JPH04194907A - Stereoscopic image display device - Google Patents

Stereoscopic image display device

Info

Publication number
JPH04194907A
JPH04194907A JP2328587A JP32858790A JPH04194907A JP H04194907 A JPH04194907 A JP H04194907A JP 2328587 A JP2328587 A JP 2328587A JP 32858790 A JP32858790 A JP 32858790A JP H04194907 A JPH04194907 A JP H04194907A
Authority
JP
Japan
Prior art keywords
display device
spatial modulation
observer
image display
modulation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2328587A
Other languages
Japanese (ja)
Inventor
Makoto Kato
誠 加藤
Kenichi Kasasumi
研一 笠澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2328587A priority Critical patent/JPH04194907A/en
Publication of JPH04194907A publication Critical patent/JPH04194907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To allow stereoscopic image display by using a rotary mirror optical system in such a manner that the optical axes of respective elements coincide substantially with the optical axis of an observer. CONSTITUTION:The light crystal space modulating element arrays 101 to 105 having the respective optical axes within the same horizontal plane are successively irradiated with prescribed timing pulses by respective semiconductor laser light source arrays or white light source arrays 301 to 306. The light rays are reflected by the perpendicular plane of a rotationally driven polygon mirror 6 and form multiple images 401 to 406 spaced respectively by DELTA on the front surface of an observation position 5 via an imaging lens 5. The polygon mirror 6 has the perpendicular mirror surfaces of an octahedron and the respective space modulating elements are irradiated with luminous flux pulses. The high-quality stereoscopic images free from flickers when viewed from the observer 5 are obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は コンピュータ画像もしくは映像信号を合成す
ることにより、実時間的に立体像表示が可能な医療診断
用などの表示装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a display device for medical diagnosis, etc., which is capable of displaying a stereoscopic image in real time by synthesizing computer images or video signals.

従来の技術 立体表示技術については従来二眼立体視の簡単なものか
ら、ホログラフィ−を用いる真の立体表示まで様々の方
式か開発されてきている。一方、NMR,CT、超音波
診断装置といった一連の医療診断システム あるいはC
AD (Compu ter−aided  desi
gn)システムなどコンピュータシステムの飛躍的発展
に支えられて最近急速に性能が改善されて、高速イL 
 高画質化が進んでいる力丈 これらの系の最終表示形
態は依然として本質的に2次元画像のままである。ホロ
グラフィックステレオグラムは これら2次元画像を合
成表示して自然な視差を与える形態に一歩近づいている
力\ 実時間性を実現するのかきわめて困難であり画質
の点でも制約かあっ?=  また、ホログラフィ−の利
用の別の方式として、第3図に示す如く、多重記録ホロ
グラム2をレーザ光源1で照明し 多重像40.41、
 ・・・、43を空間の異なる面に各々再生して、イン
ライン(光軸22)lにいわゆる” Se6  jhr
ough″(透視)像を得る方法か試みられ 医学者の
興味を引いている。
BACKGROUND OF THE INVENTION Various stereoscopic display techniques have been developed, ranging from simple two-lens stereoscopic viewing to true stereoscopic display using holography. On the other hand, a series of medical diagnostic systems such as NMR, CT, and ultrasonic diagnostic equipment or C
AD (Computer-aided design)
Supported by the rapid development of computer systems such as
The final display form of these systems remains essentially a two-dimensional image. Holographic stereograms are one step closer to a form that synthesizes and displays these two-dimensional images and provides natural parallax. It is extremely difficult to achieve real-time performance, and there are limitations in terms of image quality. = Also, as another method of using holography, as shown in FIG. 3, a multiple recording hologram 2 is illuminated with a laser light source 1, and multiple images 40, 41,
..., 43 are reproduced on different planes of space, and the so-called "Se6 jhr" is reproduced in-line (optical axis 22) l.
Attempts have been made to obtain fluoroscopic images, which are of interest to medical scientists.

発明が解決しようとする課題 従来の技術において、実時間性のあるものは二眼立体テ
レビシステムの如く画質の点ではよいが立体表示の面か
らは情報量か制約され 他方情報量の多いホログラフィ
−式では 実時間性に欠け、スペックルノイズによる劣
化などの生じた画質か悪いものであっ旭 本発明(よ 
実時間表示か可能で、 しかも高画質の映像を少なくと
も10画面程度、あるいはそれ以上の画面を″ see
through″′像として立体表示可能ならしめる。
Problems to be Solved by the Invention In the conventional technology, real-time technology is good in terms of image quality, such as a two-lens 3D television system, but the amount of information is limited in terms of 3D display.On the other hand, holography, which has a large amount of information, The formula lacks real-time performance, and the image quality is poor due to deterioration due to speckle noise.
Real-time display is possible, and high-quality images can be displayed on at least 10 or more screens.
The image can be displayed three-dimensionally as a through'' image.

課題を解決するための手段 本発明では 上述の課題解決のために 実時間の画像表
示可能な複数個の空間変調素子夕I上  及び画像信号
源と、各素子を所定タイミングでパルス的に照明可能な
発光光源列と、回転駆動される反射鏡と結像レンズ等の
手段を用いることにより目的を達することができる。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses a plurality of spatial modulation elements capable of displaying images in real time, an image signal source, and each element can be illuminated in a pulsed manner at a predetermined timing. This objective can be achieved by using means such as a light emitting light source array, a rotationally driven reflecting mirror, and an imaging lens.

作用 本発明で(渋 ビデオレー1・で各個に駆動される空間
変調素子列が並列に配置されており、各素子の光軸が観
測者の光軸に実質的に一致する如く回転鏡光学系を用し
入 前記各空間変調素子列を所定タイミングでパルス照
明することにより、全ての画像面か同一光軸上に並んで
観測される。しかも、各画面は光軸」二で所定間隔ずつ
離れた面に位置する如く配置するのて 立体像表示が可
能であり、各画像面相互の干渉は起こらないので極めて
見やずく、高画質の表示が可能となる。
Function: In the present invention, spatial modulation element arrays individually driven by the videoray 1 are arranged in parallel, and a rotating mirror optical system is arranged so that the optical axis of each element substantially coincides with the observer's optical axis. By applying pulse illumination to each spatial modulation element row at a predetermined timing, all image planes can be observed lined up on the same optical axis.Moreover, each screen is spaced apart by a predetermined interval along the optical axis. Three-dimensional image display is possible by arranging the two image planes so that they are located on the same plane, and since there is no interference between the respective image planes, it is possible to display an extremely clear and high-quality image.

実施例 第1図は本発明の一実施例を示す概略構成の平面図であ
って、同一水平面内に各々光軸を有する液晶空間変調素
子列101、102、 ・・・、 106 il  各
々半導体レーザ光源列もしくは白色光源列301、30
2、 ・・・、 306で所定タイミングパルス照明を
逐次されて、回転駆動されるポリゴンミラー6の垂直面
で反射後結像レンズ5を介して観測位置5の前面(へ 
各々△だけ間隔をおいた多重像401、402、 ・・
・、 406を形成する。ここでポリゴンミラー6は8
面体の垂直ミラー面を有し 毎分例えは225回転で駆
動すると、各空間変調素子は逐次毎秒30回の割合で高
速パルス照明され 観測者5から見てフリッカ−のなし
\ 高画質の立体像が得られることになる。空間変調素
子は白黒 もしくはカラーの映像画面を信号源701、
702、 ・・・706より各々人力されて連続駆動ず
れはよく、半導体レーザ列301、302、 ・・・、
 306を直接パルス変調して駆動する力\ もしくは
白色光源の場合(よ 高速シャツタ列を回転ミラー6と
同期駆動することによって安定した立体表示か可能であ
る。
Embodiment FIG. 1 is a plan view of a schematic configuration showing an embodiment of the present invention, in which liquid crystal spatial modulation element arrays 101, 102, . . . , 106 il each have a semiconductor laser, each having an optical axis in the same horizontal plane. Light source row or white light source row 301, 30
2, . . . , 306, pulse illumination is sequentially applied at a predetermined timing, and after reflection on the vertical plane of the rotationally driven polygon mirror 6, it is illuminated through the imaging lens 5 to the front (toward) of the observation position 5.
Multiple images 401, 402, spaced apart by △, respectively.
, 406 is formed. Here, polygon mirror 6 is 8
It has a vertical mirror surface in the form of a face, and when driven at 225 revolutions per minute, each spatial modulation element is sequentially illuminated with high-speed pulses at a rate of 30 times per second, creating a flicker-free, high-quality 3D image from the perspective of the observer 5. will be obtained. The spatial modulation element uses a black and white or color video screen as a signal source 701,
702, . . . 706 are operated manually, and the continuous drive deviation is good, and the semiconductor laser arrays 301, 302, . . .
306 by direct pulse modulation, or in the case of a white light source, stable stereoscopic display is possible by driving a high-speed shutter array in synchronization with the rotating mirror 6.

なお、各画像面間隔△を与えるために空間変調素子10
1、102、 ・・・、 106は回転ミラー中心から
の距離を少しずつ異なる如く配置を調整されている。
In addition, in order to give each image plane interval Δ, the spatial modulation element 10
1, 102, . . . , 106 are arranged so that their distances from the center of the rotating mirror are slightly different.

第2図(a)l;t、  本発明の第2実施例を説明す
る概略構成図であって、第1実施例と異なる部分のみ表
示している。すなわち、結像レンズ系5の代わりに空間
変調素子103に対しては第1のフーリエ変換レンズ2
03 (図示を省いた他の空間変調素子にも各々第1の
フーリエ変換レンズが用いられる)及び第2のフーリエ
変換レンズ55 (全体に共通)を介して像403を形
成する如くして光束を有効に利用可能ならしめている。
FIG. 2(a)l;t is a schematic configuration diagram illustrating a second embodiment of the present invention, and only portions different from the first embodiment are shown. That is, instead of the imaging lens system 5, the first Fourier transform lens 2 is used for the spatial modulation element 103.
03 (the first Fourier transform lens is also used for each of the other spatial modulation elements not shown) and the second Fourier transform lens 55 (common to the whole) to form an image 403. This makes it possible to use it effectively.

同図(b)はインラインの等側光学系として(a)を示
しており、回転ミラー角度と光源の発光タイミングで逐
次画像面は 401〜406に変わっていくことになる
(b) shows (a) as an in-line isolateral optical system, and the image plane sequentially changes from 401 to 406 depending on the rotating mirror angle and the light emission timing of the light source.

なお第]、’−2図ともレンズ201〜206は各々コ
リメートレンズ、ないしはフィールドレンズを兼ねる。
In addition, in both Figures 1 and 2, the lenses 201 to 206 each serve as a collimating lens or a field lens.

また ポリゴンミラー以外に ガルバノミラ−1あるい
はモータ上に平面鏡を固定して回転可能としたものを用
いてもよい。また空間変調素子の代わりに若干の深度を
有する立体像を記録した複数種類のイメージプレーンホ
ログラムを配置してもよい。フレームメモリあるいは映
像信号源701、702、 ・・・、 706として(
よコンピュータ合成画像の41  超音波診断画像など
ミ実時間性を利用できるものが適する。
In addition to the polygon mirror, a galvanometer mirror 1 or a plane mirror fixed on a motor and made rotatable may be used. Moreover, instead of the spatial modulation element, a plurality of types of image plane holograms recording stereoscopic images having a certain depth may be arranged. As frame memory or video signal sources 701, 702, ..., 706 (
41 Computer-generated images that can utilize real-time properties, such as ultrasonic diagnostic images, are suitable.

発明の効果 本発明(よ 10から数十面の画像に分解される立体情
報を実時間でインライン表示させることによってきわめ
てリアリスティックな、かつ見やすい立体表示を可能と
し 医療診断等の分野に多大の効果を発揮させることか
できる。
Effects of the Invention The present invention enables highly realistic and easy-to-see 3D display by displaying 3D information decomposed into 10 to several dozen images in-line in real time, and has great effects in fields such as medical diagnosis. It is possible to demonstrate this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の立体像表示装置の概略図、
第2図は別の実施例の装置の概略図 第3図は従来の立
体像形成装置の概略構成図である。 101〜106・・・空間変調素子列、 201〜20
2・・ ・レンズ゛り;上 301〜306・・・パル
ス光源舛 401〜406・・・合成立体(1゜701
〜706・・・映像信号酷 2・・・多重記録ホログラ
ム、 5・・・結像レンズ′、、 6・・・ポリゴンミ
ラー、 203・・・第1のフーリエ変換レンズ、 5
5・・・第2のフーリエ変換レンズ代理人の氏名 弁理
士 小鍜治 明 はが2名NC′V、l−〜 腎 訃 区 aつ
FIG. 1 is a schematic diagram of a stereoscopic image display device according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of an apparatus according to another embodiment. FIG. 3 is a schematic diagram of a conventional three-dimensional image forming apparatus. 101-106... Spatial modulation element row, 201-20
2... Lens; top 301-306... Pulse light source 401-406... Composite solid (1°701
~706...Video signal is poor 2...Multiple recording hologram, 5...Imaging lens', 6...Polygon mirror, 203...First Fourier transform lens, 5
5... Name of the second Fourier transform lens agent Patent attorney Akira Okaji 2 people NC'V, l-~ Kidney Ward atsu

Claims (4)

【特許請求の範囲】[Claims] (1)所定のタイミングで個別に発光可能なN個の光源
列と、前記光源の各々で照明されかつ所定の反射鏡面の
略中心に向かう光軸に各々垂直に配置されたN個の空間
変調素子列と、前記反射鏡面を前記光源列並びに前記空
間変調素子列の光軸を含む面内で回転する駆動系とを少
なくとも具備し、前記空間変調素子列の各素子に個別に
画像信号を供給可能な映像信号源もしくは、画像メモリ
装置を用いることによって、観測者から見て実質的に同
一光軸上の異なる面に画像形成並びに多重像合成を行う
ことを特徴とする立体像表示装置。
(1) N light source arrays that can individually emit light at predetermined timings, and N spatial modulators illuminated by each of the light sources and arranged perpendicularly to the optical axis toward the approximate center of a predetermined reflective mirror surface. comprising at least an element array and a drive system that rotates the reflective mirror surface in a plane that includes the optical axis of the light source array and the spatial modulation element array, and individually supplies image signals to each element of the spatial modulation element array. 1. A three-dimensional image display device characterized in that image formation and multiple image synthesis are performed on different planes on substantially the same optical axis as viewed from an observer by using a video signal source or an image memory device.
(2)空間変調素子と観測者との間に結像レンズ系を用
いたことを特徴とする特許請求の範囲第1項記載の立体
像表示装置。
(2) The stereoscopic image display device according to claim 1, characterized in that an imaging lens system is used between the spatial modulation element and the observer.
(3)空間変調素子と観測者とのあいだに一対のフーリ
エ変換レンズ系を用いたことを特徴とする特許請求の範
囲第1項記載の立体像表示装置。
(3) The stereoscopic image display device according to claim 1, characterized in that a pair of Fourier transform lens systems is used between the spatial modulation element and the observer.
(4)空間変調素子が液晶表示装置であって、ビデオレ
ートで所定の画像信号を供給されることを特徴とする特
許請求の範囲第1項記載の立体像表示装置。
(4) The stereoscopic image display device according to claim 1, wherein the spatial modulation element is a liquid crystal display device and is supplied with a predetermined image signal at a video rate.
JP2328587A 1990-11-27 1990-11-27 Stereoscopic image display device Pending JPH04194907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2328587A JPH04194907A (en) 1990-11-27 1990-11-27 Stereoscopic image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328587A JPH04194907A (en) 1990-11-27 1990-11-27 Stereoscopic image display device

Publications (1)

Publication Number Publication Date
JPH04194907A true JPH04194907A (en) 1992-07-14

Family

ID=18211941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328587A Pending JPH04194907A (en) 1990-11-27 1990-11-27 Stereoscopic image display device

Country Status (1)

Country Link
JP (1) JPH04194907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015019A (en) * 2006-07-03 2008-01-24 Fujifilm Corp High-speed polarization device, high-speed birefringence measuring device using the same and stereoscopic image display device
WO2009052698A1 (en) * 2007-10-16 2009-04-30 Xuefeng Song Display device and its display method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015019A (en) * 2006-07-03 2008-01-24 Fujifilm Corp High-speed polarization device, high-speed birefringence measuring device using the same and stereoscopic image display device
WO2009052698A1 (en) * 2007-10-16 2009-04-30 Xuefeng Song Display device and its display method
US8628196B2 (en) 2007-10-16 2014-01-14 Ocean Of Peace Scientific Beijing Ltd. Display device and display method

Similar Documents

Publication Publication Date Title
US7738151B2 (en) Holographic projector
EP0589558B1 (en) Stereoscopic display method and display apparatus
US5111313A (en) Real-time electronically modulated cylindrical holographic autostereoscope
US8075138B2 (en) System and methods for angular slice true 3-D display
EP2008146B1 (en) Systems and methods for angular slice true 3-d display
US5748347A (en) Image recording medium and method of making same
TW540228B (en) Three-dimensional display systems
US6665100B1 (en) Autostereoscopic three dimensional display using holographic projection
CN108803295B (en) Method for manufacturing large-field-of-view hologram, display system and dot matrix light source
Kollin et al. Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator
JP2005520184A (en) Radiation conditioning system
US5430560A (en) Three-dimensional image display device
JP2003501682A (en) System and method for stereoscopic video display and holographic display screen
US5506703A (en) Three-dimensional image display device
EP0588617B1 (en) Method for providing a hologram and a method for forming such a display
EP1327182A2 (en) Holographic stereogram printing apparatus and a method therefor
JPH04194907A (en) Stereoscopic image display device
US7057779B2 (en) Holographic stereogram device
JPH0357437A (en) Mri tomographic image stereoscopic vision device
Denisyuk et al. Three-dimensional image projection with aspect-focused-in-spots display
CN112970247A (en) System and method for displaying multiple depth-of-field images
Kollin Design and information considerations for holographic television
Batchko Three-hundred-sixty degree electroholographic stereogram and volumetric display system
Huff et al. Application of holographic stereograms to three-dimensional data display
TWI524335B (en) A Universal Image Recording and Universal Image Reconstruction Method