JPH04195106A - Multifiber optical rotary joint - Google Patents

Multifiber optical rotary joint

Info

Publication number
JPH04195106A
JPH04195106A JP32824390A JP32824390A JPH04195106A JP H04195106 A JPH04195106 A JP H04195106A JP 32824390 A JP32824390 A JP 32824390A JP 32824390 A JP32824390 A JP 32824390A JP H04195106 A JPH04195106 A JP H04195106A
Authority
JP
Japan
Prior art keywords
lenses
cylindrical
light beam
optical
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32824390A
Other languages
Japanese (ja)
Other versions
JPH07104460B2 (en
Inventor
Koichi Soegawa
添川 広一
Hiroyuki Kusuyama
樟山 裕幸
Katsunori Nakano
中野 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2328243A priority Critical patent/JPH07104460B2/en
Priority to EP91120262A priority patent/EP0488205B1/en
Priority to DE69126845T priority patent/DE69126845D1/en
Publication of JPH04195106A publication Critical patent/JPH04195106A/en
Publication of JPH07104460B2 publication Critical patent/JPH07104460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow the transmission of a static image from a rotating body side to a static body side with a small-sized device by disposing two cylindrical lenses in such a manner that the distance therebetween equals to the sum of the focal lengths thereof and rotating these lenses around the axis perpendicular to the ride faces of the lenses at a prescribed speed. CONSTITUTION:The two cylindrical lenses 11, 12 are so disposed that the generators 11a, 12a of the curved surfaces of the respective lenses parallel with each other and the distance between the two lenses 11 and 12 equals to the sum of the focal lengths thereof. The two lenses 11, 12 are so constituted that the lenses can rotate integrally at a prescribed speed around the axis passing the center of curvature of the curved surfaces of the lenses 11, 12 and perpendicular to the plane of the lenses 11, 12. The static images are transmitted from the rotating body side to the static body side in this way without increasing the light loss between a rotating body side optical collimator 3 and a static side collimator 5 in spite of a large number of optical fibers and without increasing the size of the device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多心光ロータリージヨイントに関し、特に回転
体と静止体の光通信に用いる多心光ロータリージヨイン
トに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-core optical rotary joint, and more particularly to a multi-core optical rotary joint used for optical communication between a rotating body and a stationary body.

〔従来の技術〕[Conventional technology]

回転体と静止体の間で光通信を行う際には、回転体側か
ら入力された像が静止体側で静止する必要があり、その
ために回転側光伝送系と静止側光伝送系の間に多心光ロ
ータリージヨイントを設けている。
When performing optical communication between a rotating body and a stationary body, it is necessary for the image input from the rotating body to remain stationary on the stationary body. A Shinkou rotary joint is provided.

従来は多心光ロータリージヨイントとして、第5図に示
すような装置が用いられている。第5図に示す装置では
、光ファイバla、lbにそれぞれ接続され、回転部2
に固定された回転側光コリメータ3a、3bから、静止
部4に固定された静止側光コリメータ5a、5bへ像を
伝達する光学系として、ダブプリズム51が配されてい
る。ダブプリズム51の底面52は全反射ミラーとじて
作用する。ダブプリズム51は中間部53に取り付it
られ、バーニア機構54により回転部2の回転速度の1
/2の速度で回転される。バーニア機構54は、中間部
53に回転可能に取り付けられた転輪55が静止部4の
円筒部4aの内面と回転部2の外周の間で回転すること
により、中間部53を回転させるものである。56およ
び57は軸受を示す。第1図で6a、6bは静止(出力
)側光ファイバを、7a、7bは光束を、58a。
Conventionally, a device as shown in FIG. 5 has been used as a multi-core optical rotary joint. In the apparatus shown in FIG. 5, each of the optical fibers la and lb are connected to
A Dove prism 51 is disposed as an optical system for transmitting an image from the rotating side optical collimators 3a, 3b fixed to the stationary side optical collimators 5a, 5b fixed to the stationary part 4. The bottom surface 52 of the Dove prism 51 acts as a total reflection mirror. The Dove prism 51 is attached to the intermediate part 53.
The vernier mechanism 54 reduces the rotational speed of the rotating section 2 to 1
It rotates at a speed of /2. The vernier mechanism 54 rotates the intermediate portion 53 by rotating a roller 55 rotatably attached to the intermediate portion 53 between the inner surface of the cylindrical portion 4a of the stationary portion 4 and the outer periphery of the rotating portion 2. be. 56 and 57 indicate bearings. In FIG. 1, 6a and 6b are stationary (output) side optical fibers, 7a and 7b are light beams, and 58a.

58bは光ファイバ(la、lb)と回転側光コリメー
タ(3a、3b)との接続部を、59a。
58b is a connecting portion between the optical fiber (la, lb) and the rotation side optical collimator (3a, 3b);

59bは静止側光コリメータ(5a、  5 b)と静
止側光ファイバ(6a、  6 b)との接続部を、そ
れぞれ示す。
Reference numeral 59b indicates a connecting portion between the stationary side optical collimator (5a, 5b) and the stationary side optical fiber (6a, 6b), respectively.

このような構成により、回転側光コリメータ3a、3b
から入力された像は反転されて静止側光コリメータ5a
、5bに達し、回転側光コリメータ3a、3bから入射
する光束7a、7bが回転していても、静止側光コリメ
ータ5a、5bに入射する光束は回転しない。
With such a configuration, the rotation side optical collimators 3a, 3b
The image input from the stationary side optical collimator 5a is inverted and
, 5b, and even if the light beams 7a, 7b incident from the rotating side optical collimators 3a, 3b rotate, the light beams incident on the stationary side optical collimators 5a, 5b do not rotate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来用いられている上記装置では、伝送路に用
いる光ファイバの本数が多くなると、個別の光コリメー
タの数、従ってそれが集合した光コリメータ全体の直径
か大となるのて、それにつれてダブプリズムの直径も大
となる。ダブプリズムの長さは、使用波長に依存して直
径との関係が決まるため、直径の増大とともに大となり
、その結果回転体側光コリメータと静止側コリメータの
間の距離が大きくなるから、この間での光損失か増加す
る。装置全体も大型となる。
However, in the above-mentioned conventional devices, as the number of optical fibers used in the transmission path increases, the number of individual optical collimators, and therefore the diameter of the entire optical collimator assembled with them, increases. The diameter of the prism also becomes larger. The relationship between the length of the Dove prism and the diameter depends on the wavelength used, so it increases as the diameter increases.As a result, the distance between the rotating body side optical collimator and the stationary side collimator increases, so Light loss increases. The entire device also becomes large.

それ故、本発明の目的は、伝送路として用いる光ファイ
バの本数が多くても、回転体側光コリメータと静止側コ
リメータの間での光損失を増加させることなく、また装
置を大型にせずに、回転体側から静止体側へ静止像を伝
達する多心光ロータリージヨイントを実現することであ
る。
Therefore, an object of the present invention is to avoid increasing the optical loss between the rotating body side optical collimator and the stationary side collimator, and without increasing the size of the device, even when a large number of optical fibers are used as a transmission path. The objective is to realize a multi-center optical rotary joint that transmits a static image from the rotating body side to the stationary body side.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、伝送路として用いる光ファイバの本数が多
くても、回転体側光コリメータと静止側コリメータの間
での光損失を増加させることなく、回転体側から静止体
側へ静止像を伝達する多心光ロータリージヨイントを実
現するため、側面の一つが平面で、向かい合う側面がこ
の平面と平行な直線を母線とし、母線に垂直な方向に正
の曲率を有する柱面である、シリンドリカルレンズ二つ
を、それぞれのレンズの曲面の母線が互いに平行に、そ
して両レンズの距離(厳密には主面の距離)が焦点距離
の和に等しくなるよう配置し、両レンズを一体として、
レンズの曲面の曲率中心を通り、レンズの平面に垂直な
軸の回りに、所定の速度で回転できるように構成した。
In the present invention, even if the number of optical fibers used as a transmission path is large, a multi-core fiber that transmits a static image from the rotating body side to the stationary body side without increasing optical loss between the rotating body side optical collimator and the stationary side collimator. In order to realize the optical rotary joint, we used two cylindrical lenses, one of whose side surfaces is a flat surface, and the opposite side surface is a cylindrical lens whose generatrix is a straight line parallel to this plane, and which has a positive curvature in the direction perpendicular to the generatrix. , arrange the curved surfaces of each lens so that their generating lines are parallel to each other, and the distance between both lenses (strictly speaking, the distance between their principal surfaces) is equal to the sum of their focal lengths, and when both lenses are integrated,
It was configured to be able to rotate at a predetermined speed around an axis that passes through the center of curvature of the curved surface of the lens and is perpendicular to the plane of the lens.

所定の速度とは、−方のレンズに入射する光束がレンズ
の回転軸に平行に、その回りを回転するとき、この光束
の回転速度の1/2の速度である。柱面は円柱面のほか
、楕円柱面、放物線柱面、双曲線柱面等でもよい。
The predetermined speed is a speed that is 1/2 of the rotation speed of the light beam incident on the negative lens when the light beam is rotated around the rotation axis of the lens in parallel to the rotation axis of the lens. In addition to the cylindrical surface, the cylindrical surface may be an elliptical cylindrical surface, a parabolic cylindrical surface, a hyperbolic cylindrical surface, or the like.

二つのシリンドリカルレンズは、平面の側面を向い合せ
て配置することが好ましいが、円柱面等の曲線柱面を向
い合せてもよい。
Although it is preferable that the two cylindrical lenses are arranged with their flat side surfaces facing each other, their curved cylindrical surfaces such as cylindrical surfaces may be facing each other.

以下に実施例を示し、本発明のさらに詳細な説明とする
Examples are shown below to provide a more detailed explanation of the present invention.

〔実施例1〕   □ 実施例について説明する前に、シリンドリカルレンズの
光学的原理について、第4図を参照しつつ説明する。シ
リンドリカルレンズは母線が平行な二つの円柱面(もし
くは楕円柱面等)、または円柱面(もしくは楕円柱面等
)と平面を対向する側面として有する柱状レンズであり
、円柱面等の母線の方向には屈折力を有せず、それと垂
直な方向についてのみ屈折力を有する。第4図には、屈
折率nの透明体42の側面を半径Rの円柱面43と平面
44とで構成したシリンドリカルレンズ41と、入射す
る光束lの、円柱面43の母線に垂直な断面を示す。レ
ンズの中心軸Xは、平面の側面44に垂直な、円柱面4
3の半径に相当する。
[Example 1] □ Before describing the example, the optical principle of a cylindrical lens will be described with reference to FIG. 4. A cylindrical lens is a columnar lens that has two cylindrical surfaces (or elliptical cylindrical surfaces, etc.) whose generating lines are parallel, or a cylindrical surface (or elliptical cylindrical surface, etc.) and a flat surface as opposing sides, and the direction of the generating line of the cylindrical surface, etc. has no refractive power, but only in the direction perpendicular to it. FIG. 4 shows a cylindrical lens 41 in which the side surface of a transparent body 42 with a refractive index n is composed of a cylindrical surface 43 with a radius R and a flat surface 44, and a cross section of an incident light beam l perpendicular to the generatrix of the cylindrical surface 43. show. The central axis X of the lens is perpendicular to the plane side surface 44,
It corresponds to a radius of 3.

中心軸Xに平行な光束lは、中心軸X上の、レンズ41
から焦点距離f離れた位置に収斂する。焦点距離fは、
屈折率をn、円柱面43の半径Rとするとき、f=R/
、(n−1)で与えられる。これは通常の球面レンズに
おける焦点距離に相当するが、入射する平行光束の収斂
は、距離fの位置にある、円柱面43の母線に平行(図
の紙面に垂直)な直線上に行われる。円断面をもつ光束
1か中心軸Xに沿って入射したとき、中心軸Xを横断す
る直線Z+−Z+ 、Zi Z! 、Zx−Z−、Z4
−Z4に沿った中心軸Xに垂直な光束の断面を、各線分
の延長上に示した。
The light beam l parallel to the central axis X is the lens 41 on the central axis
It converges at a position a focal length f away from . The focal length f is
When the refractive index is n and the radius of the cylindrical surface 43 is R, f=R/
, (n-1). This corresponds to the focal length of a normal spherical lens, but the incident parallel light beam is converged on a straight line parallel to the generatrix of the cylindrical surface 43 (perpendicular to the plane of the drawing) at a distance f. When a light beam 1 with a circular cross section is incident along the central axis X, a straight line Z+-Z+, Zi Z! that intersects the central axis X. , Zx-Z-, Z4
A cross section of the light beam perpendicular to the central axis X along -Z4 is shown on the extension of each line segment.

以下に実施例を説明する。第1図に本発明の光多心ロー
タリージヨイントの光学系を示す。第1図(A)および
(B)で、回転側のコリメータ3と静止側のコリメータ
5の間には、回転側のシリンドリカルレンズ11と静止
側のシリンドリカルレンズ12が、それぞれの円柱面の
母線11a。
Examples will be described below. FIG. 1 shows the optical system of the optical multi-core rotary joint of the present invention. In FIGS. 1(A) and (B), between the collimator 3 on the rotating side and the collimator 5 on the stationary side, a cylindrical lens 11 on the rotating side and a cylindrical lens 12 on the stationary side are connected to the generatrix 11a of the respective cylindrical surfaces. .

12aが互いに平行に、平面の側面11b、12bが向
き合うように、そして両レンズの焦点0(実際には直線
をなすが、便宜上焦点と呼ぶ)が一致する距離を隔てて
、配置されている。第1図(A)および(B)は、シリ
ンドリカルレンズ11および12の円柱面の母線11a
、12aに平行および垂直な断面をそれぞれ示す。ここ
で、シリンドリカルレンズ11および12の焦点0を通
り、入射光束7に平行な直線をこの光学系の中心軸Xと
呼ぶことにし、中心軸Xに平行な軸をXルンズの円柱面
の母線の方向の軸をy、中心軸Xに垂直で紙面に沿った
方向の軸を2とする。コリメータ3に入射する光束7は
常にy軸に平行に、中心軸Xの回りを回転する(中心軸
Xとの距離をhとする)。この回転に対し、シリンドリ
カルレンズ11および12は一体として、図示しない回
転機構により、回転側コリメータ3、従って光束7の回
転速度の1/2の速度で、中心軸Xの回りに回転できる
ように構成されている。第1図(B)は、光束7が中心
軸Xを含みy軸に垂直な面内にある状態を示している。
12a are arranged parallel to each other so that the planar side surfaces 11b and 12b face each other, and at a distance such that the focal point 0 of both lenses (actually a straight line, but referred to as the focal point for convenience) coincides with each other. FIGS. 1(A) and 1(B) show the generatrix 11a of the cylindrical surfaces of the cylindrical lenses 11 and 12.
, 12a are shown in parallel and perpendicular sections, respectively. Here, the straight line passing through the focal point 0 of the cylindrical lenses 11 and 12 and parallel to the incident light beam 7 is called the central axis X of this optical system, and the axis parallel to the central axis X is the generatrix of the cylindrical surface of the X lenses. The directional axis is y, and the axis perpendicular to the central axis X and along the plane of the paper is 2. The light beam 7 incident on the collimator 3 always rotates around the central axis X in parallel to the y-axis (the distance from the central axis X is h). In response to this rotation, the cylindrical lenses 11 and 12 are configured to be able to rotate as a unit around the central axis X at a speed that is half the rotation speed of the rotating side collimator 3, and thus the light beam 7, by a rotation mechanism (not shown). has been done. FIG. 1(B) shows a state in which the light beam 7 is in a plane that includes the central axis X and is perpendicular to the y-axis.

光束7は回転側のコリメータ3を経て平行光束7cとな
り、シリンドリカルレンズ11により屈折されて光束7
dとなり、シリンドリカルレンズ11とシリンドリカル
レンズ12の共通の焦点Oを経てシリンドリカルレンズ
12に入射し、再び平行光束7eとなり、静止側のコリ
メータ5を経て光束8として取り出される。中心軸Xか
ら入射光束7までの距離りと光束8までの距離h′は等
しい。すなわち、シリンドリカルレンズ11および12
はZ軸方向の倍率が1のアフォーカル光学系を形成する
。二本の平行光束7Cと、対応する二本の光束7eは、
Z軸に対する関係が反転しており、光束7に含まれる像
は光束8中で反転することを示す。
The light beam 7 passes through the collimator 3 on the rotating side, becomes a parallel light beam 7c, is refracted by the cylindrical lens 11, and becomes the light beam 7.
d, enters the cylindrical lens 12 through a common focal point O of the cylindrical lenses 11 and 12, becomes a parallel light beam 7e again, and is extracted as a light beam 8 through the collimator 5 on the stationary side. The distance from the central axis X to the incident light beam 7 and the distance h' from the light beam 8 are equal. That is, the cylindrical lenses 11 and 12
forms an afocal optical system with a magnification of 1 in the Z-axis direction. Two parallel light fluxes 7C and two corresponding light fluxes 7e are
The relationship with respect to the Z axis is reversed, indicating that the image contained in the light beam 7 is reversed in the light beam 8.

光束7,7cが中心軸Xの回りに回転するに伴い、シリ
ンドリカルレンズ11および12は、−体として、回転
側コリメータの1/2の回転速度で回転される。このと
きの、光束7に垂直な断面での入射光束7と出力光束8
との関係を、第2図に示す。第2図で円21は入射光束
7の回転の軌跡を、直線22はシリンドリカルレンズ1
1および12の円柱面の母線の方向を示す。第2図(A
)に示すように、Oで示した入射光束7が円21上で中
心軸Xに対し最も上(Z軸方向で)にある場合には、光
束は矢印で示すように伝達され、×で示す出力光束8は
入射光束7と中心軸Xに関し対称の位置に得られる。第
2図(B)に示すように、○で示した入射光束7が第2
図(A)に示した位置から90°反時計方向に回転した
位置まで回転すると、シリンドリカルレンズ11および
12は光束7の回転速度の1/2の速度で回転するので
、シリンドリカルレンズの円柱面の母線の方向を示す直
線22は45°反時計方向に回転する。光束7はシリン
ドリカルレンズ11および12を通過する際、第1図で
示したように、それらの円柱面の母線に垂直な面内を矢
印で示すように伝達されるので、×で示す出力光束8の
位置は、結果として第2図(A)に示したのと同じ位置
になる。Oで示した入射光束7が、円21上で第2図(
C)に示す位置(中心軸Xに対しZ軸方向で最も低い位
置)まで回転した場合には、シリンドリカルレンズ11
および12の円柱面の母線22は第2図(A)に示した
位置から90°回転するので、入射光束7は中心軸X上
を通って、屈折されずに、×で示す出力光束8となる。
As the light beams 7 and 7c rotate around the central axis X, the cylindrical lenses 11 and 12 are rotated as negative bodies at a rotation speed 1/2 that of the rotation side collimator. At this time, the incident light flux 7 and the output light flux 8 in a cross section perpendicular to the light flux 7
The relationship between the two is shown in Figure 2. In FIG. 2, a circle 21 represents the locus of rotation of the incident light beam 7, and a straight line 22 represents the rotation trajectory of the cylindrical lens 1.
The direction of the generatrix of the cylindrical surfaces of Nos. 1 and 12 is shown. Figure 2 (A
), when the incident light beam 7 shown by O is at the top (in the Z-axis direction) with respect to the central axis X on the circle 21, the light beam is transmitted as shown by the arrow, and is shown by The output light beam 8 is obtained at a position symmetrical to the incident light beam 7 with respect to the central axis X. As shown in FIG. 2(B), the incident light beam 7 indicated by ○ is the second
When rotated 90° counterclockwise from the position shown in Figure (A), the cylindrical lenses 11 and 12 rotate at 1/2 the rotation speed of the light beam 7, so the cylindrical surface of the cylindrical lens The straight line 22 indicating the direction of the generatrix is rotated 45° counterclockwise. When the light beam 7 passes through the cylindrical lenses 11 and 12, it is transmitted in a plane perpendicular to the generatrix of the cylindrical surfaces as shown by the arrow, as shown in FIG. As a result, the position is the same as that shown in FIG. 2(A). The incident light beam 7 indicated by O is shown in FIG. 2 on the circle 21 (
When rotated to the position shown in C) (the lowest position in the Z-axis direction with respect to the central axis X), the cylindrical lens 11
Since the generating line 22 of the cylindrical surface 12 and 12 is rotated by 90 degrees from the position shown in FIG. 2(A), the incident light beam 7 passes on the central axis Become.

以上から明らかなように、第2図(A)ないしくC)の
いずれでも、×で示す出力光束8の位置は変わらない。
As is clear from the above, the position of the output light beam 8 indicated by x does not change in any of FIGS. 2(A) to 2C).

第2図には代表例として入射光束7の三つの位置のみを
示したが、それ以外の位置でも出力光束8の位置は常に
一定である。理解を容易にするため、第2図(C)に示
した状態での光束について、第1図に対応する断面を第
3図に示す。第3図から理解されるように、第2図(C
)に対応する状態では、入射光束7に含まれる正立像は
、出力光束8において正立像となる。
Although FIG. 2 shows only three positions of the incident light beam 7 as a representative example, the position of the output light beam 8 is always constant even at other positions. To facilitate understanding, FIG. 3 shows a cross section corresponding to FIG. 1 regarding the light flux in the state shown in FIG. 2(C). As understood from Fig. 3, Fig. 2 (C
), the erect image contained in the incident light beam 7 becomes an erect image in the output light beam 8.

屈折率nと円柱面の半径Rは任意に選べるが、例えば、
シリンドリカルレンズ11および12に同じものを用い
、それらの屈折率nを1.5、円柱面の半径Rを10m
mとすると、f=R/(n−1)=20mmとなり、シ
リンドリカルレンズ11と12の距離は40mmとなる
。焦点距離fは、光束の回転半径りにおいて、光束の直
径の範囲内での光路の変動に対し、球面収差が許容でき
る限度において、任意に選ぶことができる。
Although the refractive index n and the radius R of the cylindrical surface can be arbitrarily selected, for example,
The same cylindrical lenses 11 and 12 are used, their refractive index n is 1.5, and the radius R of the cylindrical surface is 10 m.
If m, then f=R/(n-1)=20 mm, and the distance between the cylindrical lenses 11 and 12 is 40 mm. The focal length f can be arbitrarily selected as long as the spherical aberration can be tolerated with respect to variations in the optical path within the diameter of the light beam in the radius of rotation of the light beam.

〔実施例2〕 実施例1において、シリンドリカルレンズ11および1
2に同じものを用い、屈折率nを1.5、円柱面の半径
Rを40mmとすると、シリンドリカルレンズ11およ
び12の焦点距離fはそれぞれf=R/ (n −1)
 =80mm  となり、シリンドリカルレンズ11と
12の距離は160mmとなる。
[Example 2] In Example 1, cylindrical lenses 11 and 1
If the same lens is used for 2, the refractive index n is 1.5, and the radius R of the cylindrical surface is 40 mm, the focal length f of the cylindrical lenses 11 and 12 is f=R/ (n -1).
=80mm, and the distance between the cylindrical lenses 11 and 12 is 160mm.

第5図に示した従来のダブプリズムを用いる装置では、
光の波長が0.8μm、光束の回−転半径か20mmの
とき、コリメータ間の距離は210mmを必要としたの
に比し、本発明による上述の装置を用いると、同じ光束
を伝達するのにコリメータ間の距離を約50mm短縮で
き、結合損失は約2dB改善された。
In the device using the conventional Dove prism shown in Fig. 5,
When the wavelength of light is 0.8 μm and the radius of gyration of the luminous flux is 20 mm, the distance between the collimators would need to be 210 mm. However, when using the above-mentioned device according to the present invention, it is possible to transmit the same luminous flux. The distance between the collimators was shortened by about 50 mm, and the coupling loss was improved by about 2 dB.

〔実施例3〕 実施例1において、シリンドリカルレンズ11、および
12は、平面の側面11bおよび12bが向かい合うよ
うに配置したが、それぞれの円柱面を向かい合わせて配
置してもよい。
[Example 3] In Example 1, the cylindrical lenses 11 and 12 were arranged so that the planar side surfaces 11b and 12b faced each other, but they may be arranged so that their cylindrical surfaces faced each other.

〔発明の効果〕〔Effect of the invention〕

本発明の多心光ロータリージヨイントによると、伝送路
として用いる光ファイバの本数が多くなっても、回転側
光コリメータと静止側コリメータの間での光損失を増加
させることなく、また装置を大型にせずに、回転体側か
ら静止体側へ静止像を伝達することができる。
According to the multi-core optical rotary joint of the present invention, even if the number of optical fibers used as a transmission path increases, the optical loss between the rotating side optical collimator and the stationary side collimator does not increase, and the device can be made larger. A static image can be transmitted from the rotating body side to the stationary body side without having to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)および(B)は本発明の多心光ロータリー
ジヨイントの一実施例の光学系を示す断面図、第2図(
A)ないしくC)は光束に垂直な断面での入射光束と出
力光束との関係を示す説明図、第3図は第2図(C)に
示した状態での光束について実施例の光学系を示す断面
図、第4図はシリンドリカルレンズの光学的原理の説明
図、第5図は従来の多心光ロータリージヨイントを示す
断面図である。 符号の説明 1a、1b・・・・・・・光ファイバ 2・・・・−・回転部     3・・−・−・・コリ
メータ3a、3b・・・・・・・回転側コリメータ4・
・−・・・静止部    4a−・−・・・・円筒部5
・・・−・・・コリメータ 5a、5b・・・・−・・静止側コリメータ6a、6b
・・・・・・静止側光ファイバ7・・・−・・光束  
  7a、7b・・−・・−・・・・・光束7 c、 
 7 d、  7 e−−−光束8・−・・・・・光束 11.12・・・・・・−・・シリンドリカルレンズ1
1a、12a・・・−・・柱面の母線11b、12b−
・・・・・・平面の側面51−・・・・・・ダブプリズ
ム 52・・・・・・・全反射ミラー53・・−・・・
・中間部    54−・・・・−1・バーニア機構5
5・・・・・・・転輪     56.57−・−・・
・軸受58a、58b−・・・・・・回転側光ファイバ
と回転側コリメータとの接続部 59a、59b・・・・・−・静止側コリメータと静止
側光ファイバとの接続部
FIGS. 1A and 1B are cross-sectional views showing an optical system of an embodiment of the multi-core optical rotary joint of the present invention, and FIG.
A) or C) is an explanatory diagram showing the relationship between the incident luminous flux and the output luminous flux in a cross section perpendicular to the luminous flux, and Fig. 3 shows the optical system of the example for the luminous flux in the state shown in Fig. 2 (C). 4 is an explanatory diagram of the optical principle of a cylindrical lens, and FIG. 5 is a sectional diagram showing a conventional multi-center optical rotary joint. Explanation of symbols 1a, 1b...Optical fiber 2...Rotating part 3...Collimator 3a, 3b...Rotating side collimator 4...
・---Stationary part 4a---Cylindrical part 5
...Collimator 5a, 5b ...Stationary side collimator 6a, 6b
・・・Station side optical fiber 7・・・−・Light flux
7a, 7b...... Luminous flux 7 c,
7 d, 7 e---Light flux 8...Light flux 11.12...Cylindrical lens 1
1a, 12a... Generating lines 11b, 12b- of the cylindrical surface
...Flat side surface 51--Dove prism 52--Total reflection mirror 53--
・Intermediate part 54-...-1 ・Vernier mechanism 5
5...Rolling wheels 56.57--...
・Bearings 58a, 58b---Connection parts between the rotating side optical fiber and the rotating side collimator 59a, 59b------Connecting parts between the stationary side collimator and the stationary side optical fiber

Claims (2)

【特許請求の範囲】[Claims] (1)側面の一つが平面で、該平面と向かい合う側面が
前記平面と平行な直線を母線とし、母線に垂直な方向に
正の曲率を有する柱面である、シリンドリカルレンズ二
つを、前記シリンドリカルレンズのそれぞれの前記柱面
の母線が互いに平行で、前記二つのシリンドリカルレン
ズの距離がそれらの焦点距離の和に等しくなるよう配置
し、前記二つのシリンドリカルレンズを一体として、前
記柱面の曲率中心を通り、前記平面に垂直な軸の回りに
、所定の速度で回転できるように構成したことを特徴と
する、多心光ロータリージョイント。
(1) Two cylindrical lenses in which one of the side surfaces is a flat surface, and the side surface facing the flat surface is a cylindrical surface having a generatrix line parallel to the plane and a positive curvature in a direction perpendicular to the generatrix line, are connected to the cylindrical lens. The generating lines of the cylindrical surfaces of the lenses are parallel to each other, and the two cylindrical lenses are arranged so that the distance between them is equal to the sum of their focal lengths, and when the two cylindrical lenses are integrated, the center of curvature of the cylindrical surface is A multi-core optical rotary joint, characterized in that it is configured to be able to rotate at a predetermined speed around an axis perpendicular to the plane.
(2)前記所定の速度は、前記二つのシリンドリカルレ
ンズの一方に前記軸に平行に入射する光束が、前記軸の
回りを回転するとき、この回転の速度の1/2の速度で
ある、請求項第1項の多心光ロータリージョイント。
(2) The predetermined speed is a speed that is 1/2 of the speed of rotation when a light beam incident on one of the two cylindrical lenses in parallel to the axis rotates around the axis. Multi-core optical rotary joint in item 1.
JP2328243A 1990-11-28 1990-11-28 Multi-core optical rotary joint Expired - Lifetime JPH07104460B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2328243A JPH07104460B2 (en) 1990-11-28 1990-11-28 Multi-core optical rotary joint
EP91120262A EP0488205B1 (en) 1990-11-28 1991-11-27 Multi-port fiberoptic rotary joint
DE69126845T DE69126845D1 (en) 1990-11-28 1991-11-27 Fiber optic rotary coupling with multiple access

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328243A JPH07104460B2 (en) 1990-11-28 1990-11-28 Multi-core optical rotary joint

Publications (2)

Publication Number Publication Date
JPH04195106A true JPH04195106A (en) 1992-07-15
JPH07104460B2 JPH07104460B2 (en) 1995-11-13

Family

ID=18208040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328243A Expired - Lifetime JPH07104460B2 (en) 1990-11-28 1990-11-28 Multi-core optical rotary joint

Country Status (1)

Country Link
JP (1) JPH07104460B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513961A (en) * 2006-12-22 2010-04-30 シュライフリング ウント アパラーテバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical rotary coupler with large return loss
WO2011137983A1 (en) * 2010-05-04 2011-11-10 Georg-Simon-Ohm Hochschule für angewandte Wissenschaften Fachhochschule Nürnberg Optical rotary transmitter
CN104238024A (en) * 2014-09-29 2014-12-24 上海理工大学 Off-axis optical fiber rotating connector based on annular cylindrical lenses

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259208A (en) * 1985-05-14 1986-11-17 Tokyo Optical Co Ltd Connector for multicore optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259208A (en) * 1985-05-14 1986-11-17 Tokyo Optical Co Ltd Connector for multicore optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513961A (en) * 2006-12-22 2010-04-30 シュライフリング ウント アパラーテバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical rotary coupler with large return loss
WO2011137983A1 (en) * 2010-05-04 2011-11-10 Georg-Simon-Ohm Hochschule für angewandte Wissenschaften Fachhochschule Nürnberg Optical rotary transmitter
US9291777B2 (en) 2010-05-04 2016-03-22 Technische Hochschule Georg Simon Ohm Optical rotary transmitter
CN104238024A (en) * 2014-09-29 2014-12-24 上海理工大学 Off-axis optical fiber rotating connector based on annular cylindrical lenses

Also Published As

Publication number Publication date
JPH07104460B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4519670A (en) Light-rotation coupling for a plurality of channels
US5078502A (en) Compact afocal reimaging and image derotation device
US4447114A (en) Optical slip rings
US3389950A (en) Fiber optics scan system
JPS59105608A (en) Rotary joiner for optical fiber
US6836364B2 (en) Beam steering and scanning device
JPS6058441B2 (en) Reflection-eliminating spherical optical array composed of tilted lens elements with cylindrical components
JPH04195106A (en) Multifiber optical rotary joint
JP3387725B2 (en) Optical connector
EP0488205A2 (en) Multi-port fiberoptic rotary joint
US5579177A (en) Optical dispersion apparatus and method
JPH06174963A (en) Optical branching and coupling element
WO2022145308A1 (en) Fan-in/fan-out device
JPH05134140A (en) Multi-fiber optical rotary joint
JP2569028B2 (en) Optical fiber connector
JPS61259208A (en) Connector for multicore optical fiber
JPS58153908A (en) Lens for scanning
JP2658400B2 (en) Hollow light rotary joint
JPS6124961Y2 (en)
JPH043282Y2 (en)
JPS60129713A (en) Rotary type optical coupling joint
JPS60164707A (en) Rotary type optical coupling joint
JPH0297906A (en) Structure for disposition of fiber collimator
JPH04204608A (en) Multifiber optical rotary joint
JPH0331806A (en) Hollow optical rotary joint

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 16