JPH04194390A - Variable displacement vane pump - Google Patents

Variable displacement vane pump

Info

Publication number
JPH04194390A
JPH04194390A JP32346490A JP32346490A JPH04194390A JP H04194390 A JPH04194390 A JP H04194390A JP 32346490 A JP32346490 A JP 32346490A JP 32346490 A JP32346490 A JP 32346490A JP H04194390 A JPH04194390 A JP H04194390A
Authority
JP
Japan
Prior art keywords
pump
cam ring
fluid
pump chamber
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32346490A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹夫 鈴木
Ikuo Okuda
奥田 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP32346490A priority Critical patent/JPH04194390A/en
Publication of JPH04194390A publication Critical patent/JPH04194390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

PURPOSE:To reduce the extent of pump discharge pulsation by installing a fluid escape groove in which any shielding by a cam ring is solved at a rotor rotational area where the cam ring rocks at a maximum or minimum eccentric position. CONSTITUTION:When rotational speed in a rotor 1 is varied, pump discharge pressure varies according to it, and a cam ring 3 rockes into specific eccentric position. Therefore, each of fluid escape grooves 43, 44 installed in a rocking position at time of maximum or minimum eccentricity of the cam ring 3 on the wall of a housing 4 is exposed into a pump chamber P, and when a vane 2A is reached to these fluid escape grooves 43, 44, a part of compressed fluid is discharged to a low pressure side pump chamber P2 from a high pressure side pump chamber P1, thus any pressure increase in the fluid being discharged to a discharge port 42 is checked. With this constitution, a discharge pressure peak of a pump is solvable and, what is more, pulsation is reducible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は可変容量型ベーンポンプに関し、特にポンプ吐
出脈動を大幅に低減できるポンプ構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable displacement vane pump, and particularly to a pump structure that can significantly reduce pump discharge pulsation.

[従来の技術] 第6図には可変容重型ベーンポンプのポンプ部断面を示
す。第6図において、回転軸11に固定されて回転する
円形ロータ1には外周に等間隔で径方向へ延びる9本の
溝が形成され、各溝内には摺動自在に板状ベーン2が挿
置されて流体圧により外方へ突出付勢せしめられている
[Prior Art] FIG. 6 shows a cross section of a pump portion of a variable displacement heavy-duty vane pump. In FIG. 6, a circular rotor 1 that is fixed to a rotating shaft 11 and rotates has nine grooves extending in the radial direction at equal intervals on the outer circumference, and a plate vane 2 is slidably provided in each groove. It is inserted and urged outwardly by fluid pressure.

上記ロータ2を囲む外方には円形リング状の力ムリング
3が配設してあり、該カムリング3は一方の側部が軸部
材31を介してハウジング4内壁に当接し、他方の側部
がシール部材32を介してハウジング4内壁に当接して
、上記軸部材31を支点に上下に揺動自在となっている
。カムリング3の、上記他方の側部は一部がポンプハウ
ジング4の凹所に突出してバネ受け33となっており5
、該バネ受け33と上記凹所の下側面との間にはコイル
バネ34が配設しである。
A circular ring-shaped force ring 3 is disposed on the outside surrounding the rotor 2, and one side of the cam ring 3 abuts against the inner wall of the housing 4 via a shaft member 31, and the other side It abuts against the inner wall of the housing 4 via the seal member 32, and is able to swing up and down about the shaft member 31 as a fulcrum. A portion of the other side of the cam ring 3 protrudes into the recess of the pump housing 4 and serves as a spring receiver 33.
A coil spring 34 is disposed between the spring receiver 33 and the lower surface of the recess.

突出する上記各ベーン2の先端はカムリング3の円形内
周に当接して隣接するベー72との間にポンプ室Pを形
成しており、これらポンプ室Pは各ベーン2とカムリン
グ3の両側端面に当接するハウジング4壁により閉鎖さ
れている。
The tip of each of the protruding vanes 2 contacts the circular inner periphery of the cam ring 3 to form a pump chamber P between the adjacent vane 72, and these pump chambers P are formed on both side end surfaces of each vane 2 and the cam ring 3. It is closed by the housing 4 wall which abuts the housing.

上記カムリング3の、軸部材31よりシール部材32へ
至る上半部とポンプハウジング4内壁間の空間S内には
吐出流体の圧力が制御バルブ(閃絡)を介してポンプハ
ウジング4内の閃絡のポートより導入されており、一方
、カムリング3の下半部とポンプハウジング4壁間の空
間内はりターン圧となっている。
In the space S between the upper half of the cam ring 3 extending from the shaft member 31 to the seal member 32 and the inner wall of the pump housing 4, the pressure of the discharged fluid is applied to the flash circuit inside the pump housing 4 via a control valve (flash circuit). On the other hand, the pressure in the space between the lower half of the cam ring 3 and the wall of the pump housing 4 is a turning pressure.

しかして、ロータ回転数が低い領域では閃絡のバルブに
より上記空間S内の圧力は小さく、カムリング3はコイ
ルバネ34のバネ力により上方へ揺動し、偏心したカム
リング3との間に形成された上記各ポンプ室Pはその容
積が大きく変化しながら回転移動する(図中矢印)。そ
して、容積が次第に拡大するポンプ室Pに面してハウジ
ング4壁に形成された吸入ポート41より流体が吸入さ
れ、容積が次第に縮小するポンプ室Pに面してハウジン
グ4壁に形成された吐出ポート42へ流体が圧送吐出さ
れる。
Therefore, in a region where the rotor rotational speed is low, the pressure in the space S is small due to the flash valve, and the cam ring 3 swings upward due to the spring force of the coil spring 34, forming a gap between the cam ring 3 and the eccentric cam ring 3. Each of the pump chambers P rotates and moves while its volume changes greatly (arrows in the figure). Fluid is sucked through a suction port 41 formed on the housing 4 wall facing the pump chamber P whose volume gradually increases, and a discharge port 41 formed on the housing 4 wall facing the pump chamber P whose volume gradually decreases. Fluid is pumped and discharged to port 42 .

ロータ回転数が高くなるに従って上記空間S内の圧力は
大きくなるように制御され、カムリング3はコイルバネ
34のバネ力に抗して下方へ揺動し、ロータ1とカムリ
ング3の偏心量が小さくなる。この結果、回転移動に伴
なう各ポンプ室Pの容積変化は小さくなり、ローター回
転当りの吐出流量は減少して、供給圧力が一定になるよ
うに制御している。
As the rotor rotation speed increases, the pressure in the space S is controlled to increase, and the cam ring 3 swings downward against the spring force of the coil spring 34, so that the amount of eccentricity between the rotor 1 and the cam ring 3 decreases. . As a result, the change in volume of each pump chamber P due to rotational movement is reduced, the discharge flow rate per rotor rotation is reduced, and the supply pressure is controlled to be constant.

[発明が解決しようとする課題] ところで、上記構造のベーンポンプにおいて、吐出ボー
ト42より吐出される流体の圧力は、移動に伴い次第に
容積が縮小する各ポンプ室Pの通過毎に大きく脈動し、
これを第4図(1)に示す。
[Problems to be Solved by the Invention] In the vane pump having the above structure, the pressure of the fluid discharged from the discharge boat 42 pulsates greatly each time it passes through each pump chamber P whose volume gradually decreases as it moves.
This is shown in FIG. 4 (1).

この図はポンプ低速回転域(500rpm>のもので、
ベーン2の設置間隔である40度毎に周期的に圧力変動
が繰返されている。この圧力変動は、ポンプ回転が高速
となっても(4000rpm>その周期に変化はないが
、第5図(1)に示す如く、圧力最大を示す回転角度位
置がずれてくる。
This figure is for the pump in the low speed rotation range (>500 rpm).
Pressure fluctuations are periodically repeated every 40 degrees, which is the installation interval of the vanes 2. This pressure fluctuation does not change even if the pump rotation becomes high speed (4000 rpm>), but as shown in FIG. 5(1), the rotation angle position indicating the maximum pressure shifts.

(図では10度〜15度程度ずれている)本発明はかか
るポンプ吐出脈動を簡単な構造で効果的に低減せしめた
可変容量型ベーンポンプを提供することを目的とする。
(In the figure, the difference is about 10 to 15 degrees.) An object of the present invention is to provide a variable displacement vane pump that can effectively reduce such pump discharge pulsation with a simple structure.

[課題を解決するための手段] 本発明の詳細な説明すると、回転する円形ロータ1(第
1図)の外周に等間隔でベーン2を設けて、これらべ:
ン2の先端をロータ1周りの外方に配設したカムリング
3の円形内周に当接せしめて、カムリング3の内方空間
を上記ベーン2により複数のポンプ室Pに区画し、上記
各ベーン2およびカムリング3の側端面に接して各ポン
プ室Pを閉鎖するハウジング4壁に吸入ポート41と吐
出ボート42を設けて、上記吸入ポート41より各ポン
プ室Pへ順次流体を吸入するとともに、各ポンプ室Pよ
り上記吐出ボート42へ流体を順次圧縮吐出するベーン
ポンプであって、上記カムリング3をその外周面半周に
印加されるポンプ吐出圧に応じてロータ1に対する所定
の偏心位置へ揺動するようになしてポンプ吐出量を調整
する可変容量型ベーンポンプにおいて、上記ハウジング
4壁には、上記カムリング3の最大偏心時および最小偏
心時の偏心位置にてそれぞれポンプ吐出圧が最大となる
ロータ回転角位置に上記カムリング3の最大偏心時また
は最小偏心時において上記カムリングの側端面による遮
蔽より解放されてポンプ室P内へ露出して、高圧側ポン
プ室P1の流体の一部をベーン2を介して隣接する低圧
側ポンプ室P2へ逃がす流体逃し溝43.44を形成し
たものである。
[Means for Solving the Problems] To explain the present invention in detail, vanes 2 are provided at equal intervals around the outer circumference of a rotating circular rotor 1 (FIG. 1), and these:
The tip of the vane 2 is brought into contact with the circular inner periphery of a cam ring 3 disposed outside around the rotor 1, and the inner space of the cam ring 3 is divided into a plurality of pump chambers P by the vane 2, and each of the vanes A suction port 41 and a discharge boat 42 are provided on the wall of the housing 4 that contacts the side end surfaces of the cam ring 2 and the cam ring 3 to close each pump chamber P, and fluid is sequentially sucked into each pump chamber P from the suction port 41, and each The vane pump sequentially compresses and discharges fluid from the pump chamber P to the discharge boat 42, and is configured to swing the cam ring 3 to a predetermined eccentric position with respect to the rotor 1 in accordance with the pump discharge pressure applied to a half circumference of the outer peripheral surface of the cam ring 3. In a variable displacement vane pump that adjusts the pump discharge amount by adjusting the pump discharge amount, the wall of the housing 4 has rotor rotational angle positions at which the pump discharge pressure is maximum at the eccentric positions of the cam ring 3 at maximum eccentricity and minimum eccentricity, respectively. When the cam ring 3 is at its maximum eccentricity or at its minimum eccentricity, it is released from the shielding by the side end surface of the cam ring and exposed into the pump chamber P, allowing a portion of the fluid in the high-pressure side pump chamber P1 to pass through the vane 2 to the adjacent pump chamber P. Fluid escape grooves 43 and 44 are formed to allow fluid to escape to the low pressure side pump chamber P2.

[作用] 上記構成のベーンポンプにおいて、ロータ1の回転速度
が変化すると、これに応じてポンプ吐出圧が変化し、カ
ムリング3が所定の偏心位置へ揺動する。これにより、
ハウジング4壁のカムリング3の最大偏心時または最小
偏心時の揺動位置に、  設けた流体逃し渭43.44
がポンプ室P内へ露出し、ベーン2Aが上記流体逃し渭
43.44に至った時に高圧側ポンプ室P1より低圧側
ポンプ室P2へ圧縮流体の一部が放流されて、吐出ポー
ト42へ吐出せしめられる流体の圧力増大が抑えられる
[Operation] In the vane pump configured as described above, when the rotational speed of the rotor 1 changes, the pump discharge pressure changes accordingly, and the cam ring 3 swings to a predetermined eccentric position. This results in
Fluid relief levers 43 and 44 are provided at the rocking position of the cam ring 3 on the housing 4 wall when the cam ring 3 is at maximum eccentricity or at the minimum eccentricity.
is exposed into the pump chamber P, and when the vane 2A reaches the fluid relief side 43, 44, a part of the compressed fluid is discharged from the high pressure side pump chamber P1 to the low pressure side pump chamber P2, and is discharged to the discharge port 42. Increase in pressure of the fluid being forced is suppressed.

しかして、上記流体逃し渭43.44の位置は、カムリ
ング3が最大または最小偏心位置へ揺動せしめられるロ
ータ回転域においてポンプ吐出圧がピークを示すロータ
回転角位置に一致して設けであるので、ポンプの吐出圧
ピークは解消され、脈動が低減される。
Therefore, the positions of the fluid relief arms 43 and 44 are arranged to correspond to the rotor rotation angle position where the pump discharge pressure peaks in the rotor rotation range in which the cam ring 3 is swung to the maximum or minimum eccentric position. , pump discharge pressure peaks are eliminated and pulsation is reduced.

[実施例] 以下、本発明の一実施例を従来との相違点を中心に説明
する。
[Example] An example of the present invention will be described below, focusing on the differences from the conventional one.

第1図において、カムリング3と各ベーン2の側端面に
接するハウジング4壁の上部には、ベーン2Aが0度点
を越えて25度程回転した位置に、周方向へ延びる溝が
形成されて流体逃し溝43としである。この流体逃し゛
渭43は断面が矩形をなしく第2図)、上記ベーン2の
厚みより長く形成されている。そして、上記流体逃し溝
43はロータ低速回転域における図示の状態で、上方へ
揺動したカムリング3の側端面による遮蔽から略半分が
解放されて、先行する高圧のポンプ室P1と後続の低圧
ポンプ室P2とを連通している。
In FIG. 1, a groove extending in the circumferential direction is formed in the upper part of the wall of the housing 4 in contact with the side end surface of the cam ring 3 and each vane 2 at a position where the vane 2A has rotated about 25 degrees beyond the 0 degree point. This is a fluid relief groove 43. The fluid relief channel 43 has a non-rectangular cross section (FIG. 2) and is longer than the thickness of the vane 2. In the illustrated state in the rotor low speed rotation range, approximately half of the fluid relief groove 43 is released from being shielded by the side end surface of the cam ring 3 that has swung upward, and the leading high-pressure pump chamber P1 and the following low-pressure pump It communicates with room P2.

一方、上記ハウジング4壁の下部には上記ベーン2Aが
0度点を越えて15度程回転した位置に、上記流体逃し
渭43と同形の流体逃し渭44が形成されており、これ
は上方へ揺動したカムリング3の側端面により完全に閉
鎖されている。
On the other hand, at the lower part of the wall of the housing 4, a fluid relief bank 44 having the same shape as the fluid relief bank 43 is formed at a position where the vane 2A has rotated approximately 15 degrees beyond the 0 degree point, and this is formed upward. It is completely closed by the side end surface of the swung cam ring 3.

しかして、ベーン2が流体逃し渭43を通過する毎に、
吐出ポート42に連通しているポンプ室P1より後続の
ポンプ室P2へ圧縮流体が放流されて吐出圧の増大が抑
えられる。これを第4図(2)に示し、図より知られる
如くロータ回転角25度付近に従来あった圧力ピークが
解消され(もちろん、これより40度前にも同様のこと
が生じている)、全体として吐出圧の脈動は小さくなっ
ている。
Therefore, each time the vane 2 passes the fluid relief bank 43,
Compressed fluid is discharged from the pump chamber P1 communicating with the discharge port 42 to the subsequent pump chamber P2, thereby suppressing an increase in the discharge pressure. This is shown in Fig. 4 (2), and as can be seen from the figure, the pressure peak that conventionally existed near the rotor rotation angle of 25 degrees has been eliminated (of course, the same thing has occurred before 40 degrees). Overall, the pulsations in the discharge pressure are small.

ロータ回転数が上昇すると、吐出圧の増大に伴い第3図
に示す如くカムリング3は下方へ揺動し、上記流体逃し
渭43はカムリング3の側端面により完全に閉鎖され、
代って流体逃し溝44が遮蔽より解放されて露出する。
When the rotor rotational speed increases, the cam ring 3 swings downward as shown in FIG. 3 as the discharge pressure increases, and the fluid relief pipe 43 is completely closed by the side end surface of the cam ring 3.
Instead, the fluid escape groove 44 is released from the shield and exposed.

しかして、ベーン2が上記流体逃じ溝44を通過する毎
に、吐出ポート42へ通じる後続の高圧ポンプ室P1よ
り先行する低圧のポンプ室P2へ圧縮流体が放流されて
吐出圧の増大が抑えられる。これを第5図(2)に示し
、ロータ回転角15度(ベーン2Aの回転角)付近に従
来あった圧力ピークが解消され、全体として吐出圧の脈
動が小さく抑えられる。また、流体逃し渭43は閉鎖さ
れるので、高速回転状態では圧力ピークにならないロー
タ回転角25度付近での圧縮流体の放流は生じず、それ
による吐出圧の低下からなる脈動は防止される。
Therefore, each time the vane 2 passes through the fluid relief groove 44, compressed fluid is discharged from the subsequent high-pressure pump chamber P1 leading to the discharge port 42 to the low-pressure pump chamber P2, thereby suppressing an increase in the discharge pressure. It will be done. This is shown in FIG. 5(2), and the pressure peak that conventionally existed near the rotor rotation angle of 15 degrees (the rotation angle of the vane 2A) is eliminated, and the pulsation of the discharge pressure is suppressed to a small level as a whole. In addition, since the fluid relief pipe 43 is closed, the compressed fluid is not discharged near the rotor rotation angle of 25 degrees, where the pressure does not reach a peak in the high-speed rotation state, and pulsation due to a drop in discharge pressure due to this is prevented.

かくして、本実施例によれば、ロータ低速および高速回
転のいずれの状態においても、吐出脈動を低減し、騒音
発生等を効果的に防止することができる。なお、上記実
施例は、流体逃し溝がハウジング4壁の上部と下部に1
つずつ設けられているが、脈動のピークに合わせて上下
数箇所に設けるようにしてもよい。
Thus, according to this embodiment, discharge pulsation can be reduced and noise generation etc. can be effectively prevented in both low speed and high speed rotor rotation states. In addition, in the above embodiment, there are one fluid relief groove in the upper and lower part of the housing 4 wall.
Although they are provided at different locations, they may be provided at several locations above and below depending on the peak of pulsation.

[発明の効果コ 以上の如く、本発明の可変容量型ベーンポンプによれば
、カムリングが最大または最小偏心位置に揺動するロー
タ回転域でカムリングによる遮蔽が解消される流体逃し
溝により、簡単な構成でポンプ吐出脈動を低減し、静粛
なポンプ作動を実現することができる。
[Effects of the Invention] As described above, the variable displacement vane pump of the present invention has a simple configuration due to the fluid relief groove that eliminates shielding by the cam ring in the rotor rotation range where the cam ring swings to the maximum or minimum eccentric position. This reduces pump discharge pulsation and enables quiet pump operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例を示し、第1図
はポンプ部の断面図、第2図は第1図の■−■線断面図
へ第3図はポンプ部の断面図、第4図および第5図はそ
れぞれポンプ吐出圧の時間変化を従来例と比較した図、
第6図は従来例を示す□ポンプ部の断面図である。 1・・・ロータ 2.2A・・・ベーン 3・・・カムリング ・  4・・・ポンプハウジング 41・・・吸入ボート 42・・・吐出ボート 43.44・・・流体逃し講 P、PL、P2・・・ポンプ室 第1図 第2図 第3図
1 to 3 show one embodiment of the present invention, FIG. 1 is a sectional view of the pump section, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is a sectional view of the pump section. Figures 4 and 5 are diagrams comparing temporal changes in pump discharge pressure with conventional examples, respectively.
FIG. 6 is a sectional view of a □ pump section showing a conventional example. 1...Rotor 2.2A...Vane 3...Cam ring 4...Pump housing 41...Suction boat 42...Discharge boat 43.44...Fluid relief system P, PL, P2 ...Pump room Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 回転する円形ロータの外周に等間隔でベーンを設けて、
これらベーンの先端をロータ周りの外方に配設したカム
リングの円形内周に当接せしめて、カムリングの内方空
間を上記ベーンにより複数のポンプ室に区画し、上記各
ベーンおよびカムリングの側端面に接して各ポンプ室を
閉鎖するハウジング壁に吸入ポートと吐出ポートを設け
て、上記吸入ポートより各ポンプ室へ順次流体を吸入す
るとともに、各ポンプ室より上記吐出ポートへ流体を順
次圧縮吐出するベーンポンプであって、上記カムリング
をその外周面半周に印加されるポンプ吐出圧に応じてロ
ータに対する所定の偏心位置へ揺動するようになしてポ
ンプ吐出量を調整する可変容量型ベーンポンプにおいて
、上記ハウジング壁には上記カムリングの最大偏心時お
よび最小偏心時の揺動位置にてそれぞれポンプ吐出圧が
最大となるロータ回転角位置に、上記カムリングの最大
偏心時または最小偏心時において上記カムリングの側端
面による遮蔽より解放されてポンプ室内へ露出して、高
圧側ポンプ室の流体の一部をベーンを介して隣接する低
圧側ポンプ室へ逃がす一対の流体逃し溝を形成したこと
を特徴とする可変容量型ベーンポンプ。
Vanes are provided at equal intervals around the outer circumference of a rotating circular rotor,
The tips of these vanes are brought into contact with the circular inner periphery of a cam ring disposed outside around the rotor, and the inner space of the cam ring is divided into a plurality of pump chambers by the vanes, and the side end surfaces of each vane and cam ring are A suction port and a discharge port are provided on the housing wall that closes each pump chamber in contact with the housing wall, and fluid is sequentially sucked into each pump chamber from the suction port, and fluid is sequentially compressed and discharged from each pump chamber to the discharge port. In the vane pump, the variable displacement vane pump adjusts the pump discharge amount by swinging the cam ring to a predetermined eccentric position with respect to the rotor in accordance with the pump discharge pressure applied to a half circumference of the outer circumferential surface of the cam ring. The wall has a rotor rotation angle position where the pump discharge pressure is maximum at the swing position of the cam ring at the maximum eccentricity and the minimum eccentricity, respectively, and by the side end surface of the cam ring at the maximum eccentricity or the minimum eccentricity of the cam ring. A variable capacity type characterized by forming a pair of fluid relief grooves that are released from the shield and exposed into the pump chamber and allow part of the fluid in the high pressure side pump chamber to escape to the adjacent low pressure side pump chamber via a vane. vane pump.
JP32346490A 1990-11-27 1990-11-27 Variable displacement vane pump Pending JPH04194390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32346490A JPH04194390A (en) 1990-11-27 1990-11-27 Variable displacement vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32346490A JPH04194390A (en) 1990-11-27 1990-11-27 Variable displacement vane pump

Publications (1)

Publication Number Publication Date
JPH04194390A true JPH04194390A (en) 1992-07-14

Family

ID=18154979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32346490A Pending JPH04194390A (en) 1990-11-27 1990-11-27 Variable displacement vane pump

Country Status (1)

Country Link
JP (1) JPH04194390A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398505A (en) * 1992-10-29 1995-03-21 Aisin Seiki Kabushiki Kaisha Fluid pressure driving system
JP2012163041A (en) * 2011-02-07 2012-08-30 Hitachi Automotive Systems Ltd Vane pump
EP2584141A1 (en) * 2011-10-20 2013-04-24 Ford Global Technologies, LLC Adjustable vane pump
WO2018051905A1 (en) * 2016-09-16 2018-03-22 Kyb株式会社 Variable-capacity vane pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398505A (en) * 1992-10-29 1995-03-21 Aisin Seiki Kabushiki Kaisha Fluid pressure driving system
JP2012163041A (en) * 2011-02-07 2012-08-30 Hitachi Automotive Systems Ltd Vane pump
EP2584141A1 (en) * 2011-10-20 2013-04-24 Ford Global Technologies, LLC Adjustable vane pump
RU2608624C2 (en) * 2011-10-20 2017-01-23 Форд Глобал Технолоджис, ЛЛК Adjustable vane pump
WO2018051905A1 (en) * 2016-09-16 2018-03-22 Kyb株式会社 Variable-capacity vane pump

Similar Documents

Publication Publication Date Title
JP2788774B2 (en) Variable displacement vane pump
KR20150105458A (en) Variable displacement pump with multiple pressure chambers
WO2014129311A1 (en) Variable capacity vane pump
US11131305B2 (en) Scroll compressor having cutout provided on movable wrap to reduce backflow
US5540572A (en) Structure for preventing axial leakage in scroll compressor
US8579598B2 (en) Variable capacity vane pump
JPH04194390A (en) Variable displacement vane pump
US8562316B2 (en) Variable capacity vane pump
US11125230B2 (en) Scroll compressor having offset portion provided on discharge port to reduce backflow
JPH11343982A (en) Trochoid oil pump
KR20030015420A (en) Cylinder structure of vacuum pump
US20220049698A1 (en) Vane pump device
JPS6146232Y2 (en)
JP2020023967A (en) Vane pump device
JPS5885389A (en) Rolling piston type compressor with two cylinders
KR101684549B1 (en) Rotary vacuum pump
JP2008169778A (en) Compressor
JPH08303358A (en) Liquid-sealing pump
JP2535011Y2 (en) Variable displacement vane pump
JP2587532Y2 (en) Variable displacement vane pump
KR101823017B1 (en) Centrifugal pump with reduced leakage loss between casing and impeller
KR20180079529A (en) Adjustable oil pump to prevent pump performance degradation
JP3310709B2 (en) Vane pump
WO2020026410A1 (en) Vane pump device
KR20200144813A (en) Scroll compressor