JP3253137B2 - Optical distance measuring device - Google Patents

Optical distance measuring device

Info

Publication number
JP3253137B2
JP3253137B2 JP26253392A JP26253392A JP3253137B2 JP 3253137 B2 JP3253137 B2 JP 3253137B2 JP 26253392 A JP26253392 A JP 26253392A JP 26253392 A JP26253392 A JP 26253392A JP 3253137 B2 JP3253137 B2 JP 3253137B2
Authority
JP
Japan
Prior art keywords
light
light receiving
area
lens
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26253392A
Other languages
Japanese (ja)
Other versions
JPH06109846A (en
Inventor
司 原田
邦彦 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26253392A priority Critical patent/JP3253137B2/en
Publication of JPH06109846A publication Critical patent/JPH06109846A/en
Application granted granted Critical
Publication of JP3253137B2 publication Critical patent/JP3253137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、車両に搭載して車両の
進行方向に存在する先行車や障害物までの距離を測定す
るのに有用な光学式距離計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical distance measuring device which is mounted on a vehicle and is useful for measuring the distance to a preceding vehicle or an obstacle existing in the traveling direction of the vehicle.

【0002】[0002]

【従来の技術】一般に、車両の進行方向に存在する先行
車や障害物等を検出し、先行車や障害物等までの距離を
測定する光学式距離計測装置においては、センシング領
域を広げる必要がある。
2. Description of the Related Art Generally, in an optical distance measuring device for detecting a preceding vehicle or an obstacle in a traveling direction of a vehicle and measuring a distance to the preceding vehicle or an obstacle, it is necessary to increase a sensing area. is there.

【0003】上記要請に対し、光学系の工夫で発光領域
を広げるのでは、発光パワー密度の低下により受光が難
くなることから、従来、細い発光ビームを広角度でスキ
ャニングする方式(ビームスキャン方式)が知られてい
る。しかし、このビームスキャン方式では、発光ビーム
の位置(方向)と受光情報を光速で処理する必要があ
り、信号処理系が大規模なものとなる。そこで、発光素
子を複数個備え、広角度の発光領域を得る方式(複数ビ
ーム方式)が検討されている。
[0003] In response to the above demand, the light emission area is widened by devising an optical system, which makes it difficult to receive light due to a decrease in light emission power density. It has been known. However, in this beam scanning method, it is necessary to process the position (direction) of the emitted light beam and the received light information at the speed of light, and the signal processing system becomes large-scale. Therefore, a method of providing a plurality of light-emitting elements and obtaining a wide-angle light-emitting region (multiple-beam method) is being studied.

【0004】図9に複数ビーム方式の光学式距離計測装
置を示す(特開昭61−259185号公報)。この装
置は、送光器50内にレーザダイオード等から成る複数
の発光素子a,b,cを設け、駆動回路51で駆動され
る各発光素子a,b,cからの光ビームA,B,Cを集
光レンズ52を通して放射するようになっている。ま
た、受光器53側においては、上記光ビームA,B,C
が先行車や障害物等の反射体53で反射して来る光を、
集光レンズ54を通して受光素子55で受光し、その出
力信号を増幅回路56を通して測距回路57に送り、該
測距回路で、光の放射から受光までの伝播遅延時間を基
に反射体53までの距離を測定する構成となっている。
この送光器50の構成によれば、広い範囲内での測定が
行えると共に、集光レンズ系52が発光素子a,b,c
に共通であるので、装置全体を小形化できる。
FIG. 9 shows an optical distance measuring device of a multiple beam system (Japanese Patent Laid-Open No. 61-259185). In this device, a plurality of light emitting elements a, b, and c including a laser diode or the like are provided in a light transmitter 50, and light beams A, B, and C from light emitting elements a, b, and c driven by a drive circuit 51 are provided. C is radiated through the condenser lens 52. On the light receiver 53 side, the light beams A, B, C
Is reflected by a reflector 53 such as a preceding vehicle or an obstacle,
The light is received by the light receiving element 55 through the condenser lens 54, and the output signal is sent to the distance measuring circuit 57 through the amplifier circuit 56. The distance measuring circuit reaches the reflector 53 based on the propagation delay time from light emission to light reception. Is measured.
According to the configuration of the light transmitter 50, measurement in a wide range can be performed, and the condenser lens system 52 includes the light emitting elements a, b, and c.
Therefore, the entire apparatus can be downsized.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記した複数
ビーム方式の場合、レーザダイオード等の発光素子を複
数個備えることが不可欠である。現状のレーザダイオー
ドの単価は受光素子に比べ非常に高価であり、複数個設
置することは量産品としてコスト高の装置となる。ま
た、受光素子が1つの場合、先行車両の存在する方向に
受光エリアを偏向させて効率よく先行車両を捕捉するこ
とが出来ない。
However, in the case of the above-mentioned multiple beam system, it is essential to provide a plurality of light emitting elements such as laser diodes. The current unit price of a laser diode is much higher than that of a light receiving element, and installing a plurality of laser diodes is a high-cost device as a mass-produced product. Further, when there is one light receiving element, the light receiving area is deflected in the direction in which the preceding vehicle exists, and the preceding vehicle cannot be efficiently captured.

【0006】本発明は、上記問題点に鑑みなされたもの
で、単価の安い受光素子を複数用い、その受光エリアを
異ならせることにより先行車等の測定対象物の存在方向
を推定し、その方向に光学系を自動操作して測定対象物
を捕捉することができる光学式距離計測装置を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and uses a plurality of light-receiving elements having a low unit price and estimates the direction in which a measuring object such as a preceding vehicle exists by differentiating the light-receiving areas. Another object of the present invention is to provide an optical distance measuring device capable of automatically operating an optical system and capturing an object to be measured.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、発光素子と受光素子とを備え、発光素子
による光の放射から受光素子による受光までの伝播遅延
時間に基づいて先行車等の反射体までの距離を測定する
距離計測装置において、一つの発光素子と複数個の受光
素子とを横方向に配置すると共に、これら各素子の前方
に集光レンズを配置し、上記複数個の受光素子とその集
光レンズとの横方向の相対位置を変位させて各受光素子
の受光エリアを偏向させる機構と、該機構を上記受光素
子の受光エリアが反射体の方向を向くように操作する駆
動手段とを設け、上記複数個の受光素子の受光エリアを
隣同士で一部重なるように各々異なる範囲に設定すると
共に、各受光素子についての距離計測値の大小関係の組
合わせに基づいて、常に受光エリアの重なり領域内に上
記反射体を捕捉するように上記駆動手段を制御する制御
手段を設けた構成のものである(請求項1)。
In order to achieve the above object, the present invention comprises a light emitting element and a light receiving element, wherein the light emitting element and the light receiving element are arranged based on a propagation delay time from emission of light by the light emitting element to light reception by the light receiving element. In a distance measuring device for measuring a distance to a reflector such as a car, a light emitting element and a plurality of light receiving elements are arranged in a horizontal direction, and a condenser lens is arranged in front of each of these elements. A mechanism for displacing the light-receiving area of each light-receiving element by displacing the relative position of the light-receiving element and its condensing lens in the horizontal direction, such that the light-receiving area of the light-receiving element faces the reflector. Operating means for operating the light receiving area of the plurality of light receiving elements.
If you set different ranges so that the neighbors partially overlap
Both are sets of the magnitude relationship of the distance measurement values for each light receiving element.
Position is always within the overlapping area of the light receiving area.
Control for controlling the driving means so as to capture the reflector
This is a configuration provided with means (claim 1).

【0008】本発明においては、上記複数個の受光素子
とその集光レンズの横方向の相対位置の変位に同期して
上記発光素子を変位させる手段を設け、計測対象の方向
に発光エリアと受光エリアが向くようにすることができ
る(請求項2)。
In the present invention, there is provided means for displacing the light emitting element in synchronization with the displacement of the relative position of the plurality of light receiving elements and the condensing lens in the lateral direction. The area can be oriented (claim 2).

【0009】[0009]

【0010】[0010]

【作用】図4に示すように、受光素子の受光エリアとそ
の方向(受光角θ1,θ2)は、集光レンズ6と受光素
子3の位置関係により定まる。受光レンズ6又は受光素
子3を相対的に横方向にずらすことにより、受光エリア
の方向を偏向させることができる。発光素子についても
基本的に同じことがいえる。
As shown in FIG. 4, the light receiving area of the light receiving element and its direction (light receiving angles θ1, θ2) are determined by the positional relationship between the condenser lens 6 and the light receiving element 3. The direction of the light receiving area can be deflected by relatively shifting the light receiving lens 6 or the light receiving element 3 in the horizontal direction. The same can be said for the light emitting element.

【0011】各受光素子の受光エリア・発光エリアを偏
向させる機構が、レンズ又は発光・受光素子の相対位置
を横にずらすだけのものでよいため、その構造は極めて
簡単であり、設置スペースが削減でき、振動にも強いシ
ステムが構成できる。
Since the mechanism for deflecting the light receiving area / light emitting area of each light receiving element may be merely a mechanism for shifting the relative position of the lens or the light emitting / light receiving element to the side, the structure is extremely simple and the installation space is reduced. It is possible to construct a system that is resistant to vibration.

【0012】また、複数個の受光素子を用いているた
め、先行車の存在する概略方向の認識ができ、この判断
を各受光素子についての距離計測値の大小関係の組合わ
せに基づいて決定することができ、常に受光エリアの重
なり領域内に上記反射体を捕捉することができる。
Further, since a plurality of light receiving elements are used, the approximate direction in which the preceding vehicle exists can be recognized, and this determination is made by combining the magnitude relationship of the distance measurement values for each light receiving element.
The reflector can always be captured in the overlapping area of the light receiving areas.

【0013】[0013]

【実施例】以下、本発明を図示の一実施例に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to one embodiment shown in the drawings.

【0014】図1に光学式距離計測装置のシステム構成
を示す。本実施例の場合、この距離計測装置は車両に搭
載されるものとする。
FIG. 1 shows a system configuration of an optical distance measuring device. In the case of the present embodiment, it is assumed that this distance measuring device is mounted on a vehicle.

【0015】図1において、距離計測装置は、レーザー
レーダヘッド1,時間計測ユニット20,信号処理ユニ
ット30の3部分に分れている。
In FIG. 1, the distance measuring device is divided into three parts: a laser radar head 1, a time measuring unit 20, and a signal processing unit 30.

【0016】レーザーレーダヘッド1は、LD(レーザ
ーダイオード)から成る1つの発光素子2と、PD(ピ
ンフォトダイオード)から成る2つの受光素子3,4と
を有し、発光素子2の前側には発光用レンズ(集光レン
ズ)5が配置され、各受光素子3,4の前側にはそれぞ
れ格子状のメカニカルフィルタ8を備えた受光用レンズ
(集光レンズ)6,7が配置されている。尚、9はLD
の駆動回路、10は受光回路である。
The laser radar head 1 has one light emitting element 2 composed of an LD (laser diode) and two light receiving elements 3 and 4 composed of a PD (pin photodiode). A light emitting lens (condensing lens) 5 is disposed, and light receiving lenses (condensing lenses) 6 and 7 each having a lattice-shaped mechanical filter 8 are disposed in front of the light receiving elements 3 and 4, respectively. 9 is LD
Is a light receiving circuit.

【0017】時間計測ユニット20は、LDの駆動回路
に対するスタートパルスを発生するパルス発生部21
と、該スタートパルスにより計時を開始し受光回路10
からのストップパルスで計時を終了する時間計測部22
と、電源部23とを有する。また、信号処理ユニット3
0は、時間計測部22で得られた時間データを基に距離
を算出する距離計側部31と、その結果を表示する表示
部32とを備えている。
The time measuring unit 20 includes a pulse generator 21 for generating a start pulse for the LD drive circuit.
And the time is started by the start pulse, and the light receiving circuit 10
Time measurement unit 22 to stop timing with stop pulse from
And a power supply unit 23. In addition, the signal processing unit 3
Numeral 0 includes a rangefinder side unit 31 for calculating a distance based on the time data obtained by the time measuring unit 22, and a display unit 32 for displaying the result.

【0018】更に、上記レーザーレーダヘッド1は、受
光用レンズ6,7及びメカニカルフィルタ8を受光素子
3,4に対し相対的に横に変位させ、これにより受光素
子3,4の受光エリア43,44を、例えば図2(A)
から図2(B)の如く偏向させるためのサーボ機構11
を備えている。
Further, in the laser radar head 1, the light receiving lenses 6, 7 and the mechanical filter 8 are displaced laterally relative to the light receiving elements 3, 4, whereby the light receiving areas 43, 4 of the light receiving elements 3, 4 are moved. 44, for example, as shown in FIG.
Mechanism 11 for deflecting as shown in FIG. 2 (B)
It has.

【0019】また信号処理ユニット30は、先行車の反
射体40を、常に図2(B)の如く2つの受光素子3,
4の受光エリア43,44の重なり領域内に捕捉するよ
うにサーボ機構11を制御する制御手段として、サーボ
機構11の駆動モータ12に対し適切な指令を与えるサ
ーボ操作部33を備えている。このサーボ操作部33
は、具体的には、距離計側部31で計測される受光素子
3,4毎の計測値の大小関係の組合わせから、サーボ機
構11に対し、その駆動モータ12の回転の有無及び回
転方向についての指令を与える。尚、サーボ機構11の
現在変位量は駆動モータ12と連動するポテンショメー
タ13により検出されるようになっている。
The signal processing unit 30 always connects the reflector 40 of the preceding vehicle to the two light receiving elements 3 as shown in FIG.
As a control means for controlling the servo mechanism 11 so that the servo mechanism 11 is captured in the overlapping area of the light receiving areas 43 and 44 of No. 4, a servo operation unit 33 for giving an appropriate command to the drive motor 12 of the servo mechanism 11 is provided. This servo operation unit 33
Specifically, from the combination of the magnitude relation of the measured values of the light receiving elements 3 and 4 measured by the distance meter side unit 31, the presence or absence of rotation of the drive motor 12 and the rotational direction Give instructions about. Note that the current displacement amount of the servo mechanism 11 is detected by a potentiometer 13 interlocked with the drive motor 12.

【0020】上記受光エリア43,44を偏向させる機
構の原理は次の通りである。即ち、図4(a)の如く受
光素子3,4の位置が光軸から右側に在る場合には、そ
の受光角θ1がメカニカルフィルタ8の受光角θの左側
領域に向いている。しかし、図4(b)の如く、受光素
子3,4の位置が光軸から左側に移ると、その受光角θ
2はメカニカルフィルタ8の受光角θの右側領域に向
く。この関係はメカニカルフィルタ8が無い場合にも成
り立つものである。従って、受光用レンズ6,7及びメ
カニカルフィルタ8と受光素子3,4のいずれかを相対
的に横に変位させると受光エリア43,44を偏向させ
ることができる。
The principle of the mechanism for deflecting the light receiving areas 43 and 44 is as follows. That is, when the positions of the light receiving elements 3 and 4 are on the right side of the optical axis as shown in FIG. 4A, the light receiving angle θ1 is directed to the left region of the light receiving angle θ of the mechanical filter 8. However, as shown in FIG. 4B, when the position of the light receiving elements 3 and 4 moves to the left from the optical axis, the light receiving angle θ
Reference numeral 2 points to the right region of the light receiving angle θ of the mechanical filter 8. This relationship holds even when the mechanical filter 8 is not provided. Therefore, the light receiving areas 43 and 44 can be deflected by relatively laterally displacing any of the light receiving lenses 6 and 7 and the mechanical filter 8 and the light receiving elements 3 and 4.

【0021】ちなみに、メカニカルフィルタ8の受光角
θは、メカニカルフィルタ8の長さをL0 とし、格子ス
リット幅をaとしたとき、θ=2tan-1(a/L0
で与えられる。また、受光素子3,4の受光角θ1,θ
2は、レンズの焦点距離をS,受光素子径をxとしたと
き、θ1=θ2=tan-1(x/S)で与えられる。そ
して、受光中心軸広り角αは、受光用レンズピッチをL
1,受光素子ピッチをL2としたとき、α=2tan-1
{(L1−L2)/2S)}で与えられる。
Incidentally, when the length of the mechanical filter 8 is L 0 and the grating slit width is a, the light receiving angle θ of the mechanical filter 8 is θ = 2 tan −1 (a / L 0 ).
Given by Also, the light receiving angles θ1 and θ of the light receiving elements 3 and 4
2 is given by θ1 = θ2 = tan −1 (x / S), where S is the focal length of the lens and x is the light receiving element diameter. The light receiving center axis spread angle α is determined by setting the light receiving lens pitch to L
1, when the light receiving element pitch is L2, α = 2 tan −1
{(L1-L2) / 2S)}.

【0022】本実施例では、受光用レンズ6,7及びメ
カニカルフィルタ8を横移動させることで、受光素子
3,4の受光エリアを変える構成となっている。即ち、
図5及び図6において、発光用レンズ5,受光用レンズ
6及び受光用レンズ7はこの順序で枠体14内に横並び
に配置され、且つ、スライダ17(図7)により枠体1
4に対し横移動可能に支持されている。発光用レンズ5
及び受光用レンズ6間にはカム15が設けてあり、該カ
ムは駆動モータ12で回転変位されるようになってい
る。また、発光用レンズ5及び受光用レンズ7と枠体1
1間には弾性体16が設けてある。この結果、発光用レ
ンズ5及び受光用レンズ6,7並びにメカニカルフィル
タ8は、カム15を駆動モータ12で回転変位させるこ
とにより、発光素子2及び受光素子3,4に対し相対的
に変位できることとなる。従って、このカム15は、駆
動モータ12と共に、上記の機構11を受光素子の受光
エリア43,44が反射体40の方向を向くように操作
する駆動手段を構成する。
In this embodiment, the light receiving areas of the light receiving elements 3 and 4 are changed by laterally moving the light receiving lenses 6 and 7 and the mechanical filter 8. That is,
5 and 6, the light emitting lens 5, the light receiving lens 6 and the light receiving lens 7 are arranged side by side in the frame 14 in this order, and the frame 1 is moved by the slider 17 (FIG. 7).
4 is supported so as to be able to move laterally. Light emitting lens 5
A cam 15 is provided between the lens 6 and the light receiving lens 6, and the cam is rotated by a drive motor 12. Further, the light emitting lens 5, the light receiving lens 7, and the frame 1
An elastic body 16 is provided between the two. As a result, the light emitting lens 5, the light receiving lenses 6, 7 and the mechanical filter 8 can be displaced relative to the light emitting element 2 and the light receiving elements 3, 4 by rotating the cam 15 by the drive motor 12. Become. Therefore, the cam 15 and the driving motor 12 constitute a driving means for operating the mechanism 11 so that the light receiving areas 43 and 44 of the light receiving element face the direction of the reflector 40.

【0023】ここで、発光用レンズ5までも横移動させ
るようにしたのは、上記受光素子の場合と同様に発光用
レンズ5の光軸に対してLDの光軸を若干ずらせること
により、投射方向を可変できるからである。但し、受光
と発光では焦点距離や素子−レンズ間距離が異なるた
め、同じ横移動量にすると発光・受光方向の移動量が異
なる不具合が発生する。従って各々の光学的移動量が同
じになるように、各々のレンスの移動量は、図8の如
く、駆動用モータ12の回転角に対し異なったレンズ移
動量になるよう、カム15により駆動させる。図8に示
す例の場合、カム15は、受光用レンズ6,7よりも発
光用レンズ5の方が僅かしか変位しない関係の外輪形成
とされる。
Here, the lateral movement of the light emitting lens 5 is also achieved by slightly shifting the optical axis of the LD with respect to the optical axis of the light emitting lens 5 as in the case of the light receiving element. This is because the projection direction can be changed. However, since the focal length and the distance between the element and the lens differ between light reception and light emission, if the same lateral movement amount is used, there occurs a problem that the movement amount in the light emission / light reception direction differs. Accordingly, the lens 15 is driven by the cam 15 so that the movement amount of each lens is different from the rotation angle of the drive motor 12, as shown in FIG. . In the case of the example shown in FIG. 8, the cam 15 is formed as an outer ring in which the light emitting lens 5 is slightly displaced more than the light receiving lenses 6 and 7.

【0024】次に上記構成の作用について説明する。Next, the operation of the above configuration will be described.

【0025】図1において、時間計測ユニット20のパ
スル発生部21からレーザーレーダヘッド1のLD駆動
回路9にスタートパルスが出力される。LD駆動回路9
は、このスタートパルスのトリガーにより発光素子2た
るLDを駆動し、レーザーパルスを発生させる。また、
上記スタートパルスは時間計測部22に与えられ、時間
計測部22の計時を開始する。先行車の反射体40(図
2)で反射したレーザパルスは、受光素子3,4の一方
又は両方により受光され、電流を発生し、受光回路10
で増幅された後、ストップパルスを時間計測部22に出
力する。時間計測部22ではパルス発生部21からのス
タートパルスと、受光回路10からのストップパルスと
の間の時間間隔を計測し、時間データとして距離計側部
31に出力する。距離計側部31では時間データから先
行車との距離を演算し、距離データとして車両の制御ユ
ニット(ASC ECU)へ出力する。
In FIG. 1, a start pulse is output from the pulse generation section 21 of the time measurement unit 20 to the LD drive circuit 9 of the laser radar head 1. LD drive circuit 9
Drives the LD which is the light emitting element 2 by the trigger of the start pulse to generate a laser pulse. Also,
The start pulse is given to the time measuring unit 22 to start measuring time. The laser pulse reflected by the reflector 40 (FIG. 2) of the preceding vehicle is received by one or both of the light receiving elements 3 and 4 to generate a current, and the light receiving circuit 10
After that, a stop pulse is output to the time measuring unit 22. The time measuring section 22 measures a time interval between the start pulse from the pulse generating section 21 and the stop pulse from the light receiving circuit 10 and outputs the time interval to the distance meter side section 31 as time data. The rangefinder side unit 31 calculates the distance to the preceding vehicle from the time data and outputs the distance data to the vehicle control unit (ASC ECU).

【0026】ここで、受光素子が反射光を受光しないと
きは、距離計側部31における該当する受光素子系統で
の距離計測値が「最大」となり、距離データは“先行車
がない”旨の信号として取り扱われる。しかし、何がし
かの距離計測値がある場合は“先行車あり”と判断さ
れ、その旨の信号ととして取り扱われる。
Here, when the light receiving element does not receive the reflected light, the distance measurement value of the corresponding light receiving element system in the distance meter side section 31 is "maximum", and the distance data is "no preceding vehicle". Treated as a signal. However, if there is any distance measurement value, it is determined that there is a preceding vehicle, and the signal is treated as a signal to that effect.

【0027】次に、光学系の操作との関連について説明
する。
Next, the relationship with the operation of the optical system will be described.

【0028】図2(A)は左側の受光素子4の受光エリ
ア44内にだけ先行車の反射体40が位置する場合を、
また図2(B)は左右両方の受光素子3,4の受光エリ
ア43,44内に反射体40が位置する場合を示してい
る。
FIG. 2A shows a case where the reflector 40 of the preceding vehicle is located only in the light receiving area 44 of the light receiving element 4 on the left side.
FIG. 2B shows a case where the reflector 40 is located in the light receiving areas 43 and 44 of both the left and right light receiving elements 3 and 4.

【0029】説明の便宜上、最初は先行車の反射体40
が、図2(A)の如く、受光素子4の受光エリア44内
にのみ位置するものとする。この場合、先行車の反射体
40からの反射光は受光素子4のみにより受光され、受
光素子3,4の出力状態は図3(A)の如くになる。こ
のとき、距離計側部31における距離計測値は、受光素
子3について「距離最大」、受光素子4について「距離
小」の関係となる。信号処理ユニット30のサーボ制御
部33は、上記距離計測値の信号の大小関係から、先行
車は左方向にあると推定し、サーボ機構11に対しレン
ズ系の「左移動指令」を与える。これにより、駆動モー
タ12が正回転し、レンズ系5,6,7,8が受光素子
3,4に対し相対的に左方向に移動し、受光エリア4
3,44が左に移動して行く。先行車の反射体40が、
図2(B)の如く受光エリア43,44の重なり領域内
に入ると、受光素子3,4の出力状態は図3(B)の如
くになり、距離計測値は受光素子3,4のいずれについ
ても「距離小」の関係となる。ここで、サーボ制御部3
3は「左移動指令」を停止する。
For convenience of explanation, the reflector 40 of the preceding vehicle is first used.
Are located only in the light receiving area 44 of the light receiving element 4 as shown in FIG. In this case, the reflected light from the reflector 40 of the preceding vehicle is received only by the light receiving element 4, and the output state of the light receiving elements 3 and 4 is as shown in FIG. At this time, the distance measurement value in the distance meter side unit 31 has a relationship of “maximum distance” for the light receiving element 3 and “small distance” for the light receiving element 4. The servo control unit 33 of the signal processing unit 30 estimates that the preceding vehicle is in the left direction based on the magnitude relationship between the signals of the distance measurement values, and gives a “left movement command” of the lens system to the servo mechanism 11. As a result, the drive motor 12 rotates forward, and the lens systems 5, 6, 7, 8 move to the left relative to the light receiving elements 3, 4, and the light receiving area 4
3 and 44 move to the left. The reflector 40 of the preceding vehicle is
When entering the overlapping area of the light receiving areas 43 and 44 as shown in FIG. 2B, the output state of the light receiving elements 3 and 4 becomes as shown in FIG. Also has a relationship of “small distance”. Here, the servo control unit 3
3 stops the "left movement command".

【0030】上記とは逆に、反射光が受光素子3のみに
より受光された場合には、距離計測値は受光素子3につ
いて「距離小」、受光素子4について「距離最大」の関
係となり、サーボ制御部33は先行車が右方向にあると
判断し、サーボ機構11に対しレンズ系の「右移動指
令」を与える。これにより、駆動モータ12が逆回転
し、レンズ系5,6,7,8が受光素子3,4に対し相
対的に右方向に移動する。先行車の反射体40が、受光
エリア43,44の重なり領域内に入ると、距離計測値
は受光素子3,4についていずれも「距離小」の関係と
なり、その時点でサーボ制御部33は「右移動指令」を
停止する。尚、距離計測値が受光素子3,4についてい
ずれも「距離最大」の場合、サーボ制御部33はサーボ
機構11に対し何の指示も与えない。
Contrary to the above, when the reflected light is received only by the light receiving element 3, the distance measurement value has a relationship of "small distance" for the light receiving element 3 and "maximum distance" for the light receiving element 4, and the The control unit 33 determines that the preceding vehicle is in the right direction, and gives a “right movement command” of the lens system to the servo mechanism 11. As a result, the drive motor 12 rotates in the reverse direction, and the lens systems 5, 6, 7, 8 move rightward relative to the light receiving elements 3, 4. When the reflector 40 of the preceding vehicle enters the overlapping area of the light receiving areas 43 and 44, the distance measurement values have a relationship of “small distance” for the light receiving elements 3 and 4, and at that time, the servo control unit 33 sets “ Right movement command ”is stopped. When the distance measurement value is “maximum distance” for each of the light receiving elements 3 and 4, the servo control unit 33 does not give any instruction to the servo mechanism 11.

【0031】このように、2つの受光素子3,4の系統
について、共に何がしかの距離計測値がある状態、即ち
上記「距離小」が得られるまで受光系6,7,8を横に
変位させることにより、常に先行車をレーザレータヘッ
ド1の光学系の真正面で捕捉することができる。従っ
て、むやみに発光視野を広げることなく、また、広範囲
なスキャニングをして不必要なデータ処理を行うことも
なく、距離計測エリアを広げることが可能となる。
As described above, with respect to the two light receiving elements 3 and 4, the light receiving systems 6, 7 and 8 are moved sideways until some distance measurement value is obtained, that is, until the above “small distance” is obtained. By displacing, the preceding vehicle can always be captured in front of the optical system of the laser head 1. Therefore, the distance measurement area can be expanded without unnecessarily expanding the light emission field of view and without performing unnecessary data processing by performing wide-area scanning.

【0032】尚、光学系の自動操作手段としては、光学
系全体をターンテーブル上で回転させる方法も考えられ
るが、回転物が大きすぎて回転駆動源(モータ等)を含
めると設置スペースが大となり、また車の振動に影響さ
れやすい等の問題がある。しかし、上記構成によれば、
レンズ又は発光・受光素子の相対位置をずらすだけで良
いため、簡単な構造、設置スペース削減、振動にも強い
システムが構成できる。
As a means for automatically operating the optical system, a method of rotating the entire optical system on a turntable is conceivable. However, if the rotating object is too large and a rotary drive source (motor or the like) is included, the installation space is large. And there is a problem that the vehicle is easily affected by vibration of the vehicle. However, according to the above configuration,
Since it is only necessary to shift the relative position of the lens or the light emitting / receiving element, a system having a simple structure, reduced installation space, and strong vibration can be configured.

【0033】上記実施例では、距離計測値の大小関係か
らサーボ機構11に対する指示を与えたが、2つの受光
素子の受光信号レベル差を計測して、その信号を基に比
例回転制御を行うこともできる。この場合、サーボ操作
部33の代わりに、時間計測部22で観測される2つの
受光素子3,4の受光強度の大小関係の組合わせに基づ
いて、常に受光エリア43,44の重なり領域内に反射
体40を捕捉するように上記駆動モータ12を制御する
制御手段を設けることになる。
In the above embodiment, the instruction to the servo mechanism 11 is given from the magnitude relation of the distance measurement values. However, the difference in the light receiving signal levels of the two light receiving elements is measured, and the proportional rotation control is performed based on the signals. Can also. In this case, instead of the servo operation unit 33, based on the combination of the magnitude relations of the light receiving intensities of the two light receiving elements 3 and 4 observed by the time measuring unit 22, the light receiving areas 43 and 44 always stay within the overlapping area. Control means for controlling the drive motor 12 so as to capture the reflector 40 will be provided.

【0034】また上記実施例では、水平方向の捕捉をな
す場合について説明したが、実際には道路状況により上
下方向の捕捉も必要となるので、上下方向に受光エリア
の異なる受光素子を更に1つ設置することが実際的であ
る。この場合、必要に応じ、レンズの光軸を傾けて上下
方向にレンズ角度を振らせることもできる。
In the above embodiment, the case of capturing in the horizontal direction has been described. However, in actuality, capturing in the vertical direction is also required depending on the road conditions. Therefore, one more light receiving element having a different light receiving area in the vertical direction is required. It is practical to install. In this case, if necessary, the optical axis of the lens can be tilted to change the lens angle in the vertical direction.

【0035】[0035]

【発明の効果】以上述べた通り本発明によれば、次のよ
うな優れた効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0036】1)請求項1の構成では、受光素子を複数
個設置しているので、先行車等の測定対象物の位置推定
が行える。この受光素子は発光素子に比べ安価であるの
で、装置が安価に構成できる。また、その受光レンズと
受光素子の相対位置を横にずらすだけで受光エリアが偏
向され、先行車等の測定対象物を受光エリア内に捕捉で
きる。この機構は構造が簡単で、設置スペースも取ら
ず、振動にも強い計測装置が構成できる。しかも、この
捕捉制御は簡単な自動制御系で済み、システムを安価に
提供できるようになる。また、先行車の存在する概略方
向の認識は、各受光素子についての距離計測値の大小関
係の組合わせに基づいて決定することができ、常に、受
光エリアの重なり領域内に、先行車等の測定対象物を捕
捉するようにすることができる。
1) According to the first aspect of the present invention, since a plurality of light receiving elements are provided, it is possible to estimate the position of a measuring object such as a preceding vehicle. Since the light receiving element is less expensive than the light emitting element, the device can be configured at a lower cost. Further, the light receiving area is deflected simply by shifting the relative position of the light receiving lens and the light receiving element to the side, so that a measuring object such as a preceding vehicle can be captured in the light receiving area. This mechanism has a simple structure, requires no installation space, and can be configured as a measurement device that is strong against vibration. In addition, this capture control requires only a simple automatic control system, and the system can be provided at low cost. Also, the outline of the location of the preceding vehicle
Direction recognition is based on the size of the distance measurement for each light receiving element.
Can be determined based on the combination of
An object to be measured, such as a preceding vehicle, is captured in the overlapping area of the light area.
Can be captured.

【0037】2)請求項2の構成では、各受光素子の受
光エリアに同期して発光素子の発光エリアが偏向させる
ので、より確実かつ有効に先行車等の測定対象物を受光
エリア内に捕捉できる。
2) Since the light emitting area of the light emitting element is deflected in synchronization with the light receiving area of each light receiving element, the object to be measured such as a preceding vehicle is more reliably and effectively captured in the light receiving area. it can.

【0038】[0038]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のシステム構成を示すブロッ
ク図である。
FIG. 1 is a block diagram illustrating a system configuration according to an embodiment of the present invention.

【図2】図1における受光レンズと受光素子の相対位置
と受光エリアの向きとの関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a relative position of a light receiving lens and a light receiving element in FIG. 1 and a direction of a light receiving area.

【図3】図2における発光素子と受光素子の発光・受光
動作を示すタイミング図である。
FIG. 3 is a timing chart showing light emitting / receiving operations of the light emitting element and the light receiving element in FIG.

【図4】受光レンズと受光素子の相対位置の横移動によ
り受光エリアを偏向する原理の説明に供する図である。
FIG. 4 is a diagram for explaining a principle of deflecting a light receiving area by a lateral movement of a relative position between a light receiving lens and a light receiving element.

【図5】発光・受光レンズと発光・受光素子を相対的に
横移動させる機構を示す正面図である。
FIG. 5 is a front view showing a mechanism for relatively laterally moving the light emitting / receiving lens and the light emitting / receiving element.

【図6】図5の機構の平面図である。FIG. 6 is a plan view of the mechanism of FIG. 5;

【図7】図6のスライド部分を示す側面図である。FIG. 7 is a side view showing a slide portion of FIG. 6;

【図8】駆動モータの回転角度と発光・受光レンズの横
移動量の関係を例示した説明図である。
FIG. 8 is an explanatory diagram illustrating a relationship between a rotation angle of a drive motor and a lateral movement amount of a light emitting / receiving lens.

【図9】従来の光学式距離計測装置を示す図である。FIG. 9 is a diagram showing a conventional optical distance measuring device.

【符号の説明】[Explanation of symbols]

1 レーザーレーダヘッド 2 発光素子(レーザーダイオード) 3,4 受光素子(ピンフォトダイオード) 5 発光用レンズ(集光レンズ) 6,7 受光用レンズ(集光レンズ) 8 メカニカルフィルタ 9 LDの駆動回路 10 受光回路 11 サーボ機構 12 駆動モータ 13 ポテンショメータ 14 枠体 15 カム 16 弾性体 17 スライダ 20 時間計測ユニット 21 パルス発生部 22 時間計測部 30 信号処理ユニット 31 距離計側部 33 サーボ操作部 40 先行車の反射体 43,44 受光エリア DESCRIPTION OF SYMBOLS 1 Laser radar head 2 Light emitting element (laser diode) 3, 4 Light receiving element (pin photodiode) 5 Light emitting lens (condensing lens) 6, 7 Light receiving lens (condensing lens) 8 Mechanical filter 9 LD drive circuit 10 Light receiving circuit 11 Servo mechanism 12 Drive motor 13 Potentiometer 14 Frame 15 Cam 16 Elastic body 17 Slider 20 Time measurement unit 21 Pulse generation unit 22 Time measurement unit 30 Signal processing unit 31 Distance meter side unit 33 Servo operation unit 40 Reflection of preceding vehicle Body 43, 44 Light receiving area

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−143187(JP,A) 特開 平2−156185(JP,A) 特開 昭58−24876(JP,A) 特開 昭58−131577(JP,A) 特開 平6−109847(JP,A) 特開 平1−263585(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01S 7/48 G01S 17/00 - 17/88 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-143187 (JP, A) JP-A-2-156185 (JP, A) JP-A-58-24876 (JP, A) JP-A-58- 131577 (JP, A) JP-A-6-109847 (JP, A) JP-A-1-263585 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01S 7/48 G01S 17 / 00-17/88

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 発光素子と受光素子とを備え、発光素子
による光の放射から受光素子による受光までの伝播遅延
時間に基づいて先行車等の反射体までの距離を測定する
距離計測装置において、一つの発光素子と複数個の受光
素子とを横方向に配置すると共に、これら各素子の前方
に集光レンズを配置し、上記複数個の受光素子とその集
光レンズとの横方向の相対位置を変位させて各受光素子
の受光エリアを偏向させる機構と、該機構を上記受光素
子の受光エリアが反射体の方向を向くように操作する駆
動手段とを設け、上記複数個の受光素子の受光エリアを
隣同士で一部重なるように各々異なる範囲に設定すると
共に、各受光素子についての距離計測値の大小関係の組
合わせに基づいて、常に受光エリアの重なり領域内に上
記反射体を捕捉するように上記駆動手段を制御する制御
手段を設けたことを特徴とする光学式距離計測装置。
1. A distance measuring device comprising a light emitting element and a light receiving element, wherein the distance measuring apparatus measures a distance to a reflector such as a preceding vehicle based on a propagation delay time from emission of light by the light emitting element to light reception by the light receiving element. One light-emitting element and a plurality of light-receiving elements are arranged in the horizontal direction, and a condenser lens is arranged in front of these elements, and the relative positions of the plurality of light-receiving elements and the condenser lens in the horizontal direction are arranged. a mechanism by displacing deflect the light receiving area of the light receiving element, and driving means for the mechanism receiving area of the light receiving element to operate so as to face the direction of the reflector is provided, reception of the plurality of light receiving elements The area
If you set different ranges so that the neighbors partially overlap
Both are sets of the magnitude relationship of the distance measurement values for each light receiving element.
Position is always within the overlapping area of the light receiving area.
Control for controlling the driving means so as to capture the reflector
Optical distance measuring apparatus characterized in that a means.
【請求項2】 上記複数個の受光素子とその集光レンズ
の横方向の相対位置の変位に同期して上記発光素子を変
位させる手段を設け、計測対象の方向に発光エリアと受
光エリアが向くようにしたことを特徴とする請求項1記
載の光学式距離計測装置。
2. A means for displacing said plurality of light-receiving elements and said light-emitting element in synchronization with a displacement of a relative position of said condensing lens in a lateral direction, wherein said light-emitting area and said light-receiving area are oriented in a direction of a measurement object. 2. The optical distance measuring device according to claim 1, wherein:
JP26253392A 1992-09-30 1992-09-30 Optical distance measuring device Expired - Fee Related JP3253137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26253392A JP3253137B2 (en) 1992-09-30 1992-09-30 Optical distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26253392A JP3253137B2 (en) 1992-09-30 1992-09-30 Optical distance measuring device

Publications (2)

Publication Number Publication Date
JPH06109846A JPH06109846A (en) 1994-04-22
JP3253137B2 true JP3253137B2 (en) 2002-02-04

Family

ID=17377125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26253392A Expired - Fee Related JP3253137B2 (en) 1992-09-30 1992-09-30 Optical distance measuring device

Country Status (1)

Country Link
JP (1) JP3253137B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697478B2 (en) * 2011-02-21 2015-04-08 三菱電機株式会社 Laser radar equipment
CN102749626B (en) * 2012-07-17 2015-04-08 奇瑞汽车股份有限公司 Radar sensor, automobile and target direction identification method

Also Published As

Publication number Publication date
JPH06109846A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
US6317202B1 (en) Automotive radar detecting lane mark and frontal obstacle
US7411661B2 (en) Laser radar for vehicle using reflector and method for controlling the same
US6246502B1 (en) Optical scanning apparatus
JPH09274076A (en) Reflection measuring device and control apparatus for distance between cars utilizing the same
JP2004538492A (en) A device for measuring distance
JPS61278775A (en) Preceding vehicle detecting device
JP4379791B2 (en) Scanning device
JPH10213650A (en) Object detector
JP2002071808A (en) Ranging device and preceding vehicle detecting system and preceding vehicle tracking system using this
JPH0587922A (en) Detecting apparatus of obstacle
JPH11160436A (en) Obstacle detecting device
JP3253137B2 (en) Optical distance measuring device
JPH08261753A (en) Optical radar device
EP0762140B1 (en) Position sensing system for vehicles
JPH10105868A (en) Vehicle measuring device/method
JPH10105869A (en) Vehicle type discrimination device
JPH09203631A (en) Distance-measuring sensor
JPH10170636A (en) Optical scanner
JPH06109847A (en) Optical distance-measuring apparatus
JP3201898B2 (en) Obstacle detection device
JPH06148329A (en) Vehicular gap detection apparatus
JPH05273351A (en) Device for detecting position of preceding vehicle
JP3498406B2 (en) Car driving control device
US20220334263A1 (en) Ranging System and Mobile Platform
JP2986567B2 (en) Inter-vehicle distance measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees