JPH0419586A - Position and azimuth recognizing method for moving body - Google Patents

Position and azimuth recognizing method for moving body

Info

Publication number
JPH0419586A
JPH0419586A JP2123500A JP12350090A JPH0419586A JP H0419586 A JPH0419586 A JP H0419586A JP 2123500 A JP2123500 A JP 2123500A JP 12350090 A JP12350090 A JP 12350090A JP H0419586 A JPH0419586 A JP H0419586A
Authority
JP
Japan
Prior art keywords
light
moving body
reflected
moving
moving object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2123500A
Other languages
Japanese (ja)
Other versions
JP2886617B2 (en
Inventor
Takuya Nakatani
卓也 中谷
Yoshiko Okamura
佳子 岡村
Toshihiro Tsumura
俊弘 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2123500A priority Critical patent/JP2886617B2/en
Publication of JPH0419586A publication Critical patent/JPH0419586A/en
Application granted granted Critical
Publication of JP2886617B2 publication Critical patent/JP2886617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily recognize the position and moving direction of the moving body by using a travel distance corresponding to the time interval between photodetected pulses of reflected light beams from two light reflecting means which are installed in a travel path and reflect sectorial light beams in two direction of moving body projection. CONSTITUTION:Light emitting and receiving means 2 and 3 installed on the top surface of the moving body 1 project the sectorial light beams A and B upward. The plane beam A is at right angles to the travel direction Y of the moving body 1 and the plane beam B is at an angle to it. Then the retroreflecting means 4 and 5 which reflect incident light in the same direction are provided on the ceiling surface of a room in the environment of the travel path of the moving body 1. Those beams A and B are reflected by the means 4 and 5 and their reflected light beams are photodetected by the means 2 and 3 to find the time interval between the generated photodetected pulses. The position and azimuth of the moving body 1 can be found from the travel distance of the corresponding moving body 1. Thus, the azimuth is also confirmed without providing any azimuth recognizing means.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は移動体の位置及び進行方向の方位を検出するた
めの移動体の位置方位認識方法に関する。
The present invention relates to a method for recognizing the position and orientation of a moving body for detecting the position and heading direction of the moving body.

【従来の技術】[Conventional technology]

たとえば工場内の無人搬送車や、住宅内の人間を補助す
るような移動車、建設現場における施工用移動車等の移
動体を所定のコースに沿って走行させるにあたり、移動
体そのものが自身の位置及び進行方向の方位(基準方位
に対するずれ)を認識して走行できるようにすれば、移
動体の走行制御がきわめて簡便になる。 そしてこのような移動体の位置方位認識方法として、特
開昭62−172215号公報に示されたものがある。 これは移動体に搭載した二組の発光受光手段と、移動体
の進行経路の環境中に設置されて上記二組の発光受光手
段がら夫々発射された光を各発光受光手段に戻す一対の
再帰的光反射手段とからなる位置認識手段及び移動体の
移動距離(速度)検出手段と、この位置認識手段とは別
の手段として設けられた方位認識手段とがら構成されて
いる。
For example, when moving a moving object such as an automatic guided vehicle in a factory, a moving vehicle that assists people in a house, or a construction vehicle at a construction site along a predetermined course, the moving object itself has to keep track of its own position. If the traveling direction of the moving body (deviation from the reference direction) can be recognized while traveling, the running control of the moving body becomes extremely simple. A method of recognizing the position and orientation of such a moving body is disclosed in Japanese Patent Application Laid-Open No. 172215/1983. This consists of two sets of light-emitting light-receiving means mounted on a moving body, and a pair of return lights installed in the environment of the traveling path of the moving body and returning the light emitted from the two sets of light-emitting light-receiving means to each light-emitting light-receiving means. The apparatus includes a position recognition means including a target light reflection means, a moving distance (velocity) detection means of a moving object, and an orientation recognition means provided as a separate means from the position recognition means.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、上E従来例においては1位置認識手段と移動距
離検出手段のほかに、別途方位認識手段が必要となって
いるために、更に簡略化された機材で位置方位の認識が
できるものが望まれている。 本発明はこのような点に鑑み為されたものであり、その
目的とするところは移動体の位置及び移動方向を簡便に
認識することができる移動体の位置方位認識方法を提供
するにある。 に課題を解決するための手段】 しかして本発明は、移動体から投射された2方向の扇状
光ビームを移動体の進行経路の環境中に配された二つの
再帰的光反射手段で反射させてこの反射光を移動体上の
一対の受光手段で受光するものであって、上記2方向の
扇状光ビームを移動体の移動に伴って上記各光反射手段
で反射させるとともに、これら反射光を上記受光手段で
受光して発生する受光パルスの時間間隔に対応する移動
体の走行距離から、移動体の位置及び方位を求めること
に特徴を有している。 [作用] 本発明によれば、移動体の位置はもちろん、別途方位認
識手段を必要とすることなく、方位も認識することがで
きる。 し実施例] 以下本発明を図示の実施例に基づいて詳述すると、第1
図及び第2図において、1は自走式の移動体であり、こ
の移動体1の上面には2組の発光受光手P12.3が設
置されている。これら発光受光手段2.3は、共に上方
に向けて扇状の光ビームA、Bを投射するもので、発光
受光手段2が投射する平面状の光ビームAは、ここでは
第2図(亀)に示すように、移動体lの進行方向Yに対
して直角をなすように、そして発光受光手段3が投射す
る平面状の光ビームBは上記光ビームAに対して平面視
で角度ψをなすようにされている。 そして、この移動体1の進行経路の環境中、ここでは移
動体lが床面を走行する室内の天井面には、一対の光反
射手段4.5が所定の間隔diをおいて設置されている
。これら光反射手段4.5としては、入射した光を同じ
方向に返す再帰的光反射手段、たとえば第4図に示すコ
ーナーキューブ(コーナーキューブプリズムとも称す)
が使用される。 第3図は上記発光受光手段2.3の一例を示1もので、
ケース20内に配された鏡筒21の内1には、奥から順
に半導体レーザ22、ビームス:リッタ23、シリンド
リカル型のレンズ24、して1/4波長板25が設けら
れ、またビームニブリッタ23の側面と対向するように
受光器2が設けられている。半導体レーザ22から出た
i線光は、ビームスプリッタ23を経てレンズ2に入り
、レンズ24において扇状のビームに変1された後、1
74波長板25を通じて上方に向1て投射される。 また、上記光反射手段4.5で反射されて帰てきた反射
光は、再度174波長板25を通過゛る際に発射された
光と位相が半波長ずれたらのされた後、レンズ24にお
いて直線光に戻されそしてビームスプリッタ23におい
て上記位相ずれの故に受光器26側へと反射され、受光
器6に入射する。 尚、移動体1はその走行車輪の回転数等からなくとも走
行距離を測定することができるものとする。また、上記
一対の光反射手段4.5は、この両者を結ぶ線が移動体
1の進行についての基準方位Xと直交するように配置さ
れるものとする。 更に、発光受光手段2.3が夫々投射する扇状の光ビー
ムA、Hの各投射角度αは、第2図(b)に示すように
、天井面に配された一対の光反射手段4.5を共に見込
む範囲内にあるようにされている。 次に動作について説明する。まず移動体1の方位(基準
方位Xからのずれ角度θ)の認識から説明すると、移動
体1の進行に伴って、発光受光手段2による光ビームA
がいずれがの光反射手段4゜5で反射することによる反
射光を発光受光手段2が最初にうける時点をa、他方の
光反射手段5゜4による反射光を発光受光手段2が次に
受ける時点をbとし、発光受光手段3による光ビームB
がいずれかの光反射手段4.5で反射することによる反
射光を発光受光手H3が最初に受ける時点をC1他方の
光反射手段5.4による反射光を発光受光手段3が次に
受ける時点をdとすれば、第5図に示す場合、移動体1
が図中イ点からa点まで移動する間に、まず0点を経て
、a点、b点、そしてd点を通過することになり、この
時、発光受光手段2.3における受光器26.26は、
移動体1の進行に伴い、第6図に示すパルスPc、Pa
、Pb、Pdを順に発することになる。 ここにおいて、基準方位Xに対する進行方向Yのずれ角
度θは、両光反射手段4.5を結ぶ線と光ビームAとが
なす角度もθとなるために、a点からb点に至る間の移
動体1の走行距離を11とする時、 で算出することができる。dlは前述のように両光反射
手段4.5の間の距離であり、l、は上記パルスPa、
Pbが生じる間の移動距離としてデータを得ることがで
きる。 もっともここで得られる角度θは、正負(基準方位Xに
対して右にずれているのか左にずれているのか)の判別
がつかないが、第7図に示すように、基準方位Xに対す
るずれが逆方向で角度は同じである場合を考えると、こ
の場合、パルスPa。 Pb、Pc、Pdは第8図に示すようになり、そしてこ
の場合、発光受光手段2による光ビームAが二つの光反
射手段4.5による反射光を順次受けるa点からb点ま
での間の走行距離11は第5図に示した場合と同じであ
るものの、光ビームAに対して光ビームBが前述のよう
に角度ψをもつようにされているために、発光受光手段
3が光ビームBのいずれかの光反射手段4.5による反
射光をまず受けて(0点を通過して)から他方の光反射
手段5.4による反射光を受ける(d点を通過する)ま
での間の走行距離!2が第5図に示した場合と興なるこ
とになる。 つまり、発光受光手段2の受光パルスPa、Pb間の走
行距離!、及び発光受光手段3の受光パルスPc、Pd
間の走行距離12と、ずれ角度θとの間に、光ビームA
、B相互間の角度ψに応じた第9図に示す相関があるた
めに、ずれ角度θにつぃて、正負の判別を行うことがで
きるものである。 もちろん、走行距離11が0である時には、移動体1は
基準方位Xに対するずれ角度θがOoであり、走行路1
1zが0である時には、ずれ角度θが一ψであることに
なる。 次に、移動体lの位置の認識であるが、一対のの光反射
手段4.5を結ぶ線上の任意の一点(図では中点)を原
点として、第5図に示すようにX。 y軸を定めた時、この第5図中のd点の座標(x。 y)は単純に幾何学的な計算として求めることができる
。 すなわち、b点とd点との間の移動体1の走行距離を第
10図に示すように!、とすれば、第10図中の■■■
■の各距離が であることから。 となる。 第5図に示す場合以外の時についても、同様に幾何学的
に位置を求めることができる。 尚、ここでは発光受光手段2.3が上方に向けて光ビー
ムA、Bを発するとともに、光反射手段4.5が移動体
lの上方に配された場合について説明したが、これに限
るものではなく、移動体1が空中を移動する場合など、
光ビームA、Bを下方に、光反射手段4.5を移動体1
の下方に配置してもよいものである。 更に、−光反射手段4,5として、第4図(c)に示す
ように、各光反射手段4.5に個別のマスクパターンを
描くことでデジタルコードマークを付して、光反射手段
4.5で反射する光ビームA。 Bの反射光の波形に固有の情報がのるようにしておけば
、複数対の光反射手段4.5を配置して順次移動体1を
誘導することが容易となる。
However, in the above conventional example, in addition to the position recognition means and the travel distance detection means, a separate direction recognition means is required, so it is desirable to be able to recognize the position and direction with even simpler equipment. It is rare. The present invention has been made in view of these points, and its purpose is to provide a method for recognizing the position and orientation of a moving body, which allows the position and direction of movement of a moving body to be easily recognized. [Means for Solving the Problems] Accordingly, the present invention reflects a fan-shaped light beam in two directions projected from a moving object by two recursive light reflecting means arranged in the environment of the moving path of the moving object. The reflected light from the lever is received by a pair of light receiving means on the moving body, and the fan-shaped light beams in the two directions are reflected by the light reflecting means as the moving body moves, and these reflected lights are The present invention is characterized in that the position and orientation of the moving body are determined from the travel distance of the moving body corresponding to the time interval of the light reception pulses generated by the light receiving means. [Operation] According to the present invention, not only the position of a moving object but also the direction can be recognized without requiring a separate direction recognition means. Embodiments] The present invention will be described in detail below based on illustrated embodiments.
In the figures and FIG. 2, 1 is a self-propelled moving body, and two sets of light emitting and receiving hands P12.3 are installed on the upper surface of this moving body 1. These light emitting/receiving means 2.3 project upward fan-shaped light beams A and B, and the planar light beam A projected by the light emitting/receiving means 2 is shown in FIG. As shown in , the planar light beam B projected by the light emitting/receiving means 3 forms an angle ψ with respect to the light beam A in a plan view so as to be perpendicular to the traveling direction Y of the moving body l. It is like that. A pair of light reflecting means 4.5 are installed at a predetermined interval di on the ceiling surface of the room in which the moving object 1 runs on the floor surface in the environment of the traveling path of the moving object 1. There is. These light reflecting means 4.5 include a recursive light reflecting means that returns incident light in the same direction, such as a corner cube (also referred to as a corner cube prism) shown in FIG.
is used. FIG. 3 shows an example of the light emitting and receiving means 2.3.
One of the lens barrels 21 arranged in the case 20 is provided with a semiconductor laser 22, a beam liter 23, a cylindrical lens 24, and a quarter wavelength plate 25 in order from the back, and a beam niblitter. The light receiver 2 is provided so as to face the side surface of the light receiver 23 . The i-line light emitted from the semiconductor laser 22 passes through the beam splitter 23 and enters the lens 2, where it is changed into a fan-shaped beam by the lens 24, and then transformed into a fan-shaped beam.
The light is projected upward through the 74-wavelength plate 25. Further, the reflected light that has been reflected by the light reflecting means 4.5 is passed through the 174-wave plate 25 again with a phase shift of half a wavelength from the emitted light, and is then reflected in the lens 24. The light is returned to a straight line and is reflected by the beam splitter 23 toward the light receiver 26 due to the phase shift, and is incident on the light receiver 6. Note that it is assumed that the traveling distance of the moving body 1 can be measured without using the number of rotations of its running wheels. Further, the pair of light reflecting means 4.5 are arranged so that a line connecting them is perpendicular to the reference direction X for the movement of the moving body 1. Further, each projection angle α of the fan-shaped light beams A and H projected by the light emitting and receiving means 2.3 is determined by a pair of light reflecting means 4.3 arranged on the ceiling surface, as shown in FIG. 2(b). 5 is within the expected range. Next, the operation will be explained. First, to explain the recognition of the orientation of the moving object 1 (deviation angle θ from the reference orientation
A is the point in time when the light emitting/receiving means 2 first receives the reflected light from the light reflecting means 4.5, and the light emitting/receiving means 2 then receives the light reflected by the other light reflecting means 5.4. The time point is b, and the light beam B is emitted by the light emitting and receiving means 3.
is reflected by one of the light reflecting means 4.5 and the light emitting/receiving hand H3 first receives the light reflected by the other light reflecting means 5.4. If d is the moving body 1 in the case shown in FIG.
While moving from point A to point A in the figure, it first passes through point 0, then point a, point b, and then point d, and at this time, the light receiver 26. 26 is
As the moving body 1 moves forward, the pulses Pc and Pa shown in FIG.
, Pb, and Pd are emitted in this order. Here, the deviation angle θ of the traveling direction Y with respect to the reference direction When the traveling distance of the moving body 1 is 11, it can be calculated as follows. dl is the distance between the two light reflecting means 4.5 as described above, and l is the pulse Pa,
Data can be obtained as the distance traveled during the generation of Pb. However, it is difficult to determine whether the angle θ obtained here is positive or negative (whether it is shifted to the right or left with respect to the reference direction If we consider the case where the directions are opposite and the angles are the same, then in this case the pulse Pa. Pb, Pc, and Pd are as shown in FIG. 8, and in this case, the light beam A from the light emitting/receiving means 2 sequentially receives reflected light from the two light reflecting means 4.5 from point a to point b. Although the traveling distance 11 is the same as that shown in FIG. From first receiving the reflected light from one of the light reflecting means 4.5 of the beam B (passing the 0 point) to receiving the reflected light from the other light reflecting means 5.4 (passing the d point) Mileage between! 2 is similar to the case shown in FIG. In other words, the traveling distance between the light receiving pulses Pa and Pb of the light emitting and receiving means 2! , and the light receiving pulses Pc, Pd of the light emitting light receiving means 3
Between the traveling distance 12 between and the deviation angle θ, the light beam A
Since there is a correlation shown in FIG. 9 according to the angle ψ between , B, it is possible to determine whether the deviation angle θ is positive or negative. Of course, when the traveling distance 11 is 0, the deviation angle θ of the moving body 1 with respect to the reference direction X is Oo, and the traveling path 1
When 1z is 0, the deviation angle θ is 1ψ. Next, regarding the recognition of the position of the moving object 1, an arbitrary point (the middle point in the figure) on the line connecting the pair of light reflecting means 4.5 is set as the origin, and the position is set as X as shown in FIG. When the y-axis is determined, the coordinates (x, y) of point d in FIG. 5 can be determined simply by geometric calculation. That is, the traveling distance of the moving body 1 between point b and point d is as shown in FIG. , then ■■■ in Figure 10
■Since each distance is . becomes. In cases other than the case shown in FIG. 5, the position can be determined geometrically in the same way. In addition, although the case where the light emitting light receiving means 2.3 emits the light beams A and B upward and the light reflecting means 4.5 is arranged above the moving object l has been described here, the present invention is not limited to this. Instead, when moving object 1 moves in the air,
The light beams A and B are directed downward, and the light reflecting means 4.5 is connected to the moving body 1.
It may be placed below. Furthermore, as shown in FIG. 4(c), as the light reflecting means 4 and 5, a digital code mark is attached to each light reflecting means 4.5 by drawing an individual mask pattern, and the light reflecting means 4. Light beam A reflected at .5. If specific information is placed on the waveform of the reflected light B, it becomes easy to arrange a plurality of pairs of light reflecting means 4.5 and guide the movable object 1 in sequence.

【発明の効果】【Effect of the invention】

以上のように本発明においては、移動体から投射された
2方向の扇状光ビームを移動体の進行経路の環境中に配
された二つの再帰的光反射手段で反射させてこの反射光
を移動体上の一対の受光手段で受光するものであって、 上記2方向の扇状光ビームを移動体の移動に伴って上記
各光反射手段で反射させるとともに、これら反射光を上
記受光手段で受光して発生する受光パルスの時間間隔に
対応する移動体の走行互層から、移動体の位置及び方位
を求めるものであり、このために2つの扇状光ビームと
光反射手段並びに移動体の走行距離から、別途専用の方
位認識手段を必要とすることなく、方位も認識すること
ができるものである。
As described above, in the present invention, a fan-shaped light beam in two directions projected from a moving object is reflected by two recursive light reflecting means arranged in the environment of the moving path of the moving object, and this reflected light is moved. The light is received by a pair of light receiving means on the body, and the fan-shaped light beam in the two directions is reflected by each of the light reflecting means as the moving body moves, and these reflected lights are received by the light receiving means. The position and orientation of the moving body are determined from the traveling alternate layer of the moving body corresponding to the time interval of the light reception pulses generated by the light receiving pulse. Direction can also be recognized without requiring a separate dedicated direction recognition means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の概略を示す斜視図、第2図(
a)(b)は同上の平面図と正面図、第3図は発光受光
手段の断面図、第4図(−) (b) (c)は再帰的
光反射手段の一例の正面図と平面図と説明図、第5図は
方位認識のための動作説明図、第6図は同上の受光パル
スのタイムチャート、第7図は他の場合の動作説明図、
第8図は同上の受光パルスのタイムチャート、第9図は
角度の正負判定の説明図、第10図は位1認識のための
動作説明図であって、1は移動体、2.3は発光受光手
段、4゜5は光反射手段と示す。
Fig. 1 is a perspective view schematically showing an embodiment of the present invention, and Fig. 2 (
a) (b) is a plan view and a front view of the same as above, FIG. 3 is a sectional view of the light emitting and receiving means, and FIG. Figures and explanatory diagrams, Fig. 5 is an explanatory diagram of the operation for direction recognition, Fig. 6 is a time chart of the light reception pulse same as above, Fig. 7 is an explanatory diagram of the operation in other cases,
FIG. 8 is a time chart of the received light pulses, FIG. 9 is an explanatory diagram of determining whether the angle is positive or negative, and FIG. The light emitting/receiving means and 4.degree. 5 are light reflecting means.

Claims (1)

【特許請求の範囲】[Claims] (1)移動体から投射された2方向の扇状光ビームを移
動体の進行経路の環境中に配された二つの再帰的光反射
手段で反射させてこの反射光を移動体上の一対の受光手
段で受光するものであって、上記2方向の扇状光ビーム
を移動体の移動に伴って上記各光反射手段で反射させる
とともに、これら反射光を上記受光手段で受光して発生
する受光パルスの時間間隔に対応する移動体の走行距離
から、移動体の位置及び方位を求めることを特徴とする
移動体の位置方位認識方法。
(1) A fan-shaped light beam in two directions projected from a moving object is reflected by two recursive light reflecting means arranged in the environment of the moving path of the moving object, and this reflected light is received by a pair of light receiving devices on the moving object. The fan-shaped light beam in the two directions is reflected by each of the light reflecting means as the moving body moves, and the light receiving means generates a received light pulse by receiving the reflected light by the light receiving means. 1. A method for recognizing the position and orientation of a moving object, characterized in that the position and orientation of the moving object are determined from the travel distance of the moving object corresponding to a time interval.
JP2123500A 1990-05-14 1990-05-14 Recognition method of position and orientation of moving object Expired - Lifetime JP2886617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123500A JP2886617B2 (en) 1990-05-14 1990-05-14 Recognition method of position and orientation of moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123500A JP2886617B2 (en) 1990-05-14 1990-05-14 Recognition method of position and orientation of moving object

Publications (2)

Publication Number Publication Date
JPH0419586A true JPH0419586A (en) 1992-01-23
JP2886617B2 JP2886617B2 (en) 1999-04-26

Family

ID=14862160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123500A Expired - Lifetime JP2886617B2 (en) 1990-05-14 1990-05-14 Recognition method of position and orientation of moving object

Country Status (1)

Country Link
JP (1) JP2886617B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot

Also Published As

Publication number Publication date
JP2886617B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US7022962B2 (en) Position determining apparatus
CA2307206C (en) Method and device for association of anonymous reflectors to detected angle positions
US4855915A (en) Autoguided vehicle using reflective materials
ATE519092T1 (en) LASER-ASSISTED COORDINATE MEASURING APPARATUS AND LASER-ASSISTED COORDINATE MEASURING METHOD
JPH06506297A (en) spatial positioning system
JPH05257533A (en) Method and device for sweeping floor surface by moving robot
JPH09325812A (en) Autonomous mobile robot
US5041722A (en) Method of guiding movement of unmanned vehicle by following a number of luminous points
JPH0419586A (en) Position and azimuth recognizing method for moving body
JP3340606B2 (en) Guidance method and guidance system for mobile robot
JP2899060B2 (en) lighting equipment
TWI701423B (en) Auxiliary positioning system with reflective sticker
JP3491182B2 (en) Moving body position recognition method and moving body position recognition device
JPH05223569A (en) Device for measuring position/posture of traveling body automatically
JP3253137B2 (en) Optical distance measuring device
JP2728326B2 (en) Automatic position / posture measuring device for moving objects
Congdon et al. CARMEL vs. Flakey: A comparison of two robots
JP2772678B2 (en) Moving Guidance System for Moving Objects
JP2542257B2 (en) Position and heading measurement system for mobile
JPH03105207A (en) Position detecting apparatus for moving object
JPS62126313A (en) Method for detecting propelling position of self-propelling robot
JP2513514B2 (en) Steering control device for self-propelled vehicle
JPH07281741A (en) Device for guiding unmanned vehicle
JPH08292250A (en) Apparatus for detecting position of moving body
JPH0576642B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12