Laser gas injection in gas laser oscillator
JP2541564B2 (en) Gas laser device
JP2651247B2 (en) Gas laser oscillator
JPS60115280A (en) Gas laser oscillator
JPS61229383A (en) Gas fluid laser oscillator
JPH09266342A (en) Gas laser oscillator
JPH06169120A (en) Gas replenishing method for excimer laser device
JPH0636446B2 (en) Laser oscillator
JP3788850B2 (en) Control device for discharge pumped laser device
JPH03227080A (en) Excimer laser device
JPH03194991A (en) Excimer laser device
JPS62186579A (en) Gas controlling method for laser oscillator