JPH04194650A - Method and apparatus for inspecting egg - Google Patents

Method and apparatus for inspecting egg

Info

Publication number
JPH04194650A
JPH04194650A JP32674990A JP32674990A JPH04194650A JP H04194650 A JPH04194650 A JP H04194650A JP 32674990 A JP32674990 A JP 32674990A JP 32674990 A JP32674990 A JP 32674990A JP H04194650 A JPH04194650 A JP H04194650A
Authority
JP
Japan
Prior art keywords
light
egg
wavelength distribution
transmitted
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32674990A
Other languages
Japanese (ja)
Other versions
JP2675915B2 (en
Inventor
Kazuo Sawada
和男 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP32674990A priority Critical patent/JP2675915B2/en
Publication of JPH04194650A publication Critical patent/JPH04194650A/en
Application granted granted Critical
Publication of JP2675915B2 publication Critical patent/JP2675915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately discriminate an inferior egg by irradiating an egg with light having the wavelength region corresponding to inspection content and comparing the wavelength distribution of the transmitted light of a normal egg and that of the transmitted light through the egg on the basis of the wavelength distribution of the reflected light from the surface of the shell of the egg. CONSTITUTION:An egg 1 to be inspected is irradiated with the light from a light source 2 composed of a halogen lamp and the light transmitted through the egg 1 is detected by a transmitted light photodetector 3 while the reflected light from the surface of the shell of the egg 1 is detected by a reflected light photodetector 4. The wavelength distribution of the light emitted from the light source 2 is a continuous spectrum and contains a wavelength in the vicinity of 575 nm. Subsequently, the outputs of the elements 31, 32, 41, 42 of the photodetectors 3, 4 are converted to digital signals by an A/D converter 5 to be inputted to an operational processing part 6. The wavelength distribution of the transmitted light through the egg 1 and that of the reflected light from the surface of the shell are calculated on the basis of the output results of the elements 31, 32, 41, 42 by the processing part and it is judged whether the egg is a blood mixed egg.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、血液混入卵、腐敗卵、混濁卵、バクテリア混
入卵なとの不良卵を、非削状態で判別するようにした卵
の検査方法およびその装置に関するものである。
The present invention relates to an egg inspection method and apparatus for identifying defective eggs such as blood-containing eggs, rotten eggs, cloudy eggs, and bacteria-containing eggs without scraping the eggs.

【従来の技術】[Conventional technology]

一般に、養鶏場で生産された生鮮卵には、一定の割合で
血液混入卵なとの不良卵か含まれているものであるから
、不良卵を除去するために、卵の殻を割らない非削状態
で不良卵を検出することか要求されている。 このような不良卵の検出方法としては、卵を洗浄した後
、暗室内で卵の下部から光を照射し、検査員か目視によ
って不良卵を識別する方法か一般的である。しかしなが
ら、目視による検査方法では、検査員の疲労か大きく長
時間の作業かできないという問題かある。また、殻か赤
褐色である卵では、血液か混入していても肉眼てはほと
んと識別てきないという問題もある。 こうした問題を解決するために、不良卵を目視によらず
に検出てきる装置か要求されている。このような装置と
しては、たとえば、血液によって吸収される575nr
n付近の波長領域を含む光を卵に照射し、透過率を検出
することにより、血液混入卵かどうかを判別するように
したものか発明されている(特公昭57−59939号
公報)。 この装置は、血液混入卵ては正常卵に比較して57Sn
rn付近の光の透過率か減衰することを利用して血液混
入卵を判別するのである。
In general, fresh eggs produced at poultry farms contain a certain percentage of defective eggs, such as blood-contaminated eggs, so in order to remove defective eggs, a method that does not break the egg shell is used. It is required to detect defective eggs in the shaved state. A common method for detecting such defective eggs is to wash the eggs, irradiate light from the bottom of the eggs in a dark room, and visually identify defective eggs by an inspector. However, the visual inspection method has the problem of being tiring for inspectors and making it impossible to work for long periods of time. Another problem is that eggs with reddish-brown shells are difficult to detect with the naked eye even if they contain blood. In order to solve these problems, there is a need for a device that can detect defective eggs without visual inspection. Such devices include, for example, 575nr, which is absorbed by the blood.
An invention has been developed in which it is possible to determine whether an egg is contaminated with blood by irradiating the egg with light including a wavelength range around 100 nm and detecting the transmittance (Japanese Patent Publication No. 57-59939). This device detects blood-contaminated eggs with 57Sn compared to normal eggs.
Blood-containing eggs are determined by using the attenuation of the transmittance of light near rn.

【発明か解決しようとする課題】[Invention or problem to be solved]

ところて、殻か白色である卵は、第3図に示すように、
殼の表面での反射率(第3図に一点鎖線で示す)が波長
によらずほぼ一定であり、透過率については、正常卵て
あれは卵黄の存在により500nm付近から短波長側で
減衰する(第3図に実線て示す)。したかつて、白色光
照明下では黄色を呈することになる。一方、血液混入卵
の場合には、混入している血液の量に応して、透過率か
575nm付近で減衰しく第3図に破線で示す)、白色
光照明下では赤色を呈することになる。 一方、殻が赤褐色である卵は、殼の表面の色あいによっ
て殼の表面での反射率の波長分布か変化する。一般的に
は第4図に示すように、殼の表面ての反射率(第4図に
一点鎖線で示す)か590nm付近から短波長側て減衰
し、透過率については、正常卵てあれば卵黄による50
0nm付近から短波長側での減衰か加わることになる(
第4図に実線で示す)。したかつて、白色光照明下では
赤色を呈することになる。一方、血液混入卵の場合には
、透過率か575nm付近から短波長側での減衰を加え
た形になるか(第4図に破線で示す)、正常卵てあって
もこの波長領域の透過率は大きく減衰しているから、血
液混入卵であるか正常卵であるかの識別は難しいもので
ある。 要するに、上記装置では、殻か白色であれば血液混入卵
と正常卵との識別を正確に行うことかできるのであるか
、殼の透過光と卵の内部の透過光とを合わせた形で検出
しているものであるから、殻か有色である場合には、誤
認を生しやすいという問題かある。とくに、上述したよ
うに殻か赤褐色である場合には、血液混入卵と正常卵と
をはとんと見分けることかできないのである。 本発明は上記問題点の解決を目的とするものてあり、殼
の表面での反射光の波長分布と、卵の透過光の波長分布
とに基ついて殼の色と卵の内部の色とを区別できるよう
にし、殻か有色である場合にも卵の内部の状懸を正確に
把握して、不良卵を確実に判別できるようにした卵の検
査方法およびその装置を提供しようとするものである。
By the way, eggs with white shells, as shown in Figure 3,
The reflectance on the surface of the shell (shown by the dashed line in Figure 3) is almost constant regardless of the wavelength, and the transmittance in normal eggs is attenuated from around 500 nm on the shorter wavelength side due to the presence of the yolk. (Indicated by solid lines in Figure 3). However, under white light illumination, it will appear yellow. On the other hand, in the case of eggs mixed with blood, the transmittance decreases around 575 nm depending on the amount of blood mixed in (as shown by the broken line in Figure 3), and the egg appears red under white light illumination. . On the other hand, for eggs with reddish-brown shells, the wavelength distribution of reflectance on the shell surface changes depending on the color of the shell surface. Generally, as shown in Figure 4, the reflectance of the shell surface (shown by the dashed line in Figure 4) attenuates from around 590 nm to the short wavelength side, and the transmittance is normal for normal eggs. 50 by egg yolk
Attenuation on the short wavelength side will be added from around 0 nm (
(shown as a solid line in Figure 4). However, under white light illumination, it will appear red. On the other hand, in the case of blood-containing eggs, the transmittance will be in the form of attenuation on the shorter wavelength side from around 575 nm (shown by the broken line in Figure 4), or even normal eggs will transmit in this wavelength range. Since the rate is greatly attenuated, it is difficult to distinguish between blood-contaminated eggs and normal eggs. In short, with the above device, if the shell is white, can it accurately distinguish between blood-contaminated eggs and normal eggs?It is detected by combining the light transmitted through the shell and the light transmitted inside the egg. Therefore, if the shell is colored, it is easy to misidentify it. Particularly, as mentioned above, if the shell is reddish-brown, it is difficult to distinguish blood-contaminated eggs from normal eggs. The present invention aims to solve the above-mentioned problems, and the color of the shell and the color of the inside of the egg are determined based on the wavelength distribution of light reflected on the surface of the shell and the wavelength distribution of light transmitted through the egg. The purpose of the present invention is to provide a method and device for inspecting eggs that enables identification of defective eggs by making it possible to distinguish between eggs and accurately determining the internal condition of eggs even when the shell is colored. be.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、請求項1の方法では、検査
対象である卵に検査内容に応じた波長領域を有する光を
照射し、殼の表面での反射光の波長分布に基づいて推定
される正常卵の透過光の波長分布と卵内を透過した透過
光の波長分布とを比較することにより不良卵を判別する
ようにしているのである。 請求項2の構成では、検査対象である卵に検査内容に応
じた波長領域を有する光を照射する光源と、殼の表面で
の反射光の波長分布を検出する反射光検出用受光器と、
卵内を透過した透過光の波長分布を検出する透過光検出
用受光器と、反射光用受光器により検出された反射光の
波長分布に基づいて推定される正常卵の透過光の波長分
布と透過光検出用受光器により検出された透過光の波長
分布とを比較することにより不良卵を判別する演算処理
部とを具備している。 請求項3の構成では、検査対象である卵に検査内容に応
じた波長領域を有する光を照射する第1の光源と、第1
の光源とは異なる方向から検査内容に応じた波長領域を
有する光を卵に照射する第2の光源と、第1の光源から
放射された光のうち殼の表面での反射光の波長分布を検
出するとともに、第2の光源から放射された光のうち卵
内を透過した透過光の波長分布を検出するように配置さ
れた受光器と、第1の光源と第2の光源とからの光を異
なる時刻に卵に照射させる光源切換部と、第】の光源か
点灯しているときに受光器により検出された反射光の波
長分布に基づいて推定される正常卵の透過光の波長分布
と第2の光源か点灯しているときに受光器により検出さ
れた透過光の波長分布とを比較することにより不良卵を
判別する演算処理部とを具備している。
In order to achieve the above object, in the method of claim 1, the eggs to be inspected are irradiated with light having a wavelength range according to the inspection content, and the eggs are estimated based on the wavelength distribution of the reflected light on the surface of the shell. Defective eggs are determined by comparing the wavelength distribution of light transmitted through a normal egg with the wavelength distribution of transmitted light transmitted through the egg. In the structure of claim 2, a light source that irradiates the egg to be inspected with light having a wavelength range according to the inspection content, and a reflected light detection light receiver that detects the wavelength distribution of the reflected light on the surface of the shell.
A transmitted light detection receiver that detects the wavelength distribution of the transmitted light that has passed through the egg, and a wavelength distribution of the transmitted light of a normal egg estimated based on the wavelength distribution of the reflected light detected by the reflected light receiver. The eggs are provided with an arithmetic processing section that determines defective eggs by comparing the wavelength distribution of the transmitted light detected by the transmitted light detection light receiver. In the structure of claim 3, the first light source irradiates the egg to be inspected with light having a wavelength range according to the inspection content;
A second light source that irradiates the egg with light having a wavelength range according to the inspection content from a direction different from the light source, and a wavelength distribution of the reflected light on the shell surface of the light emitted from the first light source. a light receiver arranged to detect the wavelength distribution of transmitted light that has passed through the egg among the light emitted from the second light source; and light from the first light source and the second light source. a light source switching unit that illuminates the egg at different times, and a wavelength distribution of transmitted light of a normal egg estimated based on a wavelength distribution of reflected light detected by a light receiver when the first light source is on. The eggs are provided with an arithmetic processing section that determines defective eggs by comparing the wavelength distribution of transmitted light detected by the light receiver when the second light source is turned on.

【作用】[Effect]

請求項1の方法によれば、殼の表面での反射光の波長分
布に基づいて推定した正常卵の透過光の波長分布と、卵
内を透過した透過光の波長分布とを比較することにより
、不良卵を判別しているので、殼の表面での反射光の波
長分布に基ついて殼の色を知ることかでき、卵内の透過
光の波長分布と反射光により推定した正常卵の透過光の
波長分布とを比較すれば、卵の内部の色を正確に知るこ
とかできるのであり、殻か有色であっても不良卵を正確
に識別できるのである。 請求項2の構成によれは、卵に光を照射する光源と、殼
の表面での反射光の波長分布を検出する反射光検出用受
光器と、卵の内部を透過した透過光の波長分布を検出す
る透過光検出用受光器とを設け、反射光用受光器により
検出された反射光の波長分布に基ついて推定される正常
卵の透過光の波長分布と透過光検出用受光器により検出
された透過光の波長分布とを比較することにより不良卵
を判別するようにしているので、反射光検出用受光器よ
り出力される卵の殼の表面での反射光の波長分布に基づ
いて殼の色を認識することかでき、透過光検出用受光器
より出力される透過光の波長分布から殻による透過光の
変化成分を除去することかできるのあって、殻か有色で
あっても不良卵を正確に識別できるのである。また、一
つの光源を用いるとともに、反射光と透過光とを異なる
受光器で検出しているので、光源を1回点灯させるだけ
で卵の良否判定か行えるのであって、良否判定に要する
時間か短時間になるのである。 請求項3の構成では、卵に光を照射する第1の光源と、
第1の光源とは異なる方向から卵に光を照射する第2の
光源と、第1の光源から放射され殼の表面で反射された
反射光の波長分布を検出するとともに、第2の光源から
放射され卵内を透過した透過光の波長分布を検出するよ
うに配置された受光器とを設け、第1の光源と第2の光
源とからの光を異なる時刻に卵に照射させるとともに、
第1の光源か点灯しているときに受光器により検出され
た反射光の波長分布に基づいて推定される正常卵の透過
光の波長分布と第2の光源か点灯しているときに受光器
により検出された透過光の波長分布とを比較することに
より不良卵を判別するようにしているので、透過光と反
射光とを併用したことによって不良卵を正確に識別でき
るのはもちろんのこと、比較的高価な波長分布検出用の
受光器を一つ用いればよく、比較的安価に提供できるの
である。
According to the method of claim 1, by comparing the wavelength distribution of transmitted light of a normal egg estimated based on the wavelength distribution of reflected light on the surface of the shell and the wavelength distribution of transmitted light transmitted inside the egg. Since defective eggs are identified, the shell color can be determined based on the wavelength distribution of reflected light on the surface of the shell, and the transmission of normal eggs estimated from the wavelength distribution of transmitted light inside the egg and reflected light. By comparing the wavelength distribution of light, it is possible to accurately determine the internal color of the egg, and defective eggs can be accurately identified even if the shell is colored. According to the structure of claim 2, a light source that irradiates light to the egg, a reflected light detection receiver that detects the wavelength distribution of the reflected light on the surface of the shell, and a wavelength distribution of the transmitted light transmitted through the inside of the egg. A transmitted light detection receiver is installed to detect the wavelength distribution of transmitted light of a normal egg, which is estimated based on the wavelength distribution of the reflected light detected by the reflected light receiver, and the wavelength distribution detected by the transmitted light detection receiver. Since defective eggs are determined by comparing the wavelength distribution of the transmitted light, the egg shell is determined based on the wavelength distribution of the reflected light on the surface of the egg shell that is output from the reflected light detection receiver. It is possible to recognize the color of the shell, and remove the component that changes the transmitted light due to the shell from the wavelength distribution of the transmitted light output from the receiver for transmitted light detection, so even if the shell is colored, it will not be detected. Eggs can be identified accurately. In addition, since one light source is used and the reflected light and transmitted light are detected by different receivers, it is possible to judge whether the egg is good or bad just by turning on the light source once. It will be a short time. In the structure of claim 3, a first light source that irradiates the egg with light;
A second light source that irradiates the egg with light from a direction different from that of the first light source, and detects the wavelength distribution of the reflected light emitted from the first light source and reflected on the surface of the shell. a light receiver arranged to detect the wavelength distribution of the transmitted light emitted and transmitted through the egg, and irradiating the egg with light from the first light source and the second light source at different times;
The wavelength distribution of transmitted light of a normal egg estimated based on the wavelength distribution of reflected light detected by the light receiver when the first light source is on and the light receiver when the second light source is on. Since defective eggs are identified by comparing the wavelength distribution of transmitted light detected by It suffices to use one relatively expensive light receiver for wavelength distribution detection, and it can be provided at a relatively low cost.

【実施例】【Example】

(実施例I) 以下の実施例では血液混入卵を識別する場合について説
明するか、対象とする波長領域を変えれは、バクテリア
混入卵なとの不良卵の識別に本発明の技術使用か採用で
きるのはもちろんのことである。 第1図に示すように、ハロゲンランプよりなる光源2か
らの光を検査対象である卵1に照射し、卵1の内部を透
過した透過光を透過光検出用受光器3て受光し、また、
殼の表面で反射した反射光を反射光検出用受光器4て受
光する。光源2から放射される光の波長分布は、連続ス
ペクトルであって、少なくとも575nm付近の波長を
含んでいる。透過光検出用受光器3は、フォトダイオー
ドのような一対の受光素子31.32と、各受光素子3
1.32の受光面の前方にそれぞれ配設された一対のフ
ィルタ33.34とにより構成される。また、両受光素
子31.32は、光軸が平行になるように配置されてい
る。反射光検出用受光器4は、フォトダイオードのよう
な一対の受光素子41.42と、各受光素子41.42
の受光面の前方にそれぞれ配設された一対のフィルタ4
3.44とにより構成される。また、両受光素子41.
42は、透過光検出用受光器3の受光素子31.32と
は異なる方向の光軸を有し、両受光素子41.42の光
軸か平行になるように配置されている。フィルタ33.
43は、血液による吸収率が大きい57Snm付近の波
長の光を選択的に透過させる光学フィルタであって、フ
ィルタ34.44は、それ以外の波長の光、たとえば6
00nm以上の長波長側の光を透過させるような光学フ
ィルタである。 各受光素子31,32.41.42の出力は、アナログ
−ディジタル変換器5を通してディジタル信号に変換さ
れた後、マイクロコンピュータよりなる演算処理部6に
入力される。演算処理部6ては、各受光素子31,32
,41.42の出力結果に基づいて卵の内部を透過した
透過光および殼の表面での反射光の波長分布を求め、血
液混入卵かどうかの判定を行うのである。 演算処理部6では、以下のような処理を行う。 すなわち、卵の殼の表面での反射光の波長分布に基づい
て殼の透過率を求め、血液か混入していない場合の57
5nm付近の波長の光の透過率を推定する。また、透過
光によって575nm付近の波長の光の実際の透過率を
求める。ここで、推定された透過率に比較して、実際の
透過率か所定値以上に小さいときには、血液による減衰
か生したものとして、血液混入卵であると判定し、不良
卵として判断結果を出力するのである。 (実施例2) 実施例1ては、光源2を一つにして透過光検出用受光器
3と反射光検出用受光器4とを設けるようにしていたか
、本実施例では、第2図に示すように、光源2からの光
を透過光用光ファイバ7と反射光用光ファイバ8とを用
いて卵Iに導くようにし、一つの受光器9によって透過
光と反射光とを検出するようにしている。透過光用光フ
ァイバ7および反射光用光ファイバ8と光源2との間に
は、光源切換部としてのシャッタIOが配設されており
、光源2からの光かいずれか一方に選択的に導入される
ようになっている。すなわち、透過充用光ファイハフと
反射光用光ファイバ8とのいずれか一方から卵Iに対し
て選択的に光か照射され、かつ、交互に照射されるよう
になっているのである。したかって、透過光用光ファイ
バ7と反射光用光ファイバ8とを設けたことによって、
2個の光源を設けたのと等価になり、透過光用光ファイ
バ7は第1の光源として機能し、反射光用光ファイバ8
は第2の光源として機能するのである。受光器9は、フ
ォトダイオードなどからなる一対の受光素子91.92
と、各受光素子91.92の受光面の前方に配置された
一対のフィルタ93.94とからなり、両受光素子91
.92は光軸か平行になるように配置される。フィルタ
93は血液による吸収率か大きい57Snm付近の波長
領域の光を選択的に透過させる光学フィルタであり、フ
ィルタ94は他の波長、たとえば600nm以上の長波
長側の光を透過させる光学フィルタである。両受光素子
91.92の出力はアナログ−ディジタル変換器5を通
してディジタル信号に変換された後、演算処理部6に久
方され、実施例1と同様に、反射光の波長分布に基づい
て推定される正常卵の透過光の波長分布と、実際の透過
光の波長分布とを比較することにより、正常卵が血液混
入卵かの判定かなされるのである。ここにおいて、反射
光と透過光とは異なる時刻に得られるから、一方の測定
結果を一時的に記憶しておくことはいうまでもない。他
の構成は実施例1と同様である。なお、光ファイバを用
いて光源2がらの光を2経路に分岐しているが、2個の
光源を用いてもよい。 上記各実施例において、光源2として波長分布か連続ス
ペクトルになるものを用いているか、目的とする検査か
行えるような波長領域を含む複数の波長領域を有した光
を卵に照射するようにしてもよい。また、各受光器3,
4.9は、2種の波長領域を識別するように構成されて
いるか、さらに多数の波長領域を識別するように構成し
てもよい。
(Example I) In the following example, the case of identifying blood-contaminated eggs will be explained.If the target wavelength range is changed, the technology of the present invention can be used to identify defective eggs from bacteria-contaminated eggs. Of course. As shown in FIG. 1, light from a light source 2 consisting of a halogen lamp is irradiated onto an egg 1 to be inspected, and the transmitted light transmitted through the inside of the egg 1 is received by a transmitted light detection receiver 3. ,
The reflected light reflected from the surface of the shell is received by a reflected light detection receiver 4. The wavelength distribution of the light emitted from the light source 2 is a continuous spectrum and includes at least a wavelength around 575 nm. The transmitted light detection light receiver 3 includes a pair of light receiving elements 31 and 32 such as photodiodes, and each light receiving element 3.
A pair of filters 33 and 34 are respectively disposed in front of a light receiving surface of 1.32. Moreover, both light receiving elements 31 and 32 are arranged so that their optical axes are parallel to each other. The light receiver 4 for detecting reflected light includes a pair of light receiving elements 41.42 such as photodiodes, and each light receiving element 41.42.
A pair of filters 4 each disposed in front of the light receiving surface of
3.44. Moreover, both light receiving elements 41.
42 has an optical axis in a direction different from that of the light receiving elements 31, 32 of the transmitted light detection light receiver 3, and is arranged so that the optical axes of both the light receiving elements 41, 42 are parallel to each other. Filter 33.
Reference numeral 43 denotes an optical filter that selectively transmits light with a wavelength around 57Snm, which has a high absorption rate by blood, and filters 34 and 44 transmit light with other wavelengths, such as 6Snm.
It is an optical filter that transmits light on the long wavelength side of 00 nm or more. The output of each light receiving element 31, 32, 41, 42 is converted into a digital signal through an analog-to-digital converter 5, and then input to an arithmetic processing section 6 consisting of a microcomputer. The arithmetic processing unit 6 includes each light receiving element 31, 32.
, 41, 42, the wavelength distribution of the transmitted light that has passed through the inside of the egg and the reflected light on the surface of the shell is determined, and it is determined whether the egg is contaminated with blood or not. The arithmetic processing unit 6 performs the following processing. In other words, the transmittance of the egg shell is determined based on the wavelength distribution of the reflected light on the surface of the egg shell, and the
Estimate the transmittance of light with a wavelength around 5 nm. Furthermore, the actual transmittance of light with a wavelength around 575 nm is determined using transmitted light. Here, if the actual transmittance is smaller than a predetermined value compared to the estimated transmittance, it is determined that the egg is alive due to attenuation due to blood, and the egg is determined to be blood-contaminated, and the determination result is output as a defective egg. That's what I do. (Example 2) In Example 1, the light source 2 was combined into one and the receiver 3 for detecting transmitted light and the receiver 4 for detecting reflected light were provided. As shown, the light from the light source 2 is guided to the egg I using an optical fiber 7 for transmitted light and an optical fiber 8 for reflected light, and the transmitted light and reflected light are detected by one light receiver 9. I have to. A shutter IO serving as a light source switching unit is arranged between the optical fiber 7 for transmitted light and the optical fiber 8 for reflected light and the light source 2, and selectively introduces light from either the light source 2. It is now possible to do so. That is, the egg I is selectively irradiated with light from either one of the optical fiber for transmission and the optical fiber 8 for reflected light, and is irradiated alternately. Therefore, by providing the optical fiber 7 for transmitted light and the optical fiber 8 for reflected light,
This is equivalent to providing two light sources, with the transmitted light optical fiber 7 functioning as the first light source and the reflected light optical fiber 8 functioning as the first light source.
functions as a second light source. The light receiver 9 includes a pair of light receiving elements 91 and 92 consisting of photodiodes and the like.
and a pair of filters 93.94 arranged in front of the light receiving surface of each light receiving element 91.92.
.. 92 is arranged parallel to the optical axis. The filter 93 is an optical filter that selectively transmits light in a wavelength region around 57 Snm, which has a high absorption rate by blood, and the filter 94 is an optical filter that transmits light of other wavelengths, for example, on the long wavelength side of 600 nm or more. . The outputs of both light-receiving elements 91 and 92 are converted into digital signals through the analog-to-digital converter 5, and then sent to the arithmetic processing section 6, where they are estimated based on the wavelength distribution of the reflected light, as in the first embodiment. By comparing the wavelength distribution of transmitted light of a normal egg and the wavelength distribution of actual transmitted light, it is possible to determine whether a normal egg is a blood-contaminated egg. Here, since the reflected light and the transmitted light are obtained at different times, it goes without saying that one of the measurement results is temporarily stored. The other configurations are the same as in the first embodiment. Although the light from the light source 2 is branched into two paths using an optical fiber, two light sources may be used. In each of the above embodiments, the light source 2 is one with a wavelength distribution or a continuous spectrum, or the eggs are irradiated with light having a plurality of wavelength ranges including a wavelength range that allows the desired inspection to be performed. Good too. In addition, each light receiver 3,
4.9 may be configured to discriminate between two wavelength ranges, or may be configured to discriminate between multiple wavelength ranges.

【発明の効果】【Effect of the invention】

上述のように、請求項1の方法によれば、殼の表面での
反射光の波長分布に基づいて推定した正常卵の透過光の
波長分布と、卵内を透過した透過光の波長分布とを比較
することにより、不良卵を判別しているので、殼の表面
ての反射光の波長分布に基づいて殼の色を知ることかで
き、卵内の透過光の波長分布と反射光により推定した正
常卵の透過光の波長分布とを比較すれば、卵の内部の色
を正確に知ることかできるのてあり、殻か有色てあって
も不良卵を正確に識別できるという利点を有するのであ
る。 請求項2の構成によれば、卵に光を照射する光源と、殼
の表面での反射光の波長分布を検出する反射光検出用受
光器と、卵の内部を透過した透過光の波長分布を検出す
る透過光検出用受光器とを設け、反射光用受光器により
検出された反射光の波長分布に基づいて推定される正常
卵の透過光の波長分布と透過光検出用受光器により検出
された透過光の波長分布とを比較することにより不良卵
を判別するようにしているので、反射光検出用受光器よ
り出力される卵の殼の表面での反射光の波長分布に基づ
いて殼の色を認識することかでき、透過光検出用受光器
より出力される透過光の波長分布から殻による透過光の
変化成分を除去することができるのあって、殻か有色で
あっても不良卵を正確に識別できるという利点かある。 。また、一つの光源を用いるとともに、反射光と透過光
とを異なる受光器で検出しているので、光源を1回点灯
させるだけて卵の良否判定か行えるのであって、良否判
定に要する時間か短時間になるという効果を奏するので
ある。 請求項3の構成では、卵に光を照射する第1の光源と、
第1の光源とは異なる方向から卵に光を照射する第2の
光源と、第1の光源から放射され殼の表面で反射された
反射光の波長分布を検出するとともに、第2の光源から
放射され卵内を透過した透過光の波長分布を検出するよ
うに配置された受光器とを設け、第1の光源と第2の光
源とを異なる時刻に点灯させるとともに、第1の光源か
点灯しているときに受光器により検出された反射光の波
長分布に基づいて推定される正常卵の透過光の波長分布
と第2の光源か点灯しているときに受光器により検出さ
れた透過光の波長分布とを比較することにより不良卵を
判別するようにしているので、透過光と反射光とを併用
したことによって不良卵を正確に識別できるのはもちろ
んのこと、比較的高価な波長分布検出用の受光器を一つ
用いればよく、比較的安価に提供できるという利点かあ
る。
As described above, according to the method of claim 1, the wavelength distribution of transmitted light of a normal egg estimated based on the wavelength distribution of reflected light on the surface of the shell, and the wavelength distribution of transmitted light transmitted inside the egg. Since defective eggs are identified by comparing the color of the egg, the color of the shell can be determined based on the wavelength distribution of light reflected from the surface of the shell, and can be estimated based on the wavelength distribution of transmitted light inside the egg and the reflected light. By comparing the wavelength distribution of transmitted light from a normal egg, it is possible to accurately determine the internal color of the egg, and it has the advantage of being able to accurately identify defective eggs even if the shell is colored. be. According to the structure of claim 2, a light source that irradiates the egg with light, a reflected light detection receiver that detects the wavelength distribution of the reflected light on the surface of the shell, and a wavelength distribution of the transmitted light that has passed through the inside of the egg. The wavelength distribution of the transmitted light of a normal egg estimated based on the wavelength distribution of the reflected light detected by the reflected light receiver and the wavelength distribution of the transmitted light detected by the transmitted light detector is provided. Since defective eggs are determined by comparing the wavelength distribution of the transmitted light, the egg shell is determined based on the wavelength distribution of the reflected light on the surface of the egg shell that is output from the reflected light detection receiver. It is possible to recognize the color of the shell, and remove the component that changes the transmitted light due to the shell from the wavelength distribution of the transmitted light output from the receiver for transmitted light detection, so even if the shell is colored, it will not be detected as a defect. This method has the advantage of being able to accurately identify eggs. . In addition, since one light source is used and the reflected light and transmitted light are detected by different receivers, it is possible to judge whether the egg is good or bad just by turning on the light source once, and the time required to judge whether the egg is good or bad is short. This has the effect of shortening the time. In the structure of claim 3, a first light source that irradiates the egg with light;
A second light source that irradiates the egg with light from a direction different from that of the first light source, and detects the wavelength distribution of the reflected light emitted from the first light source and reflected on the surface of the shell. A light receiver arranged to detect the wavelength distribution of the transmitted light emitted and transmitted through the egg is provided, and the first light source and the second light source are turned on at different times, and the first light source is turned on. The wavelength distribution of transmitted light of normal eggs estimated based on the wavelength distribution of reflected light detected by the light receiver when the second light source is on, and the transmitted light detected by the light receiver when the second light source is on. Since we are trying to identify defective eggs by comparing the wavelength distribution of One advantage is that only one light receiver is needed for detection, and it can be provided at a relatively low cost.

【図面の簡単な説明】 第1図は本発明の実施例1を示す概略構成図、第2図は
本発明の実施例2を示す概略構成図、第3図および第4
図は原理説明図である。 1・・・卵、2・・・光源、3・・・透過光検出用受光
器、4・・・反射光検出用受光器、6・・・演算処理回
路、7・・・透過光用光ファイバ、8・・反射光用光フ
ァイバ、9・・・受光器、1o・・・シャッタ。 代理人 弁理士 石 1)長 七 1・・卵 2・・−光源 3 ・透過光検出用受光器 4・−反射光検出用受光器 6 演算処理回路 1図 1・・卵 2・・光源 6・・演算処理回路 7・透過光用光ファイバ lO・・ノヤッタ
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic diagram showing a first embodiment of the present invention, FIG. 2 is a schematic diagram showing a second embodiment of the present invention, and FIGS.
The figure is a diagram explaining the principle. DESCRIPTION OF SYMBOLS 1...Egg, 2...Light source, 3...Receiver for transmitted light detection, 4...Receiver for reflected light detection, 6...Arithmetic processing circuit, 7...Light for transmitted light Fiber, 8... Optical fiber for reflected light, 9... Light receiver, 1o... Shutter. Agent Patent attorney Ishi 1) Long 71...Egg 2...-Light source 3 -Receiver for transmitted light detection 4-Receiver for reflected light detection 6 Arithmetic processing circuit 1Figure 1...Egg 2...Light source 6・Arithmetic processing circuit 7・Optical fiber for transmitted light IO・・Noyatta

Claims (3)

【特許請求の範囲】[Claims] (1)検査対象である卵に検査内容に応じた波長領域を
有する光を照射し、殼の表面での反射光の波長分布に基
づいて推定される正常卵の透過光の波長分布と卵内を透
過した透過光の波長分布とを比較することにより不良卵
を判別することを特徴とする卵の検査方法。
(1) The egg to be inspected is irradiated with light having a wavelength range according to the inspection content, and the wavelength distribution of the transmitted light of a normal egg and the inside of the egg are estimated based on the wavelength distribution of the reflected light on the shell surface. An egg inspection method characterized by determining defective eggs by comparing the wavelength distribution of transmitted light.
(2)検査対象である卵に検査内容に応じた波長領域を
有する光を照射する光源と、殼の表面での反射光の波長
分布を検出する反射光検出用受光器と、卵内を透過した
透過光の波長分布を検出する透過光検出用受光器と、反
射光用受光器により検出された反射光の波長分布に基づ
いて推定される正常卵の透過光の波長分布と透過光検出
用受光器により検出された透過光の波長分布とを比較す
ることにより不良卵を判別する演算処理部とを具備して
成ることを特徴とする卵の検査装置。
(2) A light source that irradiates the egg to be inspected with light having a wavelength range according to the inspection content, a light receiver for detecting reflected light that detects the wavelength distribution of the reflected light on the surface of the shell, and a light that passes through the egg. The wavelength distribution of transmitted light of normal eggs estimated based on the wavelength distribution of reflected light detected by the receiver for transmitted light and the receiver for reflected light detected by the receiver for reflected light and the wavelength distribution of transmitted light detected by the reflected light receiver. 1. An egg inspection device comprising: an arithmetic processing unit that determines defective eggs by comparing the wavelength distribution of transmitted light detected by a light receiver.
(3)検査対象である卵に検査内容に応じた波長領域を
有する光を照射する第1の光源と、第1の光源とは異な
る方向から検査内容に応じた波長領域を有する光を卵に
照射する第2の光源と、第1の光源から放射された光の
うち殼の表面での反射光の波長分布を検出するとともに
、第2の光源から放射された光のうち卵内を透過した透
過光の波長分布を検出するように配置された受光器と、
第1の光源と第2の光源とからの光を異なる時刻に卵に
照射させる光源切換部と、第1の光源が点灯していると
きに受光器により検出された反射光の波長分布に基づい
て推定される正常卵の透過光の波長分布と第2の光源が
点灯しているときに受光器により検出された透過光の波
長分布とを比較することにより不良卵を判別する演算処
理部とを具備して成ることを特徴とする卵の検査装置。
(3) A first light source that irradiates the egg to be inspected with light having a wavelength range corresponding to the inspection content; and a first light source that irradiates the egg with light having a wavelength range corresponding to the inspection content from a direction different from the first light source. A second light source is used to irradiate the egg, and the wavelength distribution of the light emitted from the first light source that is reflected on the surface of the shell is detected. a light receiver arranged to detect the wavelength distribution of transmitted light;
A light source switching unit that irradiates the eggs with light from the first light source and the second light source at different times, and a wavelength distribution of reflected light detected by the light receiver when the first light source is turned on. an arithmetic processing unit that determines defective eggs by comparing the wavelength distribution of transmitted light of normal eggs estimated by the method with the wavelength distribution of transmitted light detected by the light receiver when the second light source is turned on; An egg inspection device comprising:
JP32674990A 1990-11-27 1990-11-27 Egg inspection method and apparatus Expired - Fee Related JP2675915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32674990A JP2675915B2 (en) 1990-11-27 1990-11-27 Egg inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32674990A JP2675915B2 (en) 1990-11-27 1990-11-27 Egg inspection method and apparatus

Publications (2)

Publication Number Publication Date
JPH04194650A true JPH04194650A (en) 1992-07-14
JP2675915B2 JP2675915B2 (en) 1997-11-12

Family

ID=18191255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32674990A Expired - Fee Related JP2675915B2 (en) 1990-11-27 1990-11-27 Egg inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP2675915B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050873A1 (en) * 1999-02-23 2000-08-31 Kubota Corporation Method and device for candling eggs
JP2002207013A (en) * 2001-01-05 2002-07-26 Naberu:Kk Method for detecting surface state of egg shell and apparatus for detecting surface state of egg shell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107060B2 (en) * 2007-10-05 2012-01-31 Embrex, Inc. Methods and apparatus for candling eggs via embryo heartbeat detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050873A1 (en) * 1999-02-23 2000-08-31 Kubota Corporation Method and device for candling eggs
JP2002207013A (en) * 2001-01-05 2002-07-26 Naberu:Kk Method for detecting surface state of egg shell and apparatus for detecting surface state of egg shell

Also Published As

Publication number Publication date
JP2675915B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US4650326A (en) Apparatus for inspecting bottles
AU691441B2 (en) Apparatus and method for determination of non-hemolyzed levels of occult blood in urine
JPS6332352A (en) Fiber optical device
WO2017029864A1 (en) Egg inspection device and egg differentiation system
JP2675915B2 (en) Egg inspection method and apparatus
Gielen et al. Electrooptical blood-spot detection in intact eggs
JP2000097873A (en) Surface defect inspecting device
JP3541291B2 (en) Egg test method and egg test device
US4591723A (en) Optical egg inspecting apparatus
JP3857191B2 (en) Method and apparatus for internal quality inspection of fruits and vegetables
JP2001041882A (en) Egg testing apparatus
EP1074831A1 (en) Method and device for candling eggs
JPS58178243A (en) Optical apparatus for measuring suspended substance concentration
JPS58173412A (en) Detector for crown or the like
JP2001099828A (en) Egg candler
JPH0336924Y2 (en)
JP2001099829A (en) Egg candler
JP2001124761A (en) Egg testing apparatus
JPS58211636A (en) Decision method and apparatus for inspection
JP2002139423A (en) Oil film detector
JPH029710B2 (en)
JPH0643093A (en) Apparatus for detecting blood in hen's egg
JPH04118545A (en) Defect inspection method and device therefor
JP2020071132A (en) Egg inspection device
JP2501884B2 (en) Inspection method for translucent containers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees