WO2020026410A1 - Vane pump device - Google Patents

Vane pump device Download PDF

Info

Publication number
WO2020026410A1
WO2020026410A1 PCT/JP2018/029025 JP2018029025W WO2020026410A1 WO 2020026410 A1 WO2020026410 A1 WO 2020026410A1 JP 2018029025 W JP2018029025 W JP 2018029025W WO 2020026410 A1 WO2020026410 A1 WO 2020026410A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
low
cam ring
pressure side
rotation angle
Prior art date
Application number
PCT/JP2018/029025
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 多賀
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Priority to PCT/JP2018/029025 priority Critical patent/WO2020026410A1/en
Priority to JP2018540901A priority patent/JPWO2020026410A1/en
Publication of WO2020026410A1 publication Critical patent/WO2020026410A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • a vane pump described in Patent Document 1 is disposed on a side of a cam ring and has a side plate having an opening formed in a discharge port, and a rotor rotatably housed in the cam ring and driven to rotate by a drive shaft. And a vane held in a plurality of slots formed in the outer peripheral portion of the rotor along the radial direction so as to be able to protrude and retract toward the inner peripheral surface of the cam ring.
  • a beard groove communicating with the discharge port is formed on an inner surface of the side plate that is in sliding contact with the rotor, and the beard groove is gradually tapered from the discharge port along a direction opposite to a rotation direction of the rotor.
  • the tip of the whisker is formed so as to be directed inward from the rotation trajectory passing through the base end of the whisker of each vane.
  • the high-pressure oil at the discharge port may flow back into the pump chamber during the transition from the suction process to the discharge process.
  • the noise generated when the oil flows backward increases as the pressure difference between the oil pressure of the discharge port and the oil pressure in the pump chamber increases.
  • a vane pump device capable of reducing the pressure difference between the oil pressure of the discharge port and the oil pressure in the pump chamber in the process of shifting to the discharge step.
  • FIG. 5 is a cross-sectional view for illustrating a flow path of low-pressure oil of the vane pump 1.
  • FIG. 5 is also a cross-sectional view taken along the line VV of FIG.
  • the vane pump 1 is a pump driven by, for example, power from an engine of a vehicle to supply oil as an example of a working fluid to a device such as a hydraulic continuously variable transmission or a hydraulic power steering.
  • the vane pump 1 increases the oil sucked from one suction port 116 to two different pressures, discharges high-pressure oil from the two pressures from the high-pressure side discharge port 117, and Is discharged from the low-pressure side discharge port 118. More specifically, the vane pump 1 according to the present embodiment increases the pressure of the oil sucked from the suction port 116 and sucked into the pump chamber from the high-pressure side suction port 2 (see FIG. 4). And discharged from the high pressure side discharge port 4 (see FIG. 4) to the outside through the high pressure side discharge port 117.
  • the vane pump 1 includes a rotating shaft 10 that rotates by receiving a driving force from an engine or a motor of a vehicle, a rotor 20 that rotates with the rotating shaft 10, and a plurality of vanes 30 that are incorporated in grooves formed in the rotor 20. , And a cam ring 40 surrounding the outer periphery of the rotor 20 and the vane 30. Further, the vane pump 1 is disposed on an inner plate 50 as an example of a one-side member disposed on one end side of the rotary shaft 10 with respect to the cam ring 40, and disposed on the other end side of the rotary shaft 10 with respect to the cam ring 40. And an outer plate 60 as an example of the other side member.
  • the rotating shaft 10 is rotatably supported by a later-described case-side bearing 111 provided on the case 110 and a later-described cover-side bearing 121 provided on the cover 120.
  • a spline 11 is formed on the outer peripheral surface of the rotating shaft 10, and is connected to the rotor 20 via the spline 11.
  • the rotating shaft 10 rotates by receiving power from a driving source disposed outside the vane pump 1 such as an engine of a vehicle, and rotates the rotor 20 via the spline 11.
  • the rotating shaft 10 (the rotor 20) is configured to rotate clockwise in FIG.
  • the vane groove 23 has a rectangular parallelepiped groove 231 formed on the outer peripheral side in a rectangular parallelepiped shape, and a cylindrical groove 232 as an example of a central space formed on the rotation center side in a cylindrical shape. .
  • the cam ring 40 is a generally cylindrical member, and includes a cam ring outer peripheral surface 41, a cam ring inner peripheral surface 42, an inner end surface 43 that is an end surface on the inner plate 50 side in the rotation axis direction, and an outer plate in the rotation axis direction.
  • An outer end surface 44 which is an end surface on the 60 side is provided.
  • the cam ring outer peripheral surface 41 has a substantially circular shape whose distance from the rotation center is substantially equal over the entire circumference (except for a part thereof) when viewed in the rotation axis direction.
  • FIG. 7 is a diagram showing the distance L from the rotation center for each rotation angle on the cam ring inner peripheral surface 42 of the cam ring 40.
  • the cam ring inner peripheral surface 42 of the cam ring 40 has a distance L from the rotation center C (see FIG. 6) for each rotation angle (in other words, the vane groove of the vane 30).
  • (Projection amount from the projection 23) has two projections. That is, assuming that the distance L from the rotation center C is zero degree on the positive vertical axis in the diagram viewed in one direction shown in FIG. 6, the distance L gradually increases from about 20 degrees to about 90 degrees in the counterclockwise rotation direction.
  • the change in the distance L from the rotation center C at each rotation angle at the foot of the second projection 42b is the change in the distance L from the rotation center C at each rotation angle at the foot of the first projection 42a.
  • the portions other than the convex portions are set so that the distance L from the rotation center C becomes a minimum value.
  • the minimum value is set to be slightly larger than the distance from the rotation center C on the outermost peripheral surface 22 of the rotor 20.
  • the cam ring 40 has an inner recess 430 that is a plurality of recesses recessed from the inner end face 43 and an outer recess 440 that is a plurality of recesses recessed from the outer end face 44.
  • the inner recess 430 forms a high-pressure suction recess 431 that forms the high-pressure suction port 2, a low-pressure suction recess 432 that forms the low-pressure suction port 3, and a high-pressure discharge port 4. It has a high-pressure side discharge recess 433 and a low-pressure side discharge recess 434 constituting the low-pressure side discharge port 5.
  • the high-pressure side discharge concave portion 433 and the low-pressure side discharge concave portion 434 are recessed from the inner end surface 43 by a predetermined range from the cam ring inner peripheral surface 42 to the cam ring outer peripheral surface 41 in the radial direction of rotation. It is recessed from the inner end face 43 by an angle.
  • the high pressure side suction recess 431 and the high pressure side suction recess 441 are provided at the same position, and the low pressure side suction recess 432 and the low pressure side suction recess 442 are provided at the same position.
  • the low-pressure side suction recess 432 and the low-pressure side suction recess 442 are provided from about 20 degrees to about 90 degrees in the counterclockwise rotation direction when the positive vertical axis in the diagram viewed in one direction shown in FIG.
  • the high pressure side suction recess 431 and the high pressure side suction recess 441 are provided from about 200 degrees to about 270 degrees.
  • the high-pressure side discharge recess 433 and the high-pressure side discharge recess 443 are provided at the same position, and the low-pressure side discharge recess 434 and the low-pressure side discharge recess 444 are provided at the same position.
  • the low-pressure side discharge concave portion 434 and the low-pressure side discharge concave portion 444 are provided from about 130 degrees to about 175 degrees in the counterclockwise rotation direction when the positive vertical axis in the one-direction view shown in FIG.
  • the high-pressure side discharge concave portion 433 and the high-pressure side discharge concave portion 443 are provided from about 310 degrees to about 355 degrees.
  • the cam ring 40 has two high-pressure discharge through-holes 45 that penetrate in the direction of the rotation axis so as to communicate the high-pressure discharge recess 433 and the high-pressure discharge recess 443.
  • the cam ring 40 has two low-pressure discharge through-holes 46 that penetrate in the direction of the rotation axis so as to communicate the low-pressure discharge recess 434 and the low-pressure discharge recess 444.
  • FIG. 8 is a view of the inner plate 50 viewed in one direction and the other direction in the rotation axis direction.
  • the inner plate 50 is a disk-shaped member having a through hole formed at a central portion, and has an inner outer peripheral surface 51, an inner inner peripheral surface 52, and an inner surface that is an end surface on the cam ring 40 side in the rotation axis direction. It has a cam ring side end surface 53 and an inner non-cam ring side end surface 54 which is an end surface opposite to the cam ring 40 side in the rotation axis direction.
  • the inner peripheral surface 51 is circular as shown in FIG.
  • the inner cam ring side concave portion 530 is located at a position corresponding to the low pressure side suction concave portion 532 to the low pressure side discharge concave portion 533 in the circumferential direction, and faces the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation.
  • the inner low-pressure side concave portion 534 is provided at a position where the inner low-pressure side recess 534 is formed.
  • the inner low-pressure side concave portion 534 includes a low-pressure side upstream concave portion 534a formed at a position corresponding to the low-pressure side suction concave portion 532 in the circumferential direction and a low-pressure side downstream concave portion formed at a position corresponding to the low-pressure side discharge concave portion 533 in the circumferential direction. 534b, and a low-pressure connection recess 534c that connects the low-pressure upstream recess 534a and the low-pressure downstream recess 534b.
  • the inner cam ring side concave portion 530 is located at a position corresponding to the high pressure side discharge concave portion 433 in the circumferential direction, and at a position opposed to the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation. It has a recess 535.
  • the inner cam ring side concave portion 530 includes a first concave portion 536 formed at a position facing the first through hole 47 of the cam ring 40 and a second concave portion 537 formed at a position facing the second through hole 48. Have.
  • the inner non-cam ring side concave portion 540 is formed in the outer peripheral portion and is a groove into which the outer peripheral side O-ring 57 (see FIG. 4) is fitted, and the inner non-cam ring side concave portion 540 is formed in the inner peripheral portion and is formed in the inner peripheral portion. 4) and an inner peripheral groove 542 which is a groove into which the groove is fitted.
  • the outer peripheral side O-ring 57 and the inner peripheral side O-ring 58 seal a gap between the inner plate 50 and the case 110.
  • a high-pressure side discharge through-hole 55 which is a hole penetrating in the rotation axis direction is formed at a position facing the high-pressure side discharge concave portion 443 of the cam ring 40.
  • the opening of the high pressure side discharge through hole 55 on the cam ring 40 side and the opening of the low pressure side discharge recess 533 are formed so as to be point-symmetric with respect to the rotation center C.
  • a position corresponding to the high-pressure side suction concave portion 531 in the circumferential direction and a position facing the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation are provided in the rotational axis direction.
  • An inner high-pressure side through-hole 56 which is a hole penetrating through is formed.
  • FIG. 9 is a view of the outer plate 60 viewed in the other direction and the one direction of the rotation axis.
  • the outer plate 60 is a plate-like member having an outer peripheral surface 61, an outer inner peripheral surface 62, and an end surface on the cam ring 40 side in the rotation axis direction. It has a side end face 63 and an outer non-cam ring side end face 64 which is an end face opposite to the cam ring 40 side in the rotation axis direction.
  • the outer peripheral surface 61 When viewed in the direction of the rotation axis, has a shape obtained by cutting out two places from the circular shape of the base as shown in FIG. 9.
  • the distance from the circular center of rotation C of the base is substantially the same as the distance from the center of rotation C of the cam ring outer peripheral surface 41 of the cam ring 40.
  • the two cutouts are formed at positions facing the high-pressure suction recess 441 and are formed at positions facing the high-pressure suction cutout 611 constituting the high-pressure suction port 2 and the low-pressure suction recess 442.
  • a low-pressure side suction cutout portion 612 constituting the low-pressure side suction port 3.
  • the outer peripheral surface 61 is formed so as to be point-symmetric with respect to the rotation center C, and the high-pressure side suction notch 611 and the low-pressure side suction notch 612 are point-symmetric with respect to the rotation center C. It is formed so that it becomes.
  • the outer inner peripheral surface 62 When viewed in the direction of the rotation axis, the outer inner peripheral surface 62 has a circular shape as shown in FIG. 9, and the distance from the rotation center C is equal to the groove of the spline 21 formed on the inner peripheral surface of the rotor 20. It is almost the same as the distance to the bottom.
  • the outer plate 60 has an outer cam ring side recess 630 formed by a plurality of recesses recessed from the outer cam ring side end surface 63.
  • the outer cam ring side concave portion 630 has a high pressure side discharge concave portion 631 formed at a position facing the high pressure side discharge concave portion 443 of the cam ring 40.
  • the outer cam ring side recess 630 is located at a position corresponding to the high pressure side suction notch 611 to the high pressure side discharge recess 631 in the circumferential direction, and the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation.
  • the outer high pressure side concave portion 632 is provided at a position facing the outer high pressure side.
  • the outer cam ring side concave portion 630 is located at a position corresponding to the low pressure side discharge concave portion 444 of the cam ring 40 in the circumferential direction, and at a position facing the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation.
  • An outer low-pressure side concave portion 633 is provided.
  • the outer cam ring side concave portion 630 is parallel to the rotation axis direction, has a V-shaped cross section cut along a plane orthogonal to the outer peripheral surface 61, and has a concave depth as going from the upstream side to the downstream side in the rotation direction.
  • Has a high-pressure side V-groove 634 that increases the size of the V-groove.
  • the downstream end of the high-pressure side V groove 634 is connected to the upstream end of the high-pressure discharge recess 631.
  • the outer cam ring side concave portion 630 is parallel to the rotation axis direction, has a V-shaped cross section cut along a plane orthogonal to the outer peripheral surface 61, and has a concave depth as going from the upstream side to the downstream side in the rotation direction.
  • the downstream end of the low-pressure V-groove 635 is connected to the upstream end of the low-pressure discharge through-hole 65.
  • a low-pressure side discharge through hole 65 which is a hole penetrating in the direction of the rotation axis is formed at a position facing the low-pressure side discharge concave portion 444 of the cam ring 40.
  • the opening of the low pressure side discharge through hole 65 on the cam ring 40 side and the opening of the high pressure side discharge recess 631 are formed to be point-symmetric with respect to the rotation center C. Further, the outer plate 60 is rotated at a position corresponding to the low pressure side suction cutout portion 612 in the circumferential direction and at a position facing the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation.
  • An outer low-pressure side through hole 66 which is a hole penetrating in the axial direction, is formed.
  • a first through hole 67 which is a hole penetrating in the rotation axis direction, is provided at a position facing the first through hole 47 of the cam ring 40 at a position facing the second through hole 48 of the cam ring 40.
  • a second through hole 68 which is a hole penetrating in the direction of the rotation axis is formed.
  • FIG. 10 is a view of the case 110 viewed in one direction of the rotation axis direction.
  • the case 110 is a cylindrical member with a bottom, and has a case-side bearing 111 that rotatably supports one end of the rotating shaft 10 at the center of the bottom.
  • the case 110 has an inner plate fitting portion 112 into which the inner plate 50 is fitted.
  • the inner plate fitting portion 112 includes an inner diameter side fitting portion 113 located closer to the rotation center C (inner diameter side) and an outer diameter side fitting portion 114 located farther from the rotation center C (outer diameter side). Have.
  • the inner diameter side fitting portion 113 is provided on the outer diameter side of the case side bearing 111, and covers the circumference of a part of the inner inner peripheral surface 52 of the inner plate 50. And an inner diameter side suppressing portion 113b for suppressing the inner plate 50 from moving to the bottom side.
  • the inner diameter side cover portion 113a has a circular shape whose distance from the rotation center C is smaller than the distance from the rotation center C on the inner inner peripheral surface 52 when viewed in the rotation axis direction.
  • the inner diameter side suppressing portion 113b is a donut-shaped surface orthogonal to the rotation axis direction, and the distance from the rotation center C in the inner circle is the same as the distance from the rotation center C in the inner diameter side covering portion 113a.
  • the distance of the circle from the rotation center C is smaller than the distance of the inner inner peripheral surface 52 from the rotation center C.
  • the outer diameter side fitting portion 114 includes an outer diameter side covering portion 114 a that covers a part of the inner outer peripheral surface 51 of the inner plate 50, and a movement of the inner plate 50 to the bottom side. And an outer-diameter-side suppressing portion 114b.
  • the outer diameter side cover portion 114a has a circular shape whose distance from the rotation center C is larger than the distance from the rotation center C on the inner peripheral surface 51 when viewed in the rotation axis direction.
  • the outer diameter side suppressing portion 114b is a donut-shaped surface orthogonal to the rotation axis direction, and the distance from the rotation center C in the outer circle is the same as the distance from the rotation center C in the outer diameter side covering portion 114a.
  • the distance from the rotation center C on the inner circle is smaller than the distance from the rotation center C on the inner peripheral surface 51.
  • the inner O-ring 58 fitted in the inner groove 542 of the inner plate 50 abuts against the inner diameter suppressing portion 113 b, and the outer O ring 57 fitted in the outer groove 541 prevents the outer O ring 57. It is inserted on the bottom side until it abuts on the portion 114b. Then, the inner peripheral side O-ring 58 contacts the inner peripheral side groove 542 of the inner plate 50, the inner diameter side covering portion 113 a and the inner diameter side suppressing portion 113 b of the case 110, and the outer peripheral side O ring 57 is connected to the outer periphery of the inner plate 50.
  • the case 110 and the inner plate 50 are sealed by contacting the side groove 541, the outer diameter side covering portion 114a of the case 110, and the outer diameter side suppressing portion 114b.
  • space S1 on the opening side of inner plate fitting portion 112 in case 110 and space S2 on the bottom side of inner plate fitting portion 112 are defined.
  • a space S1 closer to the opening than the inner plate fitting portion 112 forms a suction passage R1 through which oil sucked from the high-pressure suction port 2 and the low-pressure suction port 3 flows.
  • a space S2 on the bottom side of the inner plate fitting portion 112 forms a high-pressure discharge passage R2 through which oil discharged from the high-pressure discharge port 4 flows.
  • the case 110 has a rotational axis direction from the opening side outside the housing space in the radial direction of rotation.
  • a case outer recess 115 is formed.
  • the case outside concave portion 115 faces a cover outside concave portion 123 described later formed in the cover 120 and forms a case low pressure side discharge passage R3 through which oil discharged from the low pressure side discharge port 5 flows.
  • the case 110 is formed with a suction port 116 that communicates the space S1 closer to the opening than the inner plate fitting portion 112 with the outside of the case 110.
  • the suction port 116 is a cylindrical hole formed in the side wall of the case 110 and includes a hole whose column direction is orthogonal to the rotation axis direction.
  • the suction port 116 forms a suction flow path R1 through which oil sucked from the high-pressure side suction port 2 and the low-pressure side suction port 3 flows.
  • the case 110 is formed with a high-pressure side discharge port 117 that communicates the space S2 on the bottom side of the inner plate fitting portion 112 with the outside of the case 110.
  • the high-pressure side discharge port 117 is configured to include a column-shaped hole formed in the side wall of the case 110 and having a column direction perpendicular to the rotation axis direction.
  • the high-pressure discharge port 117 constitutes a high-pressure discharge passage R2 through which oil discharged from the high-pressure discharge port 4 flows.
  • the case 110 is formed with a low-pressure side discharge port 118 that communicates between the case outside recess 115 and the outside of the case 110.
  • the low-pressure side discharge port 118 is a column-shaped hole formed in the side wall of the case outer recess 115 of the case 110 and includes a hole whose column direction is orthogonal to the rotation axis direction.
  • the low pressure side discharge port 118 forms a case low pressure side discharge passage R3 through which the oil discharged from the low pressure side discharge port 5 flows. Note that the directions (column directions) of the cylindrical holes constituting the suction port 116, the high-pressure discharge port 117, and the low-pressure discharge port 118 of the case 110 according to the present embodiment are the same.
  • FIG. 11 is a view of the cover 120 viewed in the other direction of the rotation axis.
  • the cover 120 has a cover-side bearing 121 that rotatably supports the rotating shaft 10 at the center.
  • a cover low-pressure side discharge recess 122 is formed at a position facing the low-pressure side discharge through-hole 65 and the outer low-pressure side through-hole 66 of the outer plate 60.
  • the cover low-pressure side discharge recessed part 122 is formed at a position facing the low-pressure side discharge through-hole 65 and the second low-pressure side discharge formed at a position facing the outer low-pressure side through-hole 66. It has a recess 122b and a third low-pressure discharge recess 122c that connects the first low-pressure discharge recess 122a and the second low-pressure discharge recess 122b.
  • the cover 120 has a cover outer recess 123 recessed in the rotation axis direction from the end surface on the case 110 side in the rotation radial direction outside the cover low-pressure side discharge recess 122, and a first low-pressure side of the cover low-pressure side discharge recess 122.
  • a cover recess connecting portion 124 that connects the discharge recess 122a and the cover outer recess 123 in the other direction of the rotation axis direction than the end surface on the case 110 side is formed.
  • the cover outer recess 123 is formed so as to open at a position that does not face the above-described housing space formed in the case 110, and faces the case outer recess 115.
  • the cover low-pressure side discharge recess 122, the cover recess connection portion 124, and the cover outside recess 123 constitute a cover low-pressure side discharge flow path R4 (see FIG. 5) through which oil discharged from the low-pressure side discharge port 5 flows.
  • the oil discharged from the low-pressure side discharge port 5 flows into the case low-pressure side discharge flow path R3 via the cover concave-portion connecting portion 124, and via the second low-pressure side discharge concave portion 122b and the third low-pressure side discharge concave portion 122c. It flows into the outer low-pressure side through hole 66.
  • the second low-pressure discharge recess 122b and the third low-pressure discharge recess 122c are formed shallower and narrower than the first low-pressure discharge recess 122a, and the amount of oil flowing into the outer low-pressure side through hole 66 is It is smaller than the amount of oil flowing into the case low pressure side discharge passage R3.
  • the other end is held in the first cover recess 127 of the cover 120.
  • One end of a cylindrical or columnar positioning pin passing through the second through hole 48 formed in the cam ring 40 and the second through hole 68 formed in the outer plate 60 is connected to the second recess of the inner plate 50.
  • the other end is held in the second cover recess 128 of the cover 120.
  • Oil is discharged from the low pressure side discharge port 5. Further, since the bottom of the second convex portion 42b is formed so as to be gentler than the bottom of the first convex portion 42a, the discharge pressure from the high pressure side discharge port 4 is reduced. 5 higher than the discharge pressure.
  • a part of the high-pressure oil that has flowed into the cylindrical groove 232 of the vane groove 23 flows into the high-pressure side upstream recess 632 a of the outer plate 60.
  • Part of the high-pressure oil that has flowed into the high-pressure-side upstream recess 632a of the outer plate 60 flows into the high-pressure-side downstream recess 632b via the high-pressure connection recess 632c (see FIG. 9).
  • Part of the high-pressure oil that has flowed into the high-pressure-side downstream recess 632b of the outer plate 60 flows into the cylindrical groove 232 of the vane groove 23 of the opposed rotor 20, and flows into the inner high-pressure-side recess 535 of the inner plate 50.
  • FIG. 13 is a diagram showing the flow of low-pressure oil.
  • the oil discharged from the low-pressure side discharge port 5 (hereinafter, referred to as “low-pressure oil”) flows into the cover low-pressure side discharge recess 122 through the low-pressure side discharge through hole 65 of the outer plate 60, and the low-pressure side discharge It is discharged from the outlet 118. Further, part of the low-pressure oil that has flowed into the third low-pressure side discharge recess 122c of the cover low-pressure side discharge recess 122 through the low-pressure side discharge through hole 65 of the outer plate 60 passes through the second low-pressure side discharge recess 122b.
  • the high-pressure suction port 2 includes a high-pressure suction recess 431 and a high-pressure suction recess 441 formed in the cam ring 40, a high-pressure suction recess 531 formed in the inner plate 50, and a high-pressure suction formed in the outer plate 60.
  • the cutout 611 is formed.
  • the low-pressure side suction port 3 includes a low-pressure side suction recess 432 and a low-pressure side suction recess 442 formed in the cam ring 40, a low-pressure side suction recess 532 formed in the inner plate 50, and a low-pressure side suction formed in the outer plate 60.
  • the cutout 612 is formed.
  • the high-pressure discharge port 4 includes a high-pressure discharge recess 433 and a high-pressure discharge recess 443 formed in the cam ring 40, a high-pressure discharge through-hole 55 formed in the inner plate 50, and a high-pressure discharge recess 55 formed in the outer plate 60. It is composed of a discharge recess 631.
  • the low-pressure discharge port 5 includes a low-pressure discharge recess 434 and a low-pressure discharge recess 444 formed in the cam ring 40, a low-pressure discharge recess 533 formed in the inner plate 50, and a low-pressure discharge through-hole formed in the outer plate 60. 65.
  • the high-pressure side suction port 2 and the low-pressure side suction port 3 may be collectively referred to as “suction port”. is there.
  • the high-pressure side discharge port 4 and the low-pressure side discharge port 5 may be collectively referred to as a "discharge port”.
  • V-groove 634 and the low-pressure side V-groove 635 may be collectively referred to as a “V-groove”.
  • the vane pump 1 includes the rotor 20 that rotates while supporting the ten vanes 30 movably in the rotational radius direction, and the cam ring 40 that has an inner peripheral surface facing the outer peripheral surface of the rotor 20.
  • the volume Vp of the pump chamber changes according to the rotation of the rotor 20.
  • the suction step is a step of sucking oil through a suction port.
  • the section of the suction step is a section where the oil is sucked through the suction port.
  • the discharge step is a step of discharging oil through a discharge port.
  • the upstream vane 30 of the two vanes 30 forming the pump chamber is referred to as an upstream vane 31 (see FIG. 18), and the downstream vane 30 is referred to as a downstream vane 32 (see FIG. 18). Call it.
  • the timing at which the suction step ends is the timing at which the upstream vane 31 passes through the downstream end (downstream end) of the suction port.
  • FIG. 14 is a diagram in which the cam ring 40 and the inner plate 50 are viewed in one direction.
  • FIG. 15 is a view of the cam ring 40 and the outer plate 60 as viewed in the other direction.
  • the rotation angle at the downstream end of the high-pressure suction port 2 is determined by the high-pressure suction recess 431 and the high-pressure suction recess 441 formed on the cam ring 40 constituting the high-pressure suction port 2, and the high-pressure suction formed on the inner plate 50. Since the rotation angles at the downstream ends of the recess 531 and the high-pressure side suction cutout portion 611 formed on the outer plate 60 are all the same, the rotation angles at the downstream ends of these portions are obtained.
  • the downstream end of the cam ring 40 is the downstream end 431f (441f) of the high-pressure suction recess which is the downstream end of the high-pressure suction recess 431 (441) formed in the cam ring 40 shown in FIGS.
  • the downstream end of the inner plate 50 is, for example, the downstream end 531f of the high-pressure suction recess 531 that is the downstream end of the high-pressure suction recess 531 formed in the inner plate 50 shown in FIG.
  • the downstream end of the outer plate 60 is a downstream end 611f of the high-pressure suction notch portion, which is a downstream end of the high-pressure suction notch portion 611 formed in the outer plate 60, as shown in FIG.
  • the rotation angle at the downstream end of the low pressure side suction port 3 is the low pressure side suction recess 432 and the low pressure side suction recess 442 formed in the cam ring 40 constituting the low pressure side suction port 3, and the low pressure side suction formed in the inner plate 50. Since the rotation angles at the downstream ends of the concave portion 532 and the low-pressure side suction cutout portion 612 formed on the outer plate 60 are all the same, the rotation angles at the downstream ends of these portions are obtained.
  • the downstream end of the cam ring 40 is the downstream end 432f (442f) of the low pressure side suction recess 432 (442), which is the downstream end of the low pressure side suction recess 432 (442) formed in the cam ring 40 shown in FIGS.
  • the downstream end of the inner plate 50 is, for example, a downstream end 532f of the low-pressure suction recess which is a downstream end of the low-pressure suction recess 532 formed in the inner plate 50 shown in FIG.
  • the downstream end of the outer plate 60 is a downstream end 612f of the low-pressure side suction notch which is a downstream end of the low-pressure side suction notch 612 formed in the outer plate 60, as shown in FIG.
  • the rotation angle at the upstream end (upstream end) of the high-pressure discharge port 4 is determined by the high-pressure discharge recess 433 and the high-pressure discharge recess 443 formed on the cam ring 40 constituting the high-pressure discharge port 4, and the inner plate 50. Since the rotation angles of the upstream ends of the high-pressure side discharge through-hole 55 formed in the outer plate 60 and the high-pressure side discharge concave portion 631 formed in the outer plate 60 are all the same, the rotation angles of the upstream ends of these portions are obtained.
  • the upstream end of the cam ring 40 is the upstream end 433e (443e) of the high-pressure discharge recess 433 (443), which is the upstream end of the high-pressure discharge recess 433 (443) formed in the cam ring 40, as shown in FIGS.
  • the upstream end of the inner plate 50 is, for example, an upstream end 55e of the high pressure side discharge through hole 55 which is an upstream end of the high pressure side discharge through hole 55 formed in the inner plate 50 shown in FIG.
  • the upstream end of the outer plate 60 is the upstream end 631e of the high-pressure discharge recess 631, which is the upstream end of the high-pressure discharge recess 631 formed in the outer plate 60, as shown in FIG.
  • the rotation angle at the upstream end (upstream end) of the low-pressure discharge port 5 is determined by the low-pressure discharge recess 434 and the low-pressure discharge recess 444 formed in the cam ring 40 constituting the low-pressure discharge port 5, and the inner plate 50. Since the rotation angles of the upstream ends of the low-pressure side discharge concave portion 533 formed in the outer plate 60 and the low-pressure side discharge through hole 65 formed in the outer plate 60 are all the same, the rotation angles of the upstream ends of these portions are obtained.
  • the upstream end of the cam ring 40 is the upstream end 434e (444e) of the low-pressure discharge recess 434 (444e), which is the upstream end of the low-pressure discharge recess 434 (444) formed in the cam ring 40, as shown in FIGS.
  • the upstream end of the inner plate 50 is, for example, a low-pressure discharge recess upstream end 533e which is an upstream end of the low-pressure discharge recess 533 formed in the inner plate 50 shown in FIG.
  • the upstream end of the outer plate 60 is a low-pressure side discharge through-hole 65e which is an upstream end of the low-pressure side discharge through-hole 65 formed in the outer plate 60 shown in FIG.
  • the timing at which the suction step ends is determined so as to be the timing at which the volume Vp of the pump chamber is maximized. The reason will be described below. In the following, the high pressure side will be described in detail, and the detailed description on the low pressure side will be omitted.
  • FIG. 16 is a diagram showing the volume Vp of the pump chamber for each rotation angle.
  • the rotation angle of the upstream vane 31 of the two vanes 30 constituting the pump chamber will be referred to as the rotation angle of the pump chamber, and the volume Vp of the pump chamber including the upstream vane 31 will be described. Is the volume Vp at this rotation angle. That is, when the rotation angle of the upstream vane 31 is zero degree (when the center of the rotation direction of the upstream vane 31 is located on the positive vertical axis in the diagram viewed in one direction shown in FIG. 6), The volume V of the pump chamber including the upstream vane 31 is defined as a volume Vp at a rotation angle of zero degree. Since the vane 30 has a thickness in the rotation direction, the rotation angle of the vane 30 is based on the center in the rotation direction.
  • the cam ring inner peripheral surface 42 of the cam ring 40 on the high pressure side (a range of 180 to 360 degrees in the counterclockwise rotation direction when the positive vertical axis in the diagram viewed in one direction shown in FIG. 6 is zero degree).
  • the rotation angle at which the volume Vp of the pump chamber becomes the maximum (hereinafter, referred to as the “maximum volume”) is larger than the rotation angle of the maximum point of the distance L from the rotation center C (hereinafter, may be referred to as “maximum distance rotation angle”).
  • the rotation angle is sometimes set to be smaller by a predetermined rotation angle.
  • the volume Vp of the pump chamber including the upstream vane 31 is maximized.
  • the predetermined rotation angle can be exemplified to be 9 degrees.
  • the rotation angle is a rotation angle rounded down to the nearest decimal point. Therefore, 9 degrees means 9.00 degrees to 9.99 degrees.
  • the section of the rotation angle at the maximum point of the distance L (maximum distance rotation angle) and the rotation angle at which the volume Vp of the pump chamber is the maximum (maximum volume rotation angle) is less than 1 degree. And it is not the maximum more than once.
  • the downstream end 431f (441f) of the high-pressure suction recess 431 of the high-pressure suction recess 431 (441) formed on the cam ring 40, the downstream end 531f of the high-pressure suction recess 531 formed on the inner plate 50, and The downstream end 611f of the high-pressure suction notch 611 formed on the outer plate 60 has a rotation angle smaller than the maximum rotation angle of the distance L by a predetermined rotation angle.
  • the vane pump 1 according to the present embodiment a configuration is considered in which the end point of the suction port is set to the rotation angle at which the distance L is the maximum (the maximum distance rotation angle) with respect to the vane pump 1 according to the present embodiment. That is, the rotation angle of the end point of the suction port in the comparative configuration is set to the discharge port side (downstream side) by a predetermined rotation angle from the rotation angle of the end point of the suction port in the present embodiment.
  • Other points of the vane pump according to the comparative configuration are the same as those of the vane pump 1 according to the present embodiment.
  • the section of the compression step in the vane pump according to the comparative configuration is the same as the vane pump according to the present embodiment. 1 is shorter than the section of the compression step.
  • compression step pump chamber the pump chamber in the compression step (hereinafter, may be referred to as “compression step pump chamber”).
  • the increase in the pressure (oil pressure) of the oil in the parentheses) is suppressed. Therefore, the pressure difference between the oil pressure in the compression process pump chamber and the oil pressure in the discharge port tends to increase.
  • the downstream vane 32 constituting the compression step pump chamber reaches the V groove before the discharge step of the compression step pump chamber starts, oil enters the compression step pump chamber from the discharge port through the V groove. The sound generated when flowing (backflow) increases.
  • the longer the section of the compression step the longer the period of crushing the bubbles contained in the oil in the pump chamber, which can increase the pressure of the oil in the pump chamber. It is desirable that the volume Vo of the oil is large.
  • FIG. 17 is a diagram illustrating a volume Vo of oil in the pump chamber for each rotation angle in the vane pump according to the comparative configuration.
  • the oil volume Vo in the pump chamber becomes the maximum of the distance L. This indicates that the maximum value is not obtained at the distance rotation angle. This is because the volume Vp is reduced in a rotation angle region exceeding the rotation angle at which the volume Vp of the pump chamber is maximized, even though the suction port is open and oil can be sucked. I think it is because it is not possible to inhale oil.
  • the volume Vo of the oil in the pump chamber does not increase even if the suction port is open in a rotation angle region exceeding the rotation angle at which the volume Vp of the pump chamber becomes maximum.
  • the difference between the volume Vp of the pump chamber and the volume Vo of the oil shown in FIG. 17 is the volume of bubbles (air).
  • the timing at which the suction process ends is determined to be the timing at which the volume Vp of the pump chamber becomes the maximum.
  • the downstream end 611f of the high-pressure suction notch 611 formed in the outer plate 60 has a rotation angle smaller than the maximum rotation angle of the distance L by a predetermined rotation angle.
  • the downstream end (end point) of the suction port is larger than the rotation angle (maximum distance rotation angle) of the maximum point of the distance L from the rotation center C of the cam ring inner peripheral surface 42.
  • 0.25 ⁇ (360/12) 7.5 degrees
  • the downstream end of the suction port is located at a distance L from the rotation center C of the cam ring inner peripheral surface 42. It may be set so as to be located upstream of the rotation angle of the maximum point.
  • the downstream end (end point) of the suction port is smaller by one degree than the maximum volume rotation angle. In the case (on the upstream side), it was confirmed that the volume Vo of the oil sucked into the pump chamber was reduced beyond an allowable limit. Further, if the section of the compression process is longer than that of the vane pump according to the comparative configuration, the pressure difference between the oil pressure in the compression process pump chamber and the hydraulic pressure at the discharge port can be made smaller than that of the vane pump according to the comparative configuration. Therefore, the downstream end of the suction port is located at the same position as the maximum volume rotation angle or downstream of the maximum volume rotation angle and upstream of the maximum distance rotation angle (9 degrees in the present embodiment). It is preferable to set as follows.
  • the downstream end (end point) of the suction port is rotated from 0 degree or more to 0.083 ⁇ (360 / (number of vanes)) at the downstream side in the rotation direction with respect to the maximum volume rotation angle. It is preferable that the angle is set to be within the angle range. Thus, it is possible to suppress the noise by lengthening the section of the compression process while suppressing a decrease in the pump efficiency.
  • the maximum distance rotation angle is a predetermined rotation angle (for example, 9 degrees).
  • a predetermined rotation angle for example, 9 degrees
  • the rotation angle when the volume Vp of the pump chamber is the maximum when it becomes) and the maximum distance rotation It is desirable that the difference from the angle is a predetermined rotation angle (for example, 9 degrees). This makes it possible to lengthen the section of the compression process while keeping the volume Vo of the oil in the pump chamber from decreasing.
  • the compression of the oil in the pump chamber is prevented while the volume Vo is not reduced.
  • the section of the process can be lengthened, and the pressure difference between the hydraulic pressure of the discharge port and the hydraulic pressure in the discharge pump chamber can be reduced.
  • the timing at which the suction step ends is preferably when the volume Vp of the pump chamber becomes the maximum.
  • the timing at which the suction process ends is set to the time when the volume Vp of the pump chamber becomes the maximum.
  • the section of the process can be made longer.
  • the volume Vp of the pump chamber changes according to the rotation of the rotor 20, so that at least a transition is made to the suction step and the discharge step.
  • the start of the compression step as an example of the compression section until the start of the step is on the upstream side in the rotation direction from the rotation angle at which the distance L is maximum (the maximum distance rotation angle). Therefore, for example, compared with the vane pump according to the comparative configuration in which the start of the compression step is set to the maximum distance rotation angle of the distance L, the section of the compression step can be made longer. As a result, the pressure difference between the oil pressure of the discharge port and the oil pressure in the compression process pump chamber can be reduced.
  • the timing at which the suction steps on the high pressure side and the low pressure side of the vane pump 1 capable of discharging the oil sucked from the suction port 116 to two different pressures is set to the maximum.
  • the volume rotation angle is set, it is not particularly limited to this mode. Only the timing at which either the high-pressure side or the low-pressure side suction step ends may be the maximum volume rotation angle.
  • the timing at which the suction step ends is set to the maximum volume rotation angle by changing the shape of the cam ring inner peripheral surface 42 of the cam ring 40 without changing the suction port and the discharge port between the high pressure side and the low pressure side.
  • the present invention is applied to a vane pump of a type that increases pressure to two pressures, the present invention is not particularly limited to such a type of vane pump.
  • the present invention is applied to a vane pump of a type in which the pressure of the oil discharged from the pump chamber such as the discharge port shape is changed to two different pressures without changing the shape of the cam ring inner peripheral surface 42 of the cam ring 40. Is also good.
  • the timing at which the suction step is completed may be set to the maximum volume rotation angle, which may be applied to a vane pump that discharges oil at the same pressure through two different discharge ports and flow paths.
  • the suction recesses (the high-pressure suction recess 431 and the high-pressure suction recess 441, or the low-pressure suction recess 432 and the low-pressure suction recess 442) of the cam ring 40, which constitute the suction port,
  • the rotation angle of the downstream end of the suction recess of the plate 50 (the high-pressure side suction recess 531 or the low-pressure side suction recess 532) and the downstream end of the suction notch of the outer plate 60 (the high-pressure side suction notch 611 or the low-pressure side suction notch 612).
  • the rotation angles of the downstream ends of all these parts be the maximum volume rotation angle.
  • the rotation angle of the downstream end of the part constituting the downstream end may be set as the maximum volume rotation angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

This vane pump device comprises: a rotor that rotates while supporting a plurality of vanes (30) so as to be movable in a turning radius direction; and a cam ring that has an inner peripheral surface facing an outer peripheral surface of the rotor. The vane pump device transitions to at least a suction step and an ejection step as the volume of a pump chamber defined by the outer peripheral surface of the rotor, the inner peripheral surface of the cam ring, and two adjacent vanes (30) among the plurality of vanes (30) changes in accordance with the rotation of the rotor. The suction step ends at a timing at which the volume of the pump chamber becomes maximum.

Description

ベーンポンプ装置Vane pump device
 本発明は、ベーンポンプ装置に関する。 The present invention relates to a vane pump device.
 従来、異音の発生を低減できるベーンポンプが提案されている。
 例えば、特許文献1に記載されたベーンポンプは、カムリングの側部に配置されて、吐出ポートが開口形成されたサイドプレートと、該カムリング内に回転自在に収容され、駆動軸によって回転駆動されるロータと、該ロータの外周部に放射方向に沿って形成された複数のスロット内に前記カムリングの内周面方向へ出没自在に保持されたベーンとを備えている。前記サイドプレートのロータと摺接する内側面に前記吐出ポートと連通するひげ溝を形成すると共に、該ひげ溝を前記吐出ポートから前記ロータの回転方向と反対方向に沿って漸次先細り状に形成すると共に、ひげ溝の先端部を、各ベーンのひげ溝の基端部を通る回転軌跡線よりも内方へ指向して形成してある。
Conventionally, vane pumps that can reduce the generation of abnormal noise have been proposed.
For example, a vane pump described in Patent Document 1 is disposed on a side of a cam ring and has a side plate having an opening formed in a discharge port, and a rotor rotatably housed in the cam ring and driven to rotate by a drive shaft. And a vane held in a plurality of slots formed in the outer peripheral portion of the rotor along the radial direction so as to be able to protrude and retract toward the inner peripheral surface of the cam ring. A beard groove communicating with the discharge port is formed on an inner surface of the side plate that is in sliding contact with the rotor, and the beard groove is gradually tapered from the discharge port along a direction opposite to a rotation direction of the rotor. The tip of the whisker is formed so as to be directed inward from the rotation trajectory passing through the base end of the whisker of each vane.
WO2005-005837号公報WO2005-005837
 吐出ポートの高圧のオイルが、吸入工程から吐出工程に移行する過程のポンプ室内に逆流するおそれがある。逆流する場合には、吐出ポートの油圧とポンプ室内の油圧との圧力差が大きいほど、オイルが逆流するときに生じる音が大きくなる。
 本発明は、吐出ポートの油圧と吐出工程に移行する過程のポンプ室内の油圧との圧力差を小さくすることができるベーンポンプ装置を提供することを目的とする。
The high-pressure oil at the discharge port may flow back into the pump chamber during the transition from the suction process to the discharge process. When the oil flows backward, the noise generated when the oil flows backward increases as the pressure difference between the oil pressure of the discharge port and the oil pressure in the pump chamber increases.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a vane pump device capable of reducing a pressure difference between a hydraulic pressure of a discharge port and a hydraulic pressure in a pump chamber in a process of shifting to a discharge step.
 かかる目的のもと、本発明は、複数枚のベーンを回転半径方向に移動可能に支持して回転するロータと、前記ロータの外周面に対向する内周面を有するカムリングと、を有し、前記ロータの回転に応じて、前記ロータの外周面、前記カムリングの内周面及び前記複数枚のベーンの内の隣接する2枚のベーンにて区画されるポンプ室の容積が変化することにより、少なくとも吸入工程及び吐出工程に遷移し、前記吸入工程が終了するタイミングは前記ポンプ室の容積が最大である場合であるベーンポンプ装置である。 With this object in mind, the present invention includes a rotor that rotates while supporting a plurality of vanes movably in the rotational radius direction, and a cam ring having an inner peripheral surface facing the outer peripheral surface of the rotor, In accordance with the rotation of the rotor, the outer peripheral surface of the rotor, the inner peripheral surface of the cam ring, and the volume of the pump chamber defined by two adjacent vanes of the plurality of vanes change, The vane pump device transitions at least to the suction step and the discharge step, and ends the suction step when the volume of the pump chamber is the maximum.
 本発明によれば、吐出ポートの油圧と吐出工程に移行する過程のポンプ室内の油圧との圧力差を小さくすることができるベーンポンプ装置を提供することができる。 According to the present invention, it is possible to provide a vane pump device capable of reducing the pressure difference between the oil pressure of the discharge port and the oil pressure in the pump chamber in the process of shifting to the discharge step.
実施の形態に係るベーンポンプの外観図である。It is an outline view of a vane pump concerning an embodiment. ベーンポンプの構成部品の一部をカバー側から見た斜視図である。It is the perspective view which looked at some components of the vane pump from the cover side. ベーンポンプの構成部品の一部をケース側から見た斜視図である。It is the perspective view which looked at some components of the vane pump from the case side. ベーンポンプの高圧のオイルの流路を示すための断面図である。It is sectional drawing for showing the flow path of the high pressure oil of a vane pump. ベーンポンプの低圧のオイルの流路を示すための断面図である。It is sectional drawing for showing the flow path of the low-pressure oil of a vane pump. ロータ、ベーン及びカムリングを回転軸方向の一方方向に見た図、及び、他方方向に見た図である。It is the figure which looked at a rotor, a vane, and a cam ring in one direction of a rotation axis direction, and the figure seen in the other direction. カムリングのカムリング内周面における回転角度毎の回転中心からの距離を示す図である。It is a figure which shows the distance from the rotation center for every rotation angle in the cam ring inner peripheral surface of a cam ring. インナプレートを回転軸方向の一方方向、及び、他方方向に見た図である。It is the figure which looked at the inner plate in one direction of the rotation axis direction, and the other direction. アウタプレートを回転軸方向の他方方向、及び、一方方向に見た図である。It is the figure which looked at the outer plate in the other direction of a rotation axis direction, and one direction. ケースを回転軸方向の一方方向に見た図である。It is the figure which looked at the case in one direction of the rotation axis direction. カバーを回転軸方向の他方方向に見た図である。It is the figure which looked at the cover in the other direction of a rotation axis. 高圧オイルの流れを示す図である。It is a figure showing a flow of high pressure oil. 低圧オイルの流れを示す図である。It is a figure showing a flow of low pressure oil. カムリング及びインナプレートを一方方向に見た図である。It is the figure which looked at the cam ring and the inner plate in one direction. カムリング及びアウタプレートを他方方向に見た図である。It is the figure which looked at the cam ring and the outer plate in the other direction. 回転角度毎のポンプ室の容積を示す図である。It is a figure which shows the volume of the pump chamber for every rotation angle. 比較構成に係るベーンポンプにおける回転角度毎のポンプ室内のオイルの体積を示す図である。It is a figure which shows the volume of oil in the pump room for every rotation angle in the vane pump which concerns on a comparative structure. 本実施の形態に係るベーンポンプにおける回転角度毎のポンプ室内のオイルの体積を示す図である。It is a figure showing the volume of oil in a pump room for every rotation angle in a vane pump concerning this embodiment.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 図1は、本実施の形態に係るベーンポンプ装置1(以下、「ベーンポンプ1」と称す。)の外観図である。
 図2は、ベーンポンプ1の構成部品の一部をカバー120側から見た斜視図である。
 図3は、ベーンポンプ1の構成部品の一部をケース110側から見た斜視図である。
 図4は、ベーンポンプ1の高圧のオイルの流路を示すための断面図である。図4は、図6のIV-IV部の断面図でもある。
 図5は、ベーンポンプ1の低圧のオイルの流路を示すための断面図である。図5は、図6のV-V部の断面図でもある。
 ベーンポンプ1は、例えば車両のエンジンからの動力により駆動されて、作動流体の一例としてのオイルを、例えば油圧式無段変速機や油圧式パワーステアリングなどの機器に供給するためのポンプである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an external view of a vane pump device 1 (hereinafter, referred to as “vane pump 1”) according to the present embodiment.
FIG. 2 is a perspective view of some of the components of the vane pump 1 as viewed from the cover 120 side.
FIG. 3 is a perspective view of some of the components of the vane pump 1 as viewed from the case 110 side.
FIG. 4 is a cross-sectional view illustrating a flow path of high-pressure oil of the vane pump 1. FIG. 4 is also a cross-sectional view taken along the line IV-IV of FIG.
FIG. 5 is a cross-sectional view for illustrating a flow path of low-pressure oil of the vane pump 1. FIG. 5 is also a cross-sectional view taken along the line VV of FIG.
The vane pump 1 is a pump driven by, for example, power from an engine of a vehicle to supply oil as an example of a working fluid to a device such as a hydraulic continuously variable transmission or a hydraulic power steering.
 また、本実施の形態に係るベーンポンプ1は、1つの吸入口116から吸入したオイルを、異なる2つの圧力に高め、2つの圧力の内、高圧のオイルを高圧側吐出口117から吐出し、低圧のオイルを低圧側吐出口118から吐出する。より具体的には、本実施の形態に係るベーンポンプ1は、吸入口116から吸入されて高圧側吸入ポート2(図4参照)からポンプ室に吸入されたオイルを、ポンプ室にて圧力を高めて高圧側吐出ポート4(図4参照)から吐出して高圧側吐出口117から外部に吐出する。加えて、ベーンポンプ1は、吸入口116から吸入されて低圧側吸入ポート3(図5参照)からポンプ室に吸入されたオイルを、ポンプ室にて圧力を高めて低圧側吐出ポート5(図5参照)から吐出して低圧側吐出口118から外部に吐出する。なお、高圧側吸入ポート2、低圧側吸入ポート3、高圧側吐出ポート4及び低圧側吐出ポート5は、ポンプ室に臨む(面する)部分である。
 また、本実施の形態に係るベーンポンプ1は、異なる2つの圧力の内の高圧に高めるオイルを吸入するポンプ室の容積Vpが異なる2つの圧力の内の低圧に高めるオイルを吸入するポンプ室の容積Vpよりも小さい。つまり、高圧側吐出口117は、高圧である小容量のオイルを吐出し、低圧側吐出口118は、低圧である大容量のオイルを吐出する。
Further, the vane pump 1 according to the present embodiment increases the oil sucked from one suction port 116 to two different pressures, discharges high-pressure oil from the two pressures from the high-pressure side discharge port 117, and Is discharged from the low-pressure side discharge port 118. More specifically, the vane pump 1 according to the present embodiment increases the pressure of the oil sucked from the suction port 116 and sucked into the pump chamber from the high-pressure side suction port 2 (see FIG. 4). And discharged from the high pressure side discharge port 4 (see FIG. 4) to the outside through the high pressure side discharge port 117. In addition, the vane pump 1 increases the pressure in the pump chamber of the oil sucked from the suction port 116 and sucked into the pump chamber from the low-pressure side suction port 3 (see FIG. 5), and the low-pressure side discharge port 5 (FIG. 5). ) And discharged from the low pressure side discharge port 118 to the outside. The high pressure side suction port 2, the low pressure side suction port 3, the high pressure side discharge port 4, and the low pressure side discharge port 5 are portions facing (facing) the pump chamber.
Further, in the vane pump 1 according to the present embodiment, the volume Vp of the pump chamber for sucking the oil to be raised to a high pressure of the two different pressures is the volume of the pump chamber for sucking the oil to be raised to the low pressure of the two different pressures. It is smaller than Vp. In other words, the high pressure side discharge port 117 discharges high pressure, small volume oil, and the low pressure side discharge port 118 discharges low pressure, large volume oil.
 ベーンポンプ1は、車両のエンジンまたはモータなどからの駆動力を受けて回転する回転軸10と、回転軸10とともに回転するロータ20と、ロータ20に形成された溝に組み込まれた複数のベーン30と、ロータ20およびベーン30の外周を囲むカムリング40とを備えている。
 また、ベーンポンプ1は、カムリング40よりも回転軸10の一方の端部側に配置された一方側部材の一例としてのインナプレート50と、カムリング40よりも回転軸10の他方の端部側に配置された他方側部材の一例としてのアウタプレート60とを備えている。
 また、ベーンポンプ1は、ロータ20、複数のベーン30、カムリング40、インナプレート50およびアウタプレート60を収容するハウジング100を備えている。ハウジング100は、有底筒状のケース110と、ケース110の開口部を覆うカバー120とを有している。
The vane pump 1 includes a rotating shaft 10 that rotates by receiving a driving force from an engine or a motor of a vehicle, a rotor 20 that rotates with the rotating shaft 10, and a plurality of vanes 30 that are incorporated in grooves formed in the rotor 20. , And a cam ring 40 surrounding the outer periphery of the rotor 20 and the vane 30.
Further, the vane pump 1 is disposed on an inner plate 50 as an example of a one-side member disposed on one end side of the rotary shaft 10 with respect to the cam ring 40, and disposed on the other end side of the rotary shaft 10 with respect to the cam ring 40. And an outer plate 60 as an example of the other side member.
Further, the vane pump 1 includes a housing 100 that houses the rotor 20, the plurality of vanes 30, the cam ring 40, the inner plate 50, and the outer plate 60. The housing 100 has a bottomed cylindrical case 110 and a cover 120 that covers an opening of the case 110.
<回転軸10の構成>
 回転軸10は、ケース110に設けられた後述のケース側軸受け111と、カバー120に設けられた後述のカバー側軸受け121とによって回転可能に支持される。回転軸10には、外周面にスプライン11が形成されており、スプライン11を介してロータ20と連結されている。本実施の形態においては、回転軸10は、例えば車両のエンジンなどのベーンポンプ1の外部に配置された駆動源により動力を受けることによって回転し、スプライン11を介してロータ20を回転駆動する。
 なお、本実施の形態に係るベーンポンプ1では、回転軸10(ロータ20)は、図2で時計回転方向に回転するように構成されている。
<Configuration of rotating shaft 10>
The rotating shaft 10 is rotatably supported by a later-described case-side bearing 111 provided on the case 110 and a later-described cover-side bearing 121 provided on the cover 120. A spline 11 is formed on the outer peripheral surface of the rotating shaft 10, and is connected to the rotor 20 via the spline 11. In the present embodiment, the rotating shaft 10 rotates by receiving power from a driving source disposed outside the vane pump 1 such as an engine of a vehicle, and rotates the rotor 20 via the spline 11.
In the vane pump 1 according to the present embodiment, the rotating shaft 10 (the rotor 20) is configured to rotate clockwise in FIG.
<ロータ20の構成>
 図6は、ロータ20、ベーン30及びカムリング40を回転軸方向の一方方向、及び、他方方向に見た図である。
 ロータ20は、概形が円筒状の部材である。ロータ20の内周面には、回転軸10のスプライン11(図2参照)が嵌め込まれるスプライン21が形成されている。ロータ20の外周部には、最外周面22から回転中心方向に凹みベーン30を収容するベーン溝23が、周方向に等間隔に(放射状に)複数(本実施の形態においては10個)形成されている。また、ロータ20の外周部には、最外周面22から回転中心方向に凹んだ凹部24が、隣り合う2つのベーン溝23間に形成されている。
 ベーン溝23は、ロータ20の最外周面22及び回転軸10の回転軸方向の両端面にそれぞれ開口する溝である。ベーン溝23は、回転軸方向に見た場合には、図6に示すように、外周部側が、回転半径方向が長手方向となる長方形であるとともに、回転中心側が、この長方形の短手方向の長さよりも大きな直径の円形状である。つまり、ベーン溝23は、外周部側に直方体状に形成された直方体状溝231と、回転中心側に円柱状に形成された中心側空間の一例としての円柱状溝232とを有している。
<Structure of rotor 20>
FIG. 6 is a view of the rotor 20, the vane 30, and the cam ring 40 as viewed in one direction and the other direction in the rotation axis direction.
The rotor 20 is a generally cylindrical member. On the inner peripheral surface of the rotor 20, a spline 21 into which the spline 11 (see FIG. 2) of the rotating shaft 10 is fitted is formed. A plurality of (in the present embodiment, ten) vane grooves 23 for accommodating the concave vanes 30 in the rotation center direction from the outermost peripheral surface 22 are formed at equal intervals (radially) in the outer peripheral portion of the rotor 20. Have been. In the outer peripheral portion of the rotor 20, a concave portion 24 recessed from the outermost peripheral surface 22 toward the center of rotation is formed between two adjacent vane grooves 23.
The vane groove 23 is a groove that opens on the outermost peripheral surface 22 of the rotor 20 and both end surfaces of the rotating shaft 10 in the rotation axis direction. When viewed in the direction of the rotation axis, the vane groove 23 has, as shown in FIG. 6, a rectangular shape on the outer peripheral side where the longitudinal direction of the rotational radius is the longitudinal direction, and a rotational center side that is in the lateral direction of the rectangle. It has a circular shape with a diameter larger than the length. In other words, the vane groove 23 has a rectangular parallelepiped groove 231 formed on the outer peripheral side in a rectangular parallelepiped shape, and a cylindrical groove 232 as an example of a central space formed on the rotation center side in a cylindrical shape. .
<ベーン30の構成>
 ベーン30は、直方体状の部材であり、ロータ20のベーン溝23それぞれに1枚ずつ組み込まれている。ベーン30は、回転半径方向の長さがベーン溝23の回転半径方向の長さよりも小さく、幅がベーン溝23の幅よりも小さい。そして、ベーン30は、回転半径方向に移動可能にベーン溝23に保持される。
<Configuration of Vane 30>
The vanes 30 are rectangular parallelepiped members, and are incorporated one by one in each of the vane grooves 23 of the rotor 20. The length of the vane 30 in the rotation radius direction is smaller than the length of the vane groove 23 in the rotation radius direction, and the width thereof is smaller than the width of the vane groove 23. Then, the vane 30 is held in the vane groove 23 so as to be movable in the rotational radius direction.
<カムリング40の構成>
 カムリング40は、概形が筒状の部材であり、カムリング外周面41と、カムリング内周面42と、回転軸方向におけるインナプレート50側の端面であるインナ端面43と、回転軸方向におけるアウタプレート60側の端面であるアウタ端面44とを有している。
 カムリング外周面41は、回転軸方向に見た場合に、図6に示すように回転中心からの距離が全周(ただし一部を除く)に渡って略等しい略円形状である。
<Configuration of cam ring 40>
The cam ring 40 is a generally cylindrical member, and includes a cam ring outer peripheral surface 41, a cam ring inner peripheral surface 42, an inner end surface 43 that is an end surface on the inner plate 50 side in the rotation axis direction, and an outer plate in the rotation axis direction. An outer end surface 44 which is an end surface on the 60 side is provided.
As shown in FIG. 6, the cam ring outer peripheral surface 41 has a substantially circular shape whose distance from the rotation center is substantially equal over the entire circumference (except for a part thereof) when viewed in the rotation axis direction.
 図7は、カムリング40のカムリング内周面42における回転角度毎の回転中心からの距離Lを示す図である。
 カムリング40のカムリング内周面42は、回転軸方向に見た場合に、図7に示すように、回転角度毎の回転中心C(図6参照)からの距離L(言い換えればベーン30のベーン溝23からの突出量)に2つの凸部が存在するように形成されている。つまり、回転中心Cからの距離Lが、図6に示した一方方向に見た図における正の垂直軸を零度とした場合に、反時計回転方向に約20度から約90度にかけて徐々に大きくなるとともに約160度にかけて徐々に小さくなることで1つ目の凸部42aを形成し、約200度から約270度にかけて徐々に大きくなるとともに約340度にかけて徐々に小さくなることで2つ目の凸部42bを形成するように設定されている。本実施の形態に係るカムリング40においては、図7に示すように、1つ目の凸部42aの大きさが、2つ目の凸部42bの大きさよりも大きくなるように回転角度毎の回転中心Cからの距離Lが設定されている。また、2つ目の凸部42bの裾野が、1つ目の凸部42aの裾野よりもなだらかとなるように回転角度毎の回転中心Cからの距離Lが設定されている。つまり、2つ目の凸部42bの裾野における回転角度毎の回転中心Cからの距離Lの変化は、1つ目の凸部42aの裾野における回転角度毎の回転中心Cからの距離Lの変化よりも小さい。そして、凸部以外の部位は、回転中心Cからの距離Lが最小値となるように設定されている。最小値は、ロータ20の最外周面22における回転中心Cからの距離よりも若干大きくなるように設定されている。
 なお、以下の説明において、図6に示した一方方向に見た図における正の垂直軸を零度とした場合に、反時計回転方向に零度~180度の回転角度領域を低圧側、180度~360度の回転角度領域を高圧側と称する場合がある。
FIG. 7 is a diagram showing the distance L from the rotation center for each rotation angle on the cam ring inner peripheral surface 42 of the cam ring 40.
As shown in FIG. 7, the cam ring inner peripheral surface 42 of the cam ring 40 has a distance L from the rotation center C (see FIG. 6) for each rotation angle (in other words, the vane groove of the vane 30). (Projection amount from the projection 23) has two projections. That is, assuming that the distance L from the rotation center C is zero degree on the positive vertical axis in the diagram viewed in one direction shown in FIG. 6, the distance L gradually increases from about 20 degrees to about 90 degrees in the counterclockwise rotation direction. The first convex portion 42a is formed by gradually decreasing to approximately 160 degrees, and gradually increasing from approximately 200 degrees to approximately 270 degrees, and gradually decreasing to approximately 340 degrees to form the second convex portion 42a. It is set so as to form the convex portion 42b. In the cam ring 40 according to the present embodiment, as shown in FIG. 7, the rotation at each rotation angle is such that the size of the first protrusion 42a is larger than the size of the second protrusion 42b. The distance L from the center C is set. The distance L from the rotation center C for each rotation angle is set so that the foot of the second protrusion 42b is gentler than the foot of the first protrusion 42a. That is, the change in the distance L from the rotation center C at each rotation angle at the foot of the second projection 42b is the change in the distance L from the rotation center C at each rotation angle at the foot of the first projection 42a. Less than. The portions other than the convex portions are set so that the distance L from the rotation center C becomes a minimum value. The minimum value is set to be slightly larger than the distance from the rotation center C on the outermost peripheral surface 22 of the rotor 20.
In the following description, when the positive vertical axis in the figure viewed in one direction shown in FIG. 6 is set to zero degree, the rotation angle range of 0 to 180 degrees in the counterclockwise rotation direction is set to the low pressure side, 180 degrees to 180 degrees. The rotation angle region of 360 degrees may be referred to as a high pressure side.
 カムリング40には、図6に示すように、インナ端面43から凹んだ複数の凹部であるインナ凹部430と、アウタ端面44から凹んだ複数の凹部であるアウタ凹部440とが形成されている。
 インナ凹部430は、図6に示すように、高圧側吸入ポート2を構成する高圧側吸入凹部431と、低圧側吸入ポート3を構成する低圧側吸入凹部432と、高圧側吐出ポート4を構成する高圧側吐出凹部433と、低圧側吐出ポート5を構成する低圧側吐出凹部434とを有している。回転軸方向に見た場合には、高圧側吸入凹部431と低圧側吸入凹部432とは、回転中心Cに対して点対称となるように形成されており、高圧側吐出凹部433と低圧側吐出凹部434とは、回転中心Cに対して点対称となるように形成されている。また、高圧側吸入凹部431及び低圧側吸入凹部432は、回転半径方向にはインナ端面43の全域に渡って凹んでおり、周方向には所定角度だけインナ端面43から凹んでいる。高圧側吐出凹部433及び低圧側吐出凹部434は、回転半径方向には、カムリング内周面42から、カムリング外周面41に至るまでの所定範囲だけインナ端面43から凹んでおり、周方向には所定角度だけインナ端面43から凹んでいる。
As shown in FIG. 6, the cam ring 40 has an inner recess 430 that is a plurality of recesses recessed from the inner end face 43 and an outer recess 440 that is a plurality of recesses recessed from the outer end face 44.
As shown in FIG. 6, the inner recess 430 forms a high-pressure suction recess 431 that forms the high-pressure suction port 2, a low-pressure suction recess 432 that forms the low-pressure suction port 3, and a high-pressure discharge port 4. It has a high-pressure side discharge recess 433 and a low-pressure side discharge recess 434 constituting the low-pressure side discharge port 5. When viewed in the rotation axis direction, the high-pressure side suction recess 431 and the low-pressure side suction recess 432 are formed to be point-symmetric with respect to the rotation center C, and the high-pressure side discharge recess 433 and the low-pressure side discharge The recess 434 is formed so as to be point-symmetric with respect to the rotation center C. Further, the high-pressure side suction concave portion 431 and the low-pressure side suction concave portion 432 are depressed over the entire area of the inner end face 43 in the radial direction of rotation, and are depressed from the inner end face 43 by a predetermined angle in the circumferential direction. The high-pressure side discharge concave portion 433 and the low-pressure side discharge concave portion 434 are recessed from the inner end surface 43 by a predetermined range from the cam ring inner peripheral surface 42 to the cam ring outer peripheral surface 41 in the radial direction of rotation. It is recessed from the inner end face 43 by an angle.
 アウタ凹部440は、図6に示した他方方向に見た図に示すように、高圧側吸入ポート2を構成する高圧側吸入凹部441と、低圧側吸入ポート3を構成する低圧側吸入凹部442と、高圧側吐出ポート4を構成する高圧側吐出凹部443と、低圧側吐出ポート5を構成する低圧側吐出凹部444とを有している。回転軸方向に見た場合には、高圧側吸入凹部441と低圧側吸入凹部442とは、回転中心Cに対して点対称となるように形成されており、高圧側吐出凹部443と低圧側吐出凹部444とは、回転中心Cに対して点対称となるように形成されている。また、高圧側吸入凹部441及び低圧側吸入凹部442は、回転半径方向にはアウタ端面44の全域に渡って凹んでおり、周方向には所定角度だけアウタ端面44から凹んでいる。高圧側吐出凹部443及び低圧側吐出凹部444は、回転半径方向には、カムリング内周面42から、カムリング外周面41に至るまでの所定範囲だけアウタ端面44から凹んでおり、周方向には所定角度だけアウタ端面44から凹んでいる。 The outer recess 440 includes a high-pressure side suction recess 441 that forms the high-pressure side suction port 2 and a low-pressure side suction recess 442 that forms the low-pressure side suction port 3, as shown in FIG. And a high-pressure side discharge recess 443 forming the high-pressure side discharge port 4 and a low-pressure side discharge recess 444 forming the low-pressure side discharge port 5. When viewed in the rotation axis direction, the high-pressure side suction recess 441 and the low-pressure side suction recess 442 are formed to be point-symmetric with respect to the rotation center C, and the high-pressure side discharge recess 443 and the low-pressure side discharge recess 443 are formed. The recess 444 is formed so as to be point-symmetric with respect to the rotation center C. Further, the high-pressure side suction concave portion 441 and the low-pressure side suction concave portion 442 are depressed over the entire area of the outer end face 44 in the rotational radius direction, and are depressed from the outer end face 44 by a predetermined angle in the circumferential direction. The high-pressure side discharge concave portion 443 and the low-pressure side discharge concave portion 444 are recessed from the outer end surface 44 by a predetermined range from the cam ring inner peripheral surface 42 to the cam ring outer peripheral surface 41 in the radial direction of rotation. It is recessed from the outer end face 44 by an angle.
 また、回転軸方向に見た場合には、高圧側吸入凹部431と高圧側吸入凹部441とは、同じ位置に設けられ、低圧側吸入凹部432と低圧側吸入凹部442とは、同じ位置に設けられている。低圧側吸入凹部432及び低圧側吸入凹部442は、図6に示した一方方向に見た図における正の垂直軸を零度とした場合に、反時計回転方向に約20度から約90度にかけて設けられており、高圧側吸入凹部431及び高圧側吸入凹部441は、約200度から約270度にかけて設けられている。
 また、回転軸方向に見た場合には、高圧側吐出凹部433と高圧側吐出凹部443とは、同じ位置に設けられ、低圧側吐出凹部434と低圧側吐出凹部444とは、同じ位置に設けられている。低圧側吐出凹部434及び低圧側吐出凹部444は、図6に示した一方方向に見た図における正の垂直軸を零度とした場合に、反時計回転方向に約130度から約175度にかけて設けられており、高圧側吐出凹部433及び高圧側吐出凹部443は、約310度から約355度にかけて設けられている。
 また、カムリング40には、高圧側吐出凹部433と高圧側吐出凹部443とを連通するように回転軸方向に貫通する孔である高圧側吐出貫通孔45が2つ形成されている。また、カムリング40には、低圧側吐出凹部434と低圧側吐出凹部444とを連通するように回転軸方向に貫通する孔である低圧側吐出貫通孔46が2つ形成されている。
Further, when viewed in the rotation axis direction, the high pressure side suction recess 431 and the high pressure side suction recess 441 are provided at the same position, and the low pressure side suction recess 432 and the low pressure side suction recess 442 are provided at the same position. Have been. The low-pressure side suction recess 432 and the low-pressure side suction recess 442 are provided from about 20 degrees to about 90 degrees in the counterclockwise rotation direction when the positive vertical axis in the diagram viewed in one direction shown in FIG. The high pressure side suction recess 431 and the high pressure side suction recess 441 are provided from about 200 degrees to about 270 degrees.
Further, when viewed in the rotation axis direction, the high-pressure side discharge recess 433 and the high-pressure side discharge recess 443 are provided at the same position, and the low-pressure side discharge recess 434 and the low-pressure side discharge recess 444 are provided at the same position. Have been. The low-pressure side discharge concave portion 434 and the low-pressure side discharge concave portion 444 are provided from about 130 degrees to about 175 degrees in the counterclockwise rotation direction when the positive vertical axis in the one-direction view shown in FIG. The high-pressure side discharge concave portion 433 and the high-pressure side discharge concave portion 443 are provided from about 310 degrees to about 355 degrees.
The cam ring 40 has two high-pressure discharge through-holes 45 that penetrate in the direction of the rotation axis so as to communicate the high-pressure discharge recess 433 and the high-pressure discharge recess 443. The cam ring 40 has two low-pressure discharge through-holes 46 that penetrate in the direction of the rotation axis so as to communicate the low-pressure discharge recess 434 and the low-pressure discharge recess 444.
 また、カムリング40には、高圧側吸入凹部431と低圧側吐出凹部434との間のインナ端面43と、高圧側吸入凹部441と低圧側吐出凹部444との間のアウタ端面44とを連通するように回転軸方向に貫通する孔である第1貫通孔47が形成されている。また、カムリング40には、低圧側吸入凹部432と高圧側吐出凹部433との間のインナ端面43と、低圧側吸入凹部442と高圧側吐出凹部443との間のアウタ端面44とを連通するように回転軸方向に貫通する孔である第2貫通孔48が形成されている。 The cam ring 40 communicates with the inner end face 43 between the high-pressure suction recess 431 and the low-pressure discharge recess 434 and the outer end face 44 between the high-pressure suction recess 441 and the low-pressure discharge recess 444. A first through hole 47, which is a hole that penetrates in the direction of the rotation axis, is formed. Further, the cam ring 40 communicates with the inner end face 43 between the low pressure side suction recess 432 and the high pressure side discharge recess 433 and the outer end face 44 between the low pressure side suction recess 442 and the high pressure side discharge recess 443. A second through-hole 48, which is a hole that penetrates in the direction of the rotation axis, is formed at the bottom.
<インナプレート50の構成>
 図8は、インナプレート50を回転軸方向の一方方向、及び、他方方向に見た図である。
 インナプレート50は、概形が中央部に貫通孔が形成された円板状の部材であり、インナ外周面51と、インナ内周面52と、回転軸方向におけるカムリング40側の端面であるインナカムリング側端面53と、回転軸方向におけるカムリング40側とは反対側の端面であるインナ非カムリング側端面54とを有している。
 インナ外周面51は、回転軸方向に見た場合には、図8に示すように円形状であり、回転中心Cからの距離は、カムリング40のカムリング外周面41における回転中心Cからの距離と略同じである。
 インナ内周面52は、回転軸方向に見た場合には、図8に示すように円形状であり、回転中心Cからの距離は、ロータ20の内周面に形成されたスプライン21(図6参照)の溝底までの距離と略同じである。
<Configuration of inner plate 50>
FIG. 8 is a view of the inner plate 50 viewed in one direction and the other direction in the rotation axis direction.
The inner plate 50 is a disk-shaped member having a through hole formed at a central portion, and has an inner outer peripheral surface 51, an inner inner peripheral surface 52, and an inner surface that is an end surface on the cam ring 40 side in the rotation axis direction. It has a cam ring side end surface 53 and an inner non-cam ring side end surface 54 which is an end surface opposite to the cam ring 40 side in the rotation axis direction.
The inner peripheral surface 51 is circular as shown in FIG. 8 when viewed in the rotation axis direction, and the distance from the rotation center C is equal to the distance from the rotation center C on the cam ring outer peripheral surface 41 of the cam ring 40. It is almost the same.
The inner inner peripheral surface 52 has a circular shape as shown in FIG. 8 when viewed in the direction of the rotation axis, and the distance from the rotation center C is the same as the spline 21 formed on the inner peripheral surface of the rotor 20 (see FIG. 8). 6) is substantially the same as the distance to the groove bottom.
 インナプレート50には、インナカムリング側端面53から凹んだ複数の凹部で構成されるインナカムリング側凹部530と、インナ非カムリング側端面54から凹んだ複数の凹部で構成されるインナ非カムリング側凹部540とが形成されている。 The inner plate 50 has an inner cam ring side recess 530 formed from a plurality of recesses recessed from the inner cam ring side end surface 53 and an inner non-cam ring side recess 540 formed from a plurality of recesses recessed from the inner non-cam ring side end surface 54. Are formed.
 インナカムリング側凹部530は、カムリング40の高圧側吸入凹部431に対向する位置に形成されて高圧側吸入ポート2を構成する高圧側吸入凹部531と、カムリング40の低圧側吸入凹部432に対向する位置に形成されて低圧側吸入ポート3を構成する低圧側吸入凹部532とを有している。高圧側吸入凹部531と低圧側吸入凹部532とは、回転中心Cに対して点対称となるように形成されている。
 また、インナカムリング側凹部530は、カムリング40の低圧側吐出凹部434に対向する位置に形成された低圧側吐出凹部533を有している。
 また、インナカムリング側凹部530は、周方向には低圧側吸入凹部532から低圧側吐出凹部533に対応する位置であって、回転半径方向にはロータ20のベーン溝23の円柱状溝232に対向する位置にインナ低圧側凹部534を有している。インナ低圧側凹部534は、周方向に低圧側吸入凹部532に対応する位置に形成された低圧側上流凹部534aと、周方向に低圧側吐出凹部533に対応する位置に形成された低圧側下流凹部534bと、低圧側上流凹部534aと低圧側下流凹部534bとを接続する低圧側接続凹部534cとを有している。
 また、インナカムリング側凹部530は、周方向には高圧側吐出凹部433に対応する位置であって、回転半径方向にはロータ20のベーン溝23の円柱状溝232に対向する位置にインナ高圧側凹部535を有している。
 また、インナカムリング側凹部530は、カムリング40の第1貫通孔47に対向する位置に形成された第1凹部536と、第2貫通孔48に対向する位置に形成された第2凹部537とを有している。
The inner cam ring side recess 530 is formed at a position facing the high pressure side suction recess 431 of the cam ring 40 and constitutes the high pressure side suction recess 531 constituting the high pressure side suction port 2, and a position facing the low pressure side suction recess 432 of the cam ring 40. And a low-pressure side suction concave portion 532 constituting the low-pressure side suction port 3. The high-pressure suction recess 531 and the low-pressure suction recess 532 are formed to be point-symmetric with respect to the rotation center C.
The inner cam ring side recess 530 has a low pressure side discharge recess 533 formed at a position facing the low pressure side discharge recess 434 of the cam ring 40.
The inner cam ring side concave portion 530 is located at a position corresponding to the low pressure side suction concave portion 532 to the low pressure side discharge concave portion 533 in the circumferential direction, and faces the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation. The inner low-pressure side concave portion 534 is provided at a position where the inner low-pressure side recess 534 is formed. The inner low-pressure side concave portion 534 includes a low-pressure side upstream concave portion 534a formed at a position corresponding to the low-pressure side suction concave portion 532 in the circumferential direction and a low-pressure side downstream concave portion formed at a position corresponding to the low-pressure side discharge concave portion 533 in the circumferential direction. 534b, and a low-pressure connection recess 534c that connects the low-pressure upstream recess 534a and the low-pressure downstream recess 534b.
The inner cam ring side concave portion 530 is located at a position corresponding to the high pressure side discharge concave portion 433 in the circumferential direction, and at a position opposed to the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation. It has a recess 535.
The inner cam ring side concave portion 530 includes a first concave portion 536 formed at a position facing the first through hole 47 of the cam ring 40 and a second concave portion 537 formed at a position facing the second through hole 48. Have.
 インナ非カムリング側凹部540は、外周部に形成されて外周側Oリング57(図4参照)が嵌め込まれる溝である外周側溝541と、内周部に形成されて内周側Oリング58(図4参照)が嵌め込まれる溝である内周側溝542とを有している。外周側Oリング57及び内周側Oリング58は、インナプレート50とケース110との間の隙間をシールする。 The inner non-cam ring side concave portion 540 is formed in the outer peripheral portion and is a groove into which the outer peripheral side O-ring 57 (see FIG. 4) is fitted, and the inner non-cam ring side concave portion 540 is formed in the inner peripheral portion and is formed in the inner peripheral portion. 4) and an inner peripheral groove 542 which is a groove into which the groove is fitted. The outer peripheral side O-ring 57 and the inner peripheral side O-ring 58 seal a gap between the inner plate 50 and the case 110.
 また、インナプレート50には、カムリング40の高圧側吐出凹部443に対向する位置に、回転軸方向に貫通する孔である高圧側吐出貫通孔55が形成されている。高圧側吐出貫通孔55におけるカムリング40側の開口部と低圧側吐出凹部533の開口部とは、回転中心Cに対して点対称となるように形成されている。
 また、インナプレート50には、周方向には高圧側吸入凹部531に対応する位置であって、回転半径方向にはロータ20のベーン溝23の円柱状溝232に対向する位置に、回転軸方向に貫通する孔であるインナ高圧側貫通孔56が形成されている。
In the inner plate 50, a high-pressure side discharge through-hole 55 which is a hole penetrating in the rotation axis direction is formed at a position facing the high-pressure side discharge concave portion 443 of the cam ring 40. The opening of the high pressure side discharge through hole 55 on the cam ring 40 side and the opening of the low pressure side discharge recess 533 are formed so as to be point-symmetric with respect to the rotation center C.
In the inner plate 50, a position corresponding to the high-pressure side suction concave portion 531 in the circumferential direction and a position facing the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation are provided in the rotational axis direction. An inner high-pressure side through-hole 56 which is a hole penetrating through is formed.
<アウタプレート60の構成>
 図9は、アウタプレート60を回転軸方向の他方方向、及び、一方方向に見た図である。
 アウタプレート60は、概形が中央部に貫通孔が形成された板状の部材であり、アウタ外周面61と、アウタ内周面62と、回転軸方向におけるカムリング40側の端面であるアウタカムリング側端面63と、回転軸方向におけるカムリング40側とは反対側の端面であるアウタ非カムリング側端面64とを有している。
 アウタ外周面61は、回転軸方向に見た場合には、図9に示すように、ベースの円形状から2箇所が切り欠かれた形状である。ベースの円形状の回転中心Cからの距離は、カムリング40のカムリング外周面41における回転中心Cからの距離と略同じである。2箇所の切り欠きは、高圧側吸入凹部441に対向する位置に形成されて高圧側吸入ポート2を構成する高圧側吸入切り欠き部611と、低圧側吸入凹部442に対向する位置に形成されて低圧側吸入ポート3を構成する低圧側吸入切り欠き部612とを有している。アウタ外周面61は、回転中心Cに対して点対称となるように形成されており、高圧側吸入切り欠き部611と低圧側吸入切り欠き部612とは、回転中心Cに対して点対称となるように形成されている。
 アウタ内周面62は、回転軸方向に見た場合には、図9に示すように円形状であり、回転中心Cからの距離は、ロータ20の内周面に形成されたスプライン21の溝底までの距離と略同じである。
<Configuration of outer plate 60>
FIG. 9 is a view of the outer plate 60 viewed in the other direction and the one direction of the rotation axis.
The outer plate 60 is a plate-like member having an outer peripheral surface 61, an outer inner peripheral surface 62, and an end surface on the cam ring 40 side in the rotation axis direction. It has a side end face 63 and an outer non-cam ring side end face 64 which is an end face opposite to the cam ring 40 side in the rotation axis direction.
When viewed in the direction of the rotation axis, the outer peripheral surface 61 has a shape obtained by cutting out two places from the circular shape of the base as shown in FIG. 9. The distance from the circular center of rotation C of the base is substantially the same as the distance from the center of rotation C of the cam ring outer peripheral surface 41 of the cam ring 40. The two cutouts are formed at positions facing the high-pressure suction recess 441 and are formed at positions facing the high-pressure suction cutout 611 constituting the high-pressure suction port 2 and the low-pressure suction recess 442. And a low-pressure side suction cutout portion 612 constituting the low-pressure side suction port 3. The outer peripheral surface 61 is formed so as to be point-symmetric with respect to the rotation center C, and the high-pressure side suction notch 611 and the low-pressure side suction notch 612 are point-symmetric with respect to the rotation center C. It is formed so that it becomes.
When viewed in the direction of the rotation axis, the outer inner peripheral surface 62 has a circular shape as shown in FIG. 9, and the distance from the rotation center C is equal to the groove of the spline 21 formed on the inner peripheral surface of the rotor 20. It is almost the same as the distance to the bottom.
 アウタプレート60には、アウタカムリング側端面63から凹んだ複数の凹部で構成されるアウタカムリング側凹部630が形成されている。
 アウタカムリング側凹部630は、カムリング40の高圧側吐出凹部443に対向する位置に形成された高圧側吐出凹部631を有している。
 また、アウタカムリング側凹部630は、周方向には高圧側吸入切り欠き部611から高圧側吐出凹部631に対応する位置であって、回転半径方向にはロータ20のベーン溝23の円柱状溝232に対向する位置にアウタ高圧側凹部632を有している。アウタ高圧側凹部632は、周方向に高圧側吸入切り欠き部611に対応する位置に形成された高圧側上流凹部632aと、周方向に高圧側吐出凹部631に対応する位置に形成された高圧側下流凹部632bと、高圧側上流凹部632aと高圧側下流凹部632bとを接続する高圧側接続凹部632cとを有している。
 また、アウタカムリング側凹部630は、周方向にはカムリング40の低圧側吐出凹部444に対応する位置であって、回転半径方向にはロータ20のベーン溝23の円柱状溝232に対向する位置にアウタ低圧側凹部633を有している。
 また、アウタカムリング側凹部630は、回転軸方向に平行であり、アウタ外周面61に直交する面で切断した断面がV字状であり、回転方向の上流側から下流側に行くに従って凹み深さが大きくなる高圧側V溝634を有している。高圧側V溝634における下流側の端部は、高圧側吐出凹部631における上流側の端部に接続している。
 また、アウタカムリング側凹部630は、回転軸方向に平行であり、アウタ外周面61に直交する面で切断した断面がV字状であり、回転方向の上流側から下流側に行くに従って凹み深さが大きくなる低圧側V溝635を有している。低圧側V溝635における下流側の端部は、低圧側吐出貫通孔65における上流側の端部に接続している。
The outer plate 60 has an outer cam ring side recess 630 formed by a plurality of recesses recessed from the outer cam ring side end surface 63.
The outer cam ring side concave portion 630 has a high pressure side discharge concave portion 631 formed at a position facing the high pressure side discharge concave portion 443 of the cam ring 40.
The outer cam ring side recess 630 is located at a position corresponding to the high pressure side suction notch 611 to the high pressure side discharge recess 631 in the circumferential direction, and the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation. The outer high pressure side concave portion 632 is provided at a position facing the outer high pressure side. The outer high-pressure side concave portion 632 includes a high-pressure side upstream concave portion 632a formed at a position corresponding to the high-pressure side suction cutout portion 611 in the circumferential direction and a high-pressure side concave portion 632 formed at a position corresponding to the high-pressure side discharge concave portion 631 in the circumferential direction. It has a downstream recess 632b and a high-pressure connection recess 632c that connects the high-pressure upstream recess 632a and the high-pressure downstream recess 632b.
The outer cam ring side concave portion 630 is located at a position corresponding to the low pressure side discharge concave portion 444 of the cam ring 40 in the circumferential direction, and at a position facing the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation. An outer low-pressure side concave portion 633 is provided.
The outer cam ring side concave portion 630 is parallel to the rotation axis direction, has a V-shaped cross section cut along a plane orthogonal to the outer peripheral surface 61, and has a concave depth as going from the upstream side to the downstream side in the rotation direction. Has a high-pressure side V-groove 634 that increases the size of the V-groove. The downstream end of the high-pressure side V groove 634 is connected to the upstream end of the high-pressure discharge recess 631.
The outer cam ring side concave portion 630 is parallel to the rotation axis direction, has a V-shaped cross section cut along a plane orthogonal to the outer peripheral surface 61, and has a concave depth as going from the upstream side to the downstream side in the rotation direction. Has a low-pressure side V-groove 635 that becomes larger. The downstream end of the low-pressure V-groove 635 is connected to the upstream end of the low-pressure discharge through-hole 65.
 また、アウタプレート60には、カムリング40の低圧側吐出凹部444に対向する位置に、回転軸方向に貫通する孔である低圧側吐出貫通孔65が形成されている。低圧側吐出貫通孔65におけるカムリング40側の開口部と高圧側吐出凹部631の開口部とは、回転中心Cに対して点対称となるように形成されている。
 また、アウタプレート60には、周方向には低圧側吸入切り欠き部612に対応する位置であって、回転半径方向にはロータ20のベーン溝23の円柱状溝232に対向する位置に、回転軸方向に貫通する孔であるアウタ低圧側貫通孔66が形成されている。
 また、アウタプレート60には、カムリング40の第1貫通孔47に対向する位置に、回転軸方向に貫通する孔である第1貫通孔67が、カムリング40の第2貫通孔48に対向する位置に、回転軸方向に貫通する孔である第2貫通孔68が形成されている。
In the outer plate 60, a low-pressure side discharge through hole 65 which is a hole penetrating in the direction of the rotation axis is formed at a position facing the low-pressure side discharge concave portion 444 of the cam ring 40. The opening of the low pressure side discharge through hole 65 on the cam ring 40 side and the opening of the high pressure side discharge recess 631 are formed to be point-symmetric with respect to the rotation center C.
Further, the outer plate 60 is rotated at a position corresponding to the low pressure side suction cutout portion 612 in the circumferential direction and at a position facing the cylindrical groove 232 of the vane groove 23 of the rotor 20 in the radial direction of rotation. An outer low-pressure side through hole 66, which is a hole penetrating in the axial direction, is formed.
In the outer plate 60, a first through hole 67, which is a hole penetrating in the rotation axis direction, is provided at a position facing the first through hole 47 of the cam ring 40 at a position facing the second through hole 48 of the cam ring 40. , A second through hole 68 which is a hole penetrating in the direction of the rotation axis is formed.
<ハウジング100の構成>
 ハウジング100は、ロータ20、ベーン30、カムリング40、インナプレート50及びアウタプレート60を収容する。また、ハウジング100は、回転軸10の一方の端部を内部に収容し、他方の端部を突出させる。
 ケース110とカバー120とはボルトにて締め付けられている。
<Configuration of the housing 100>
The housing 100 houses the rotor 20, the vane 30, the cam ring 40, the inner plate 50, and the outer plate 60. The housing 100 accommodates one end of the rotating shaft 10 therein, and projects the other end.
The case 110 and the cover 120 are fastened with bolts.
(ケース110の構成)
 図10は、ケース110を回転軸方向の一方方向に見た図である。
 ケース110は、有底筒状の部材であり、底部の中央部には回転軸10の一方の端部を回転可能に支持するケース側軸受け111を有している。
 また、ケース110は、インナプレート50が嵌め込まれるインナプレート嵌合部112を有している。インナプレート嵌合部112は、回転中心Cから近い位置(内径側)にある内径側嵌合部113と、回転中心Cから遠い位置(外径側)にある外径側嵌合部114とを有している。
(Configuration of Case 110)
FIG. 10 is a view of the case 110 viewed in one direction of the rotation axis direction.
The case 110 is a cylindrical member with a bottom, and has a case-side bearing 111 that rotatably supports one end of the rotating shaft 10 at the center of the bottom.
The case 110 has an inner plate fitting portion 112 into which the inner plate 50 is fitted. The inner plate fitting portion 112 includes an inner diameter side fitting portion 113 located closer to the rotation center C (inner diameter side) and an outer diameter side fitting portion 114 located farther from the rotation center C (outer diameter side). Have.
 内径側嵌合部113は、図4に示すように、ケース側軸受け111の外径側に設けられており、インナプレート50のインナ内周面52の一部の周囲を覆う内径側覆い部113aと、インナプレート50が底部側へ移動するのを抑制する内径側抑制部113bとを有している。内径側覆い部113aは、回転軸方向に見た場合に、回転中心Cからの距離が、インナ内周面52における回転中心Cからの距離よりも小さな円形状である。内径側抑制部113bは、回転軸方向に直交するドーナツ状の面であり、内側の円における回転中心Cからの距離は内径側覆い部113aにおける回転中心Cからの距離と同じであり、外側の円における回転中心Cからの距離はインナ内周面52における回転中心Cからの距離よりも小さい。 As shown in FIG. 4, the inner diameter side fitting portion 113 is provided on the outer diameter side of the case side bearing 111, and covers the circumference of a part of the inner inner peripheral surface 52 of the inner plate 50. And an inner diameter side suppressing portion 113b for suppressing the inner plate 50 from moving to the bottom side. The inner diameter side cover portion 113a has a circular shape whose distance from the rotation center C is smaller than the distance from the rotation center C on the inner inner peripheral surface 52 when viewed in the rotation axis direction. The inner diameter side suppressing portion 113b is a donut-shaped surface orthogonal to the rotation axis direction, and the distance from the rotation center C in the inner circle is the same as the distance from the rotation center C in the inner diameter side covering portion 113a. The distance of the circle from the rotation center C is smaller than the distance of the inner inner peripheral surface 52 from the rotation center C.
 外径側嵌合部114は、図4に示すように、インナプレート50のインナ外周面51の一部の周囲を覆う外径側覆い部114aと、インナプレート50が底部側へ移動するのを抑制する外径側抑制部114bとを有している。外径側覆い部114aは、回転軸方向に見た場合に、回転中心Cからの距離が、インナ外周面51における回転中心Cからの距離よりも大きな円形状である。外径側抑制部114bは、回転軸方向に直交するドーナツ状の面であり、外側の円における回転中心Cからの距離は外径側覆い部114aにおける回転中心Cからの距離と同じであり、内側の円における回転中心Cからの距離はインナ外周面51における回転中心Cからの距離よりも小さい。 As shown in FIG. 4, the outer diameter side fitting portion 114 includes an outer diameter side covering portion 114 a that covers a part of the inner outer peripheral surface 51 of the inner plate 50, and a movement of the inner plate 50 to the bottom side. And an outer-diameter-side suppressing portion 114b. The outer diameter side cover portion 114a has a circular shape whose distance from the rotation center C is larger than the distance from the rotation center C on the inner peripheral surface 51 when viewed in the rotation axis direction. The outer diameter side suppressing portion 114b is a donut-shaped surface orthogonal to the rotation axis direction, and the distance from the rotation center C in the outer circle is the same as the distance from the rotation center C in the outer diameter side covering portion 114a. The distance from the rotation center C on the inner circle is smaller than the distance from the rotation center C on the inner peripheral surface 51.
 インナプレート50は、インナプレート50の内周側溝542に嵌め込まれた内周側Oリング58が内径側抑制部113bに突き当たるとともに、外周側溝541に嵌め込まれた外周側Oリング57が外径側抑制部114bに突き当たるまで底部側に挿入されている。そして、内周側Oリング58が、インナプレート50の内周側溝542、ケース110の内径側覆い部113a及び内径側抑制部113bに接触するとともに、外周側Oリング57が、インナプレート50の外周側溝541、ケース110の外径側覆い部114a及び外径側抑制部114bに接触することで、ケース110とインナプレート50とがシールされる。これにより、ケース110におけるインナプレート嵌合部112よりも開口部側の空間S1と、インナプレート嵌合部112よりも底部側の空間S2とが区画される。インナプレート嵌合部112よりも開口部側の空間S1は、高圧側吸入ポート2及び低圧側吸入ポート3から吸入されるオイルが流通する吸入流路R1を構成する。インナプレート嵌合部112よりも底部側の空間S2は、高圧側吐出ポート4から吐出されたオイルが流通する高圧側吐出流路R2を構成する。 In the inner plate 50, the inner O-ring 58 fitted in the inner groove 542 of the inner plate 50 abuts against the inner diameter suppressing portion 113 b, and the outer O ring 57 fitted in the outer groove 541 prevents the outer O ring 57. It is inserted on the bottom side until it abuts on the portion 114b. Then, the inner peripheral side O-ring 58 contacts the inner peripheral side groove 542 of the inner plate 50, the inner diameter side covering portion 113 a and the inner diameter side suppressing portion 113 b of the case 110, and the outer peripheral side O ring 57 is connected to the outer periphery of the inner plate 50. The case 110 and the inner plate 50 are sealed by contacting the side groove 541, the outer diameter side covering portion 114a of the case 110, and the outer diameter side suppressing portion 114b. Thereby, space S1 on the opening side of inner plate fitting portion 112 in case 110 and space S2 on the bottom side of inner plate fitting portion 112 are defined. A space S1 closer to the opening than the inner plate fitting portion 112 forms a suction passage R1 through which oil sucked from the high-pressure suction port 2 and the low-pressure suction port 3 flows. A space S2 on the bottom side of the inner plate fitting portion 112 forms a high-pressure discharge passage R2 through which oil discharged from the high-pressure discharge port 4 flows.
 また、ケース110には、ロータ20、ベーン30、カムリング40、インナプレート50及びアウタプレート60を収容する収容空間とは別に、この収容空間よりも回転半径方向の外側において開口部側から回転軸方向に凹んだケース外側凹部115が形成されている。ケース外側凹部115は、カバー120に形成された後述するカバー外側凹部123に対向し、低圧側吐出ポート5から吐出されたオイルが流通するケース低圧側吐出流路R3を構成する。 In addition to the housing space for housing the rotor 20, the vane 30, the cam ring 40, the inner plate 50, and the outer plate 60, the case 110 has a rotational axis direction from the opening side outside the housing space in the radial direction of rotation. A case outer recess 115 is formed. The case outside concave portion 115 faces a cover outside concave portion 123 described later formed in the cover 120 and forms a case low pressure side discharge passage R3 through which oil discharged from the low pressure side discharge port 5 flows.
 また、ケース110には、図1、図2に示すように、インナプレート嵌合部112よりも開口部側の空間S1とケース110の外部とを連通する吸入口116が形成されている。吸入口116は、ケース110の側壁に形成された円柱状の孔であって回転軸方向に直交する方向を柱方向とする孔を含んで構成される。吸入口116は、高圧側吸入ポート2及び低圧側吸入ポート3から吸入されるオイルが流通する吸入流路R1を構成する。 {Circle around (1)} As shown in FIGS. 1 and 2, the case 110 is formed with a suction port 116 that communicates the space S1 closer to the opening than the inner plate fitting portion 112 with the outside of the case 110. The suction port 116 is a cylindrical hole formed in the side wall of the case 110 and includes a hole whose column direction is orthogonal to the rotation axis direction. The suction port 116 forms a suction flow path R1 through which oil sucked from the high-pressure side suction port 2 and the low-pressure side suction port 3 flows.
 また、ケース110には、図1、図2に示すように、インナプレート嵌合部112よりも底部側の空間S2とケース110の外部とを連通する高圧側吐出口117が形成されている。高圧側吐出口117は、ケース110の側壁に形成された円柱状の孔であって回転軸方向に直交する方向を柱方向とする孔を含んで構成される。高圧側吐出口117は、高圧側吐出ポート4から吐出されたオイルが流通する高圧側吐出流路R2を構成する。 {Circle around (1)} As shown in FIGS. 1 and 2, the case 110 is formed with a high-pressure side discharge port 117 that communicates the space S2 on the bottom side of the inner plate fitting portion 112 with the outside of the case 110. The high-pressure side discharge port 117 is configured to include a column-shaped hole formed in the side wall of the case 110 and having a column direction perpendicular to the rotation axis direction. The high-pressure discharge port 117 constitutes a high-pressure discharge passage R2 through which oil discharged from the high-pressure discharge port 4 flows.
 また、ケース110には、図1、図2に示すように、ケース外側凹部115とケース110の外部とを連通する低圧側吐出口118が形成されている。低圧側吐出口118は、ケース110におけるケース外側凹部115の側壁に形成された円柱状の孔であって回転軸方向に直交する方向を柱方向とする孔を含んで構成される。低圧側吐出口118は、低圧側吐出ポート5から吐出されたオイルが流通するケース低圧側吐出流路R3を構成する。
 なお、本実施の形態に係るケース110の吸入口116、高圧側吐出口117及び低圧側吐出口118を構成する円柱状の孔の方向(柱方向)は同じである。
Further, as shown in FIGS. 1 and 2, the case 110 is formed with a low-pressure side discharge port 118 that communicates between the case outside recess 115 and the outside of the case 110. The low-pressure side discharge port 118 is a column-shaped hole formed in the side wall of the case outer recess 115 of the case 110 and includes a hole whose column direction is orthogonal to the rotation axis direction. The low pressure side discharge port 118 forms a case low pressure side discharge passage R3 through which the oil discharged from the low pressure side discharge port 5 flows.
Note that the directions (column directions) of the cylindrical holes constituting the suction port 116, the high-pressure discharge port 117, and the low-pressure discharge port 118 of the case 110 according to the present embodiment are the same.
(カバー120の構成)
 図11は、カバー120を回転軸方向の他方方向に見た図である。
 カバー120は、中央部に回転軸10を回転可能に支持するカバー側軸受け121を有している。
 カバー120には、アウタプレート60の低圧側吐出貫通孔65及びアウタ低圧側貫通孔66に対向する位置に、ケース110側の端面から回転軸方向に凹んだカバー低圧側吐出凹部122が形成されている。カバー低圧側吐出凹部122は、低圧側吐出貫通孔65に対向する位置に形成された第1低圧側吐出凹部122aと、アウタ低圧側貫通孔66に対向する位置に形成された第2低圧側吐出凹部122bと、第1低圧側吐出凹部122aと第2低圧側吐出凹部122bとを接続する第3低圧側吐出凹部122cとを有する。
(Configuration of the cover 120)
FIG. 11 is a view of the cover 120 viewed in the other direction of the rotation axis.
The cover 120 has a cover-side bearing 121 that rotatably supports the rotating shaft 10 at the center.
In the cover 120, a cover low-pressure side discharge recess 122 is formed at a position facing the low-pressure side discharge through-hole 65 and the outer low-pressure side through-hole 66 of the outer plate 60. I have. The cover low-pressure side discharge recessed part 122 is formed at a position facing the low-pressure side discharge through-hole 65 and the second low-pressure side discharge formed at a position facing the outer low-pressure side through-hole 66. It has a recess 122b and a third low-pressure discharge recess 122c that connects the first low-pressure discharge recess 122a and the second low-pressure discharge recess 122b.
 また、カバー120には、カバー低圧側吐出凹部122よりも回転半径方向の外側においてケース110側の端面から回転軸方向に凹んだカバー外側凹部123と、カバー低圧側吐出凹部122の第1低圧側吐出凹部122aとカバー外側凹部123とをケース110側の端面よりも回転軸方向の他方方向において接続するカバー凹部接続部124とが形成されている。カバー外側凹部123は、ケース110に形成された上述した収容空間と対向しない位置で開口するように形成されており、ケース外側凹部115と対向する。カバー低圧側吐出凹部122、カバー凹部接続部124及びカバー外側凹部123は、低圧側吐出ポート5から吐出されたオイルが流通するカバー低圧側吐出流路R4(図5参照)を構成する。低圧側吐出ポート5から吐出されたオイルは、カバー凹部接続部124を介してケース低圧側吐出流路R3に流入するとともに、第2低圧側吐出凹部122b及び第3低圧側吐出凹部122cを介してアウタ低圧側貫通孔66に流入する。
 なお、第2低圧側吐出凹部122b及び第3低圧側吐出凹部122cは、第1低圧側吐出凹部122aよりも浅くかつ幅も狭く形成されており、アウタ低圧側貫通孔66に流入するオイル量はケース低圧側吐出流路R3に流入するオイル量よりも少ない。
The cover 120 has a cover outer recess 123 recessed in the rotation axis direction from the end surface on the case 110 side in the rotation radial direction outside the cover low-pressure side discharge recess 122, and a first low-pressure side of the cover low-pressure side discharge recess 122. A cover recess connecting portion 124 that connects the discharge recess 122a and the cover outer recess 123 in the other direction of the rotation axis direction than the end surface on the case 110 side is formed. The cover outer recess 123 is formed so as to open at a position that does not face the above-described housing space formed in the case 110, and faces the case outer recess 115. The cover low-pressure side discharge recess 122, the cover recess connection portion 124, and the cover outside recess 123 constitute a cover low-pressure side discharge flow path R4 (see FIG. 5) through which oil discharged from the low-pressure side discharge port 5 flows. The oil discharged from the low-pressure side discharge port 5 flows into the case low-pressure side discharge flow path R3 via the cover concave-portion connecting portion 124, and via the second low-pressure side discharge concave portion 122b and the third low-pressure side discharge concave portion 122c. It flows into the outer low-pressure side through hole 66.
The second low-pressure discharge recess 122b and the third low-pressure discharge recess 122c are formed shallower and narrower than the first low-pressure discharge recess 122a, and the amount of oil flowing into the outer low-pressure side through hole 66 is It is smaller than the amount of oil flowing into the case low pressure side discharge passage R3.
 また、カバー120には、アウタプレート60の高圧側吸入切り欠き部611及び低圧側吸入切り欠き部612に対向する部位、及び、ケース110のインナプレート嵌合部112よりも開口部側の空間S1であってカムリング40のカムリング外周面41よりも回転半径方向の外側の空間に対向する部位に、ケース110側の端面から回転軸方向に凹んだカバー吸入凹部125が形成されている。
 カバー吸入凹部125は、吸入口116から吸入され、高圧側吸入ポート2及び低圧側吸入ポート3からポンプ室内に吸入されるオイルが流通する吸入流路R1を構成する。
Further, the cover 120 has a portion facing the high-pressure side suction cutout portion 611 and the low-pressure side suction cutout portion 612 of the outer plate 60, and a space S <b> 1 on the opening side of the inner plate fitting portion 112 of the case 110. A cover suction recess 125 is formed in a portion of the cam ring 40 facing the space outside the cam ring outer peripheral surface 41 in the radial direction of rotation from the end surface on the case 110 side in the rotation axis direction.
The cover suction recess 125 constitutes a suction passage R1 through which oil is sucked from the suction port 116 and is drawn into the pump chamber from the high pressure side suction port 2 and the low pressure side suction port 3.
 また、カバー120には、アウタプレート60の第1貫通孔67、第2貫通孔68それぞれに対向する位置に、ケース110側の端面から回転軸方向に凹んだ第1カバー凹部127、第2カバー凹部128が形成されている。 The cover 120 has a first cover recess 127 recessed in the rotation axis direction from an end surface on the case 110 side at a position facing the first through hole 67 and the second through hole 68 of the outer plate 60, respectively. A recess 128 is formed.
<ベーンポンプ1の組み立て方法>
 本実施の形態に係るベーンポンプ1は、以下のように組み立てられている。
 ケース110のインナプレート嵌合部112に、インナプレート50が嵌め込まれている。インナプレート50のインナカムリング側端面53とカムリング40のインナ端面43とが接触し、カムリング40のアウタ端面44とアウタプレート60のアウタカムリング側端面63とが接触するように、ケース110とカバー120が複数(本実施の形態においては5つ)のボルトにて連結されている。
 また、カムリング40に形成された第1貫通孔47、アウタプレート60に形成された第1貫通孔67を通した円筒状又は円柱状の位置決めピンの一方の端部がインナプレート50の第1凹部536にて、他方の端部がカバー120の第1カバー凹部127にて保持されている。また、カムリング40に形成された第2貫通孔48、アウタプレート60に形成された第2貫通孔68を通した円筒状又は円柱状の位置決めピンの一方の端部がインナプレート50の第2凹部537にて、他方の端部がカバー120の第2カバー凹部128にて保持されている。これらにより、インナプレート50、カムリング40、アウタプレート60及びカバー120相互間の位置が定められている。
 ロータ20及びベーン30は、カムリング40の内部に収容されている。回転軸10は、一方の端部がケース110のケース側軸受け111に回転可能に支持され、他方の端部がハウジング100から露出させられた状態で一方の端部と他方の端部との間の部位がカバー120のカバー側軸受け121に回転可能に支持されている。
<How to assemble the vane pump 1>
The vane pump 1 according to the present embodiment is assembled as follows.
The inner plate 50 is fitted into the inner plate fitting portion 112 of the case 110. The case 110 and the cover 120 are moved so that the inner cam ring side end surface 53 of the inner plate 50 contacts the inner end surface 43 of the cam ring 40 and the outer end surface 44 of the cam ring 40 contacts the outer cam ring side end surface 63 of the outer plate 60. They are connected by a plurality of (five in this embodiment) bolts.
One end of the cylindrical or columnar positioning pin passing through the first through hole 47 formed in the cam ring 40 and the first through hole 67 formed in the outer plate 60 is connected to the first recess of the inner plate 50. At 536, the other end is held in the first cover recess 127 of the cover 120. One end of a cylindrical or columnar positioning pin passing through the second through hole 48 formed in the cam ring 40 and the second through hole 68 formed in the outer plate 60 is connected to the second recess of the inner plate 50. At 537, the other end is held in the second cover recess 128 of the cover 120. With these, the positions among the inner plate 50, the cam ring 40, the outer plate 60, and the cover 120 are determined.
The rotor 20 and the vane 30 are housed inside the cam ring 40. One end of the rotating shaft 10 is rotatably supported by the case-side bearing 111 of the case 110, and the other end is exposed from the housing 100 between the one end and the other end. Are rotatably supported by the cover-side bearing 121 of the cover 120.
<ベーンポンプ1の作用>
 本実施の形態に係るベーンポンプ1は、10枚のベーン30を有し、10枚のベーン30がカムリング40のカムリング内周面42に接触することで、隣接する2枚のベーン30、これら隣接する2枚のベーン30間のロータ20の外周面、これら隣接する2枚のベーン30間のカムリング内周面42、インナプレート50のインナカムリング側端面53及びアウタプレート60のアウタカムリング側端面63とで形成されるポンプ室を10個備えている。1個のポンプ室に着目すると、回転軸10が1回転してロータ20が1回転することにより当該ポンプ室は回転軸10の周囲を1回転する。当該ポンプ室が1回転する過程で、高圧側吸入ポート2から吸入したオイルを圧縮して圧力を高めて高圧側吐出ポート4から吐出するとともに、低圧側吸入ポート3から吸入したオイルを圧縮して圧力を高めて低圧側吐出ポート5から吐出する。なお、本実施の形態に係るベーンポンプ1は、図7に示すように、カムリング40のカムリング内周面42の形状が、回転角度毎の回転中心Cからカムリング内周面42までの距離Lの1つ目の凸部42aの大きさが2つ目の凸部42bの大きさよりも大きくなるように形成されているので、高圧側吐出ポート4から吐出されるオイル量よりも多くの量の低圧のオイルを低圧側吐出ポート5から吐出する。また、2つ目の凸部42bの裾野が、1つ目の凸部42aの裾野よりもなだらかとなるように形成されているので、高圧側吐出ポート4からの吐出圧力は、低圧側吐出ポート5からの吐出圧力よりも高い。
<Operation of vane pump 1>
The vane pump 1 according to the present embodiment has ten vanes 30, and the ten vanes 30 contact the inner peripheral surface 42 of the cam ring 40 of the cam ring 40, so that the two adjacent vanes 30 are adjacent to each other. The outer peripheral surface of the rotor 20 between the two vanes 30, the inner peripheral surface 42 of the cam ring between the two adjacent vanes 30, the inner cam ring side end surface 53 of the inner plate 50, and the outer cam ring side end surface 63 of the outer plate 60. There are 10 pump chambers formed. Focusing on one pump chamber, the pump chamber makes one rotation around the rotary shaft 10 as the rotary shaft 10 makes one rotation and the rotor 20 makes one rotation. In the course of one rotation of the pump chamber, the oil sucked from the high-pressure side suction port 2 is compressed to increase the pressure and discharged from the high-pressure side discharge port 4, and the oil sucked from the low-pressure side suction port 3 is compressed. The pressure is increased to discharge from the low pressure side discharge port 5. In the vane pump 1 according to the present embodiment, as shown in FIG. 7, the shape of the cam ring inner peripheral surface 42 of the cam ring 40 is one of the distance L from the rotation center C to the cam ring inner peripheral surface 42 at each rotation angle. Since the size of the second convex portion 42a is formed to be larger than the size of the second convex portion 42b, a large amount of the low-pressure oil is discharged from the high-pressure side discharge port 4. Oil is discharged from the low pressure side discharge port 5. Further, since the bottom of the second convex portion 42b is formed so as to be gentler than the bottom of the first convex portion 42a, the discharge pressure from the high pressure side discharge port 4 is reduced. 5 higher than the discharge pressure.
 図12は、高圧オイルの流れを示す図である。
 高圧側吐出ポート4から吐出されたオイル(以下、「高圧オイル」と称す。)は、インナプレート50の高圧側吐出貫通孔55を通りインナプレート嵌合部112よりも底部側の空間S2に流入し、高圧側吐出口117から吐出される。また、インナプレート50の高圧側吐出貫通孔55を通ってインナプレート嵌合部112よりも底部側の空間S2に流入した高圧オイルの一部は、インナ高圧側貫通孔56を通り、対向するロータ20のベーン溝23の円柱状溝232に流入する。また、ベーン溝23の円柱状溝232に流入した高圧オイルの一部は、アウタプレート60の高圧側上流凹部632aに流入する。アウタプレート60の高圧側上流凹部632aに流入した高圧オイルの一部は、高圧側接続凹部632c(図9参照)を介して高圧側下流凹部632bに流入する。アウタプレート60の高圧側下流凹部632bに流入した高圧オイルの一部は、対向するロータ20のベーン溝23の円柱状溝232に流入し、インナプレート50のインナ高圧側凹部535に流入する。高圧側上流凹部632a、高圧側接続凹部632c及び高圧側下流凹部632bは、高圧側吸入ポート2から高圧側吐出ポート4にかけて設けられているので、高圧側のポンプ室に対応するベーン溝23の円柱状溝232には高圧オイルが流入する。その結果、圧力が高くなった高圧側のポンプ室のオイルによりベーン30が回転中心方向の力を受けたとしても、ベーン溝23の円柱状溝232には高圧オイルが流入しているのでベーン30の先端はカムリング内周面42に接触し易くなる。
FIG. 12 is a diagram showing the flow of high-pressure oil.
Oil discharged from the high-pressure side discharge port 4 (hereinafter, referred to as “high-pressure oil”) flows through the high-pressure side discharge through hole 55 of the inner plate 50 into the space S2 on the bottom side of the inner plate fitting portion 112. Then, the liquid is discharged from the high pressure side discharge port 117. In addition, a part of the high-pressure oil that has flowed into the space S <b> 2 on the bottom side of the inner plate fitting portion 112 through the high-pressure side discharge through hole 55 of the inner plate 50 passes through the inner high-pressure side through hole 56, and faces the opposed rotor. 20 flows into the cylindrical groove 232 of the vane groove 23. In addition, a part of the high-pressure oil that has flowed into the cylindrical groove 232 of the vane groove 23 flows into the high-pressure side upstream recess 632 a of the outer plate 60. Part of the high-pressure oil that has flowed into the high-pressure-side upstream recess 632a of the outer plate 60 flows into the high-pressure-side downstream recess 632b via the high-pressure connection recess 632c (see FIG. 9). Part of the high-pressure oil that has flowed into the high-pressure-side downstream recess 632b of the outer plate 60 flows into the cylindrical groove 232 of the vane groove 23 of the opposed rotor 20, and flows into the inner high-pressure-side recess 535 of the inner plate 50. Since the high pressure side upstream recess 632a, the high pressure side connection recess 632c, and the high pressure side downstream recess 632b are provided from the high pressure side suction port 2 to the high pressure side discharge port 4, the circle of the vane groove 23 corresponding to the high pressure side pump chamber is provided. High-pressure oil flows into the columnar grooves 232. As a result, even if the vane 30 receives a force in the direction of the center of rotation due to the oil in the pump chamber on the high pressure side where the pressure has increased, since the high pressure oil flows into the cylindrical groove 232 of the vane groove 23, the vane 30 Is more likely to come into contact with the inner peripheral surface 42 of the cam ring.
 図13は、低圧オイルの流れを示す図である。
 一方、低圧側吐出ポート5から吐出されたオイル(以下、「低圧オイル」と称す。)は、アウタプレート60の低圧側吐出貫通孔65を通りカバー低圧側吐出凹部122に流入し、低圧側吐出口118から吐出される。また、アウタプレート60の低圧側吐出貫通孔65を通ってカバー低圧側吐出凹部122の第3低圧側吐出凹部122cに流入した低圧オイルの一部は、第2低圧側吐出凹部122bを介してアウタ低圧側貫通孔66を通り、対向するロータ20のベーン溝23の円柱状溝232に流入する。また、ベーン溝23の円柱状溝232に流入した低圧オイルの一部は、インナプレート50の低圧側上流凹部534aに流入する。インナプレート50の低圧側上流凹部534aに流入した低圧オイルの一部は、低圧側接続凹部534c(図8参照)を介して低圧側下流凹部534bに流入する。インナプレート50の低圧側下流凹部534bに流入した低圧オイルの一部は、対向するロータ20のベーン溝23の円柱状溝232に流入し、アウタプレート60のアウタ低圧側凹部633に流入する。低圧側上流凹部534a、低圧側接続凹部534c及び低圧側下流凹部534bは、低圧側吸入ポート3から低圧側吐出ポート5にかけて設けられているので、低圧側のポンプ室に対応するベーン溝23の円柱状溝232には低圧オイルが流入する。その結果、低圧側のポンプ室のベーン30に対応するベーン溝23の円柱状溝232には低圧オイルが流入しているので、高圧オイルが流入している場合に比べて、ベーン30の先端のカムリング内周面42への接触圧は低い。
FIG. 13 is a diagram showing the flow of low-pressure oil.
On the other hand, the oil discharged from the low-pressure side discharge port 5 (hereinafter, referred to as “low-pressure oil”) flows into the cover low-pressure side discharge recess 122 through the low-pressure side discharge through hole 65 of the outer plate 60, and the low-pressure side discharge It is discharged from the outlet 118. Further, part of the low-pressure oil that has flowed into the third low-pressure side discharge recess 122c of the cover low-pressure side discharge recess 122 through the low-pressure side discharge through hole 65 of the outer plate 60 passes through the second low-pressure side discharge recess 122b. After passing through the low-pressure side through hole 66, it flows into the cylindrical groove 232 of the vane groove 23 of the rotor 20 facing the same. In addition, part of the low-pressure oil that has flowed into the cylindrical groove 232 of the vane groove 23 flows into the low-pressure-side upstream concave portion 534a of the inner plate 50. Part of the low-pressure oil that has flowed into the low-pressure-side upstream recess 534a of the inner plate 50 flows into the low-pressure-side downstream recess 534b via the low-pressure connection recess 534c (see FIG. 8). Part of the low-pressure oil that has flowed into the low-pressure downstream recess 534b of the inner plate 50 flows into the cylindrical groove 232 of the vane groove 23 of the opposed rotor 20, and flows into the outer low-pressure recess 633 of the outer plate 60. Since the low pressure side upstream recess 534a, the low pressure side connection recess 534c, and the low pressure side downstream recess 534b are provided from the low pressure side suction port 3 to the low pressure side discharge port 5, the circle of the vane groove 23 corresponding to the low pressure side pump chamber is provided. Low-pressure oil flows into the columnar grooves 232. As a result, the low-pressure oil flows into the cylindrical groove 232 of the vane groove 23 corresponding to the vane 30 of the pump chamber on the low-pressure side. The contact pressure on the cam ring inner peripheral surface 42 is low.
<吸入ポートの下流端について>
 以下に、高圧側吸入ポート2及び低圧側吸入ポート3における、回転方向下流側の端部(以下、「下流端」と称す。)について説明する。
 高圧側吸入ポート2は、カムリング40に形成された高圧側吸入凹部431及び高圧側吸入凹部441、インナプレート50に形成された高圧側吸入凹部531、及び、アウタプレート60に形成された高圧側吸入切り欠き部611にて構成される。
 低圧側吸入ポート3は、カムリング40に形成された低圧側吸入凹部432及び低圧側吸入凹部442、インナプレート50に形成された低圧側吸入凹部532、及び、アウタプレート60に形成された低圧側吸入切り欠き部612にて構成される。
<About the downstream end of the suction port>
Hereinafter, the ends of the high-pressure suction port 2 and the low-pressure suction port 3 on the downstream side in the rotation direction (hereinafter, referred to as “downstream ends”) will be described.
The high-pressure suction port 2 includes a high-pressure suction recess 431 and a high-pressure suction recess 441 formed in the cam ring 40, a high-pressure suction recess 531 formed in the inner plate 50, and a high-pressure suction formed in the outer plate 60. The cutout 611 is formed.
The low-pressure side suction port 3 includes a low-pressure side suction recess 432 and a low-pressure side suction recess 442 formed in the cam ring 40, a low-pressure side suction recess 532 formed in the inner plate 50, and a low-pressure side suction formed in the outer plate 60. The cutout 612 is formed.
 高圧側吐出ポート4は、カムリング40に形成された高圧側吐出凹部433及び高圧側吐出凹部443、インナプレート50に形成された高圧側吐出貫通孔55、及び、アウタプレート60に形成された高圧側吐出凹部631にて構成される。
 低圧側吐出ポート5は、カムリング40に形成された低圧側吐出凹部434及び低圧側吐出凹部444、インナプレート50に形成された低圧側吐出凹部533、アウタプレート60に形成された低圧側吐出貫通孔65にて構成される。
The high-pressure discharge port 4 includes a high-pressure discharge recess 433 and a high-pressure discharge recess 443 formed in the cam ring 40, a high-pressure discharge through-hole 55 formed in the inner plate 50, and a high-pressure discharge recess 55 formed in the outer plate 60. It is composed of a discharge recess 631.
The low-pressure discharge port 5 includes a low-pressure discharge recess 434 and a low-pressure discharge recess 444 formed in the cam ring 40, a low-pressure discharge recess 533 formed in the inner plate 50, and a low-pressure discharge through-hole formed in the outer plate 60. 65.
 以下の説明において、高圧側吸入ポート2と低圧側吸入ポート3とを区別する必要がない場合には、高圧側吸入ポート2と低圧側吸入ポート3とをまとめて「吸入ポート」と称する場合がある。また、高圧側吐出ポート4と低圧側吐出ポート5とを区別する必要がない場合には、高圧側吐出ポート4と低圧側吐出ポート5とをまとめて「吐出ポート」と称する場合がある。また、高圧側V溝634と低圧側V溝635とを区別する必要がない場合には、高圧側V溝634と低圧側V溝635とをまとめて「V溝」と称する場合がある。 In the following description, when it is not necessary to distinguish between the high-pressure side suction port 2 and the low-pressure side suction port 3, the high-pressure side suction port 2 and the low-pressure side suction port 3 may be collectively referred to as “suction port”. is there. When there is no need to distinguish between the high-pressure side discharge port 4 and the low-pressure side discharge port 5, the high-pressure side discharge port 4 and the low-pressure side discharge port 5 may be collectively referred to as a "discharge port". When there is no need to distinguish between the high-pressure side V-groove 634 and the low-pressure side V-groove 635, the high-pressure side V-groove 634 and the low-pressure side V-groove 635 may be collectively referred to as a “V-groove”.
 上述した実施の形態に係るベーンポンプ1は、10枚のベーン30を回転半径方向に移動可能に支持して回転するロータ20と、ロータ20の外周面に対向する内周面を有するカムリング40とを有し、ロータ20の回転に応じて、ポンプ室の容積Vpが変化する。ポンプ室の容積Vpが変化することにより、少なくとも吸入工程及び吐出工程に遷移する。
 吸入工程は、吸入ポートを介してオイルを吸入する工程である。吸入工程の区間は、吸入ポートを介してオイルを吸入する区間である。吐出工程は、吐出ポートを介してオイルを吐出する工程である。吐出工程の区間は、吐出ポートを介してオイルを吐出する区間である。
 そして、本実施の形態に係るベーンポンプ1においては、吸入工程が終了した後、吐出工程が開始する前に、吸入したオイルを圧縮する圧縮工程を行う。圧縮工程の区間は、吸入したオイルを圧縮する区間である。
The vane pump 1 according to the above-described embodiment includes the rotor 20 that rotates while supporting the ten vanes 30 movably in the rotational radius direction, and the cam ring 40 that has an inner peripheral surface facing the outer peripheral surface of the rotor 20. And the volume Vp of the pump chamber changes according to the rotation of the rotor 20. When the volume Vp of the pump chamber changes, at least a transition is made to the suction step and the discharge step.
The suction step is a step of sucking oil through a suction port. The section of the suction step is a section where the oil is sucked through the suction port. The discharge step is a step of discharging oil through a discharge port. The section of the discharge step is a section in which oil is discharged through the discharge port.
Then, in the vane pump 1 according to the present embodiment, after the suction process ends, before the discharge process starts, a compression process of compressing the sucked oil is performed. The section of the compression step is a section for compressing the sucked oil.
 以下に、吸入工程が終了するタイミング及び吐出工程が開始するタイミングについて説明する。
 以下の説明において、ポンプ室を構成する2枚のベーン30の内の上流側のベーン30を上流側ベーン31(図18参照)、下流側のベーン30を下流側ベーン32(図18参照)と称す。
 吸入工程が終了するタイミングは、上流側ベーン31が、吸入ポートの下流側の端部(下流端)を通過するタイミングである。上流側ベーン31が、吸入ポートの下流端を通過することで、吸入ポートを介してポンプ室内にオイルを吸入しなくなる。
 吐出工程が開始するタイミングは、下流側ベーン32が、吐出ポートの上流側の端部(上流端)を通過したタイミングである。下流側ベーン32が、吐出ポートの上流端を通過することで、吐出ポートを介してポンプ室からオイルを吐出し始める。
Hereinafter, the timing when the suction process ends and the timing when the discharge process starts will be described.
In the following description, the upstream vane 30 of the two vanes 30 forming the pump chamber is referred to as an upstream vane 31 (see FIG. 18), and the downstream vane 30 is referred to as a downstream vane 32 (see FIG. 18). Call it.
The timing at which the suction step ends is the timing at which the upstream vane 31 passes through the downstream end (downstream end) of the suction port. When the upstream vane 31 passes through the downstream end of the suction port, oil is not sucked into the pump chamber via the suction port.
The timing at which the discharge process starts is the timing at which the downstream vane 32 passes through the upstream end (upstream end) of the discharge port. The downstream vane 32 starts discharging oil from the pump chamber through the discharge port by passing through the upstream end of the discharge port.
 図14は、カムリング40及びインナプレート50を一方方向に見た図である。
 図15は、カムリング40及びアウタプレート60を他方方向に見た図である。
 高圧側吸入ポート2の下流端となる回転角度は、高圧側吸入ポート2を構成するカムリング40に形成された高圧側吸入凹部431及び高圧側吸入凹部441、インナプレート50に形成された高圧側吸入凹部531、及び、アウタプレート60に形成された高圧側吸入切り欠き部611の下流端の回転角度が全て同一であるため、これらの部位の下流端の回転角度となる。例えば、カムリング40の下流端としては、図14及び図15に示す、カムリング40に形成された高圧側吸入凹部431(441)における下流端である高圧側吸入凹部下流端431f(441f)である。また、インナプレート50の下流端としては、例えば、図14に示す、インナプレート50に形成された高圧側吸入凹部531における下流端である高圧側吸入凹部下流端531fである。また、アウタプレート60の下流端としては、図15に示す、アウタプレート60に形成された高圧側吸入切り欠き部611における下流端である高圧側吸入切り欠き部下流端611fである。
FIG. 14 is a diagram in which the cam ring 40 and the inner plate 50 are viewed in one direction.
FIG. 15 is a view of the cam ring 40 and the outer plate 60 as viewed in the other direction.
The rotation angle at the downstream end of the high-pressure suction port 2 is determined by the high-pressure suction recess 431 and the high-pressure suction recess 441 formed on the cam ring 40 constituting the high-pressure suction port 2, and the high-pressure suction formed on the inner plate 50. Since the rotation angles at the downstream ends of the recess 531 and the high-pressure side suction cutout portion 611 formed on the outer plate 60 are all the same, the rotation angles at the downstream ends of these portions are obtained. For example, the downstream end of the cam ring 40 is the downstream end 431f (441f) of the high-pressure suction recess which is the downstream end of the high-pressure suction recess 431 (441) formed in the cam ring 40 shown in FIGS. The downstream end of the inner plate 50 is, for example, the downstream end 531f of the high-pressure suction recess 531 that is the downstream end of the high-pressure suction recess 531 formed in the inner plate 50 shown in FIG. In addition, the downstream end of the outer plate 60 is a downstream end 611f of the high-pressure suction notch portion, which is a downstream end of the high-pressure suction notch portion 611 formed in the outer plate 60, as shown in FIG.
 低圧側吸入ポート3の下流端となる回転角度は、低圧側吸入ポート3を構成するカムリング40に形成された低圧側吸入凹部432及び低圧側吸入凹部442、インナプレート50に形成された低圧側吸入凹部532、及び、アウタプレート60に形成された低圧側吸入切り欠き部612の下流端の回転角度が全て同一であるため、これらの部位の下流端の回転角度となる。例えば、カムリング40の下流端としては、図14及び図15に示す、カムリング40に形成された低圧側吸入凹部432(442)における下流端である低圧側吸入凹部下流端432f(442f)である。また、インナプレート50の下流端としては、例えば、図14に示す、インナプレート50に形成された低圧側吸入凹部532における下流端である低圧側吸入凹部下流端532fである。また、アウタプレート60の下流端としては、図15に示す、アウタプレート60に形成された低圧側吸入切り欠き部612における下流端である低圧側吸入切り欠き部下流端612fである。 The rotation angle at the downstream end of the low pressure side suction port 3 is the low pressure side suction recess 432 and the low pressure side suction recess 442 formed in the cam ring 40 constituting the low pressure side suction port 3, and the low pressure side suction formed in the inner plate 50. Since the rotation angles at the downstream ends of the concave portion 532 and the low-pressure side suction cutout portion 612 formed on the outer plate 60 are all the same, the rotation angles at the downstream ends of these portions are obtained. For example, the downstream end of the cam ring 40 is the downstream end 432f (442f) of the low pressure side suction recess 432 (442), which is the downstream end of the low pressure side suction recess 432 (442) formed in the cam ring 40 shown in FIGS. The downstream end of the inner plate 50 is, for example, a downstream end 532f of the low-pressure suction recess which is a downstream end of the low-pressure suction recess 532 formed in the inner plate 50 shown in FIG. In addition, the downstream end of the outer plate 60 is a downstream end 612f of the low-pressure side suction notch which is a downstream end of the low-pressure side suction notch 612 formed in the outer plate 60, as shown in FIG.
 高圧側吐出ポート4の上流側の端部(上流端)となる回転角度は、高圧側吐出ポート4を構成するカムリング40に形成された高圧側吐出凹部433及び高圧側吐出凹部443、インナプレート50に形成された高圧側吐出貫通孔55、及び、アウタプレート60に形成された高圧側吐出凹部631の上流端の回転角度が全て同一であるため、これらの部位の上流端の回転角度となる。例えば、カムリング40の上流端としては、図14及び図15に示す、カムリング40に形成された高圧側吐出凹部433(443)における上流端である高圧側吐出凹部上流端433e(443e)である。また、インナプレート50の上流端としては、例えば、図14に示す、インナプレート50に形成された高圧側吐出貫通孔55における上流端である高圧側吐出貫通孔上流端55eである。また、アウタプレート60の上流端としては、図15に示す、アウタプレート60に形成された高圧側吐出凹部631における上流端である高圧側吐出凹部上流端631eである。 The rotation angle at the upstream end (upstream end) of the high-pressure discharge port 4 is determined by the high-pressure discharge recess 433 and the high-pressure discharge recess 443 formed on the cam ring 40 constituting the high-pressure discharge port 4, and the inner plate 50. Since the rotation angles of the upstream ends of the high-pressure side discharge through-hole 55 formed in the outer plate 60 and the high-pressure side discharge concave portion 631 formed in the outer plate 60 are all the same, the rotation angles of the upstream ends of these portions are obtained. For example, the upstream end of the cam ring 40 is the upstream end 433e (443e) of the high-pressure discharge recess 433 (443), which is the upstream end of the high-pressure discharge recess 433 (443) formed in the cam ring 40, as shown in FIGS. The upstream end of the inner plate 50 is, for example, an upstream end 55e of the high pressure side discharge through hole 55 which is an upstream end of the high pressure side discharge through hole 55 formed in the inner plate 50 shown in FIG. The upstream end of the outer plate 60 is the upstream end 631e of the high-pressure discharge recess 631, which is the upstream end of the high-pressure discharge recess 631 formed in the outer plate 60, as shown in FIG.
 低圧側吐出ポート5の上流側の端部(上流端)となる回転角度は、低圧側吐出ポート5を構成するカムリング40に形成された低圧側吐出凹部434及び低圧側吐出凹部444、インナプレート50に形成された低圧側吐出凹部533、及び、アウタプレート60に形成された低圧側吐出貫通孔65の上流端の回転角度が全て同一であるため、これらの部位の上流端の回転角度となる。例えば、カムリング40の上流端としては、図14及び図15に示す、カムリング40に形成された低圧側吐出凹部434(444)における上流端である低圧側吐出凹部上流端434e(444e)である。また、インナプレート50の上流端としては、例えば、図14に示す、インナプレート50に形成された低圧側吐出凹部533における上流端である低圧側吐出凹部上流端533eである。また、アウタプレート60の上流端としては、図15に示す、アウタプレート60に形成された低圧側吐出貫通孔65における上流端である低圧側吐出貫通孔65eである。 The rotation angle at the upstream end (upstream end) of the low-pressure discharge port 5 is determined by the low-pressure discharge recess 434 and the low-pressure discharge recess 444 formed in the cam ring 40 constituting the low-pressure discharge port 5, and the inner plate 50. Since the rotation angles of the upstream ends of the low-pressure side discharge concave portion 533 formed in the outer plate 60 and the low-pressure side discharge through hole 65 formed in the outer plate 60 are all the same, the rotation angles of the upstream ends of these portions are obtained. For example, the upstream end of the cam ring 40 is the upstream end 434e (444e) of the low-pressure discharge recess 434 (444e), which is the upstream end of the low-pressure discharge recess 434 (444) formed in the cam ring 40, as shown in FIGS. The upstream end of the inner plate 50 is, for example, a low-pressure discharge recess upstream end 533e which is an upstream end of the low-pressure discharge recess 533 formed in the inner plate 50 shown in FIG. Further, the upstream end of the outer plate 60 is a low-pressure side discharge through-hole 65e which is an upstream end of the low-pressure side discharge through-hole 65 formed in the outer plate 60 shown in FIG.
 本実施の形態に係るベーンポンプ1においては、吸入工程が終了するタイミングが、ポンプ室の容積Vpが最大となるタイミングとなるように定められている。以下に、その理由について説明する。なお、以下では、高圧側について詳細に説明し、低圧側についての詳細な説明は省略する。 In the vane pump 1 according to the present embodiment, the timing at which the suction step ends is determined so as to be the timing at which the volume Vp of the pump chamber is maximized. The reason will be described below. In the following, the high pressure side will be described in detail, and the detailed description on the low pressure side will be omitted.
 図16は、回転角度毎のポンプ室の容積Vpを示す図である。
 以下の説明において、ポンプ室を構成する2枚のベーン30の内の上流側ベーン31の回転角度をこのポンプ室の回転角度とし、この上流側ベーン31を含んで構成されるポンプ室の容積Vpを、この回転角度における容積Vpとする。つまり、上流側ベーン31の回転角度が零度であるとき(上流側ベーン31における回転方向の中心が図6に示した一方方向に見た図における正の垂直軸上に位置するとき)に、この上流側ベーン31を含んで構成されるポンプ室の容積Vを、回転角度零度における容積Vpとする。なお、ベーン30は回転方向に厚みがあるので、ベーン30の回転角度は、回転方向の中心を基準とする。
FIG. 16 is a diagram showing the volume Vp of the pump chamber for each rotation angle.
In the following description, the rotation angle of the upstream vane 31 of the two vanes 30 constituting the pump chamber will be referred to as the rotation angle of the pump chamber, and the volume Vp of the pump chamber including the upstream vane 31 will be described. Is the volume Vp at this rotation angle. That is, when the rotation angle of the upstream vane 31 is zero degree (when the center of the rotation direction of the upstream vane 31 is located on the positive vertical axis in the diagram viewed in one direction shown in FIG. 6), The volume V of the pump chamber including the upstream vane 31 is defined as a volume Vp at a rotation angle of zero degree. Since the vane 30 has a thickness in the rotation direction, the rotation angle of the vane 30 is based on the center in the rotation direction.
 そして、高圧側(図6に示した一方方向に見た図における正の垂直軸を零度とした場合に、反時計回転方向に180度~360度の範囲)におけるカムリング40のカムリング内周面42の回転中心Cからの距離Lの最大点の回転角度(以下、「最大距離回転角度」と称する場合がある。)よりも、ポンプ室の容積Vpが最大となる回転角度(以下、「最大容積回転角度」と称する場合がある。)が所定回転角度小さくなるように設定している。つまり、上流側ベーン31が、距離Lの最大距離回転角度よりも所定回転角度小さい回転角度であるときの、この上流側ベーン31を含んで構成されるポンプ室の容積Vpが最大となるように設定されている。なお、所定回転角度は、9度であることを例示することができる。また、以下の説明において、回転角度は、小数点以下切り捨てした回転角度を記すものとする。ゆえに、9度は、9.00度~9.99度の意味である。本実施の形態に係るベーンポンプ1においては、距離Lの最大点の回転角度(最大距離回転角度)及びポンプ室の容積Vpが最大である回転角度(最大容積回転角度)の区間は、1度未満であり、1度以上に亘って最大となっていない。 Then, the cam ring inner peripheral surface 42 of the cam ring 40 on the high pressure side (a range of 180 to 360 degrees in the counterclockwise rotation direction when the positive vertical axis in the diagram viewed in one direction shown in FIG. 6 is zero degree). The rotation angle at which the volume Vp of the pump chamber becomes the maximum (hereinafter, referred to as the “maximum volume”) is larger than the rotation angle of the maximum point of the distance L from the rotation center C (hereinafter, may be referred to as “maximum distance rotation angle”). The rotation angle is sometimes set to be smaller by a predetermined rotation angle. That is, when the upstream vane 31 has a rotation angle smaller than the maximum distance rotation angle of the distance L by a predetermined rotation angle, the volume Vp of the pump chamber including the upstream vane 31 is maximized. Is set. It should be noted that the predetermined rotation angle can be exemplified to be 9 degrees. In the following description, the rotation angle is a rotation angle rounded down to the nearest decimal point. Therefore, 9 degrees means 9.00 degrees to 9.99 degrees. In the vane pump 1 according to the present embodiment, the section of the rotation angle at the maximum point of the distance L (maximum distance rotation angle) and the rotation angle at which the volume Vp of the pump chamber is the maximum (maximum volume rotation angle) is less than 1 degree. And it is not the maximum more than once.
 そして、本実施の形態に係るベーンポンプ1においては、吸入工程が終了するタイミングがポンプ室の容積Vpが最大となるタイミングとなるように定めている。言い換えれば、吸入ポートの終了点が、距離Lの最大距離回転角度よりも所定回転角度小さい回転角度となるように定めている。つまり、カムリング40に形成された高圧側吸入凹部431(441)の高圧側吸入凹部下流端431f(441f)、インナプレート50に形成された高圧側吸入凹部531の高圧側吸入凹部下流端531f、及び、アウタプレート60に形成された高圧側吸入切り欠き部611の高圧側吸入切り欠き部下流端611fが、距離Lの最大距離回転角度よりも所定回転角度小さい回転角度となるように定めている。 In the vane pump 1 according to the present embodiment, the timing at which the suction step ends is determined to be the timing at which the volume Vp of the pump chamber becomes the maximum. In other words, the end point of the suction port is determined to be a rotation angle smaller than the maximum distance rotation angle of the distance L by a predetermined rotation angle. In other words, the downstream end 431f (441f) of the high-pressure suction recess 431 of the high-pressure suction recess 431 (441) formed on the cam ring 40, the downstream end 531f of the high-pressure suction recess 531 formed on the inner plate 50, and The downstream end 611f of the high-pressure suction notch 611 formed on the outer plate 60 has a rotation angle smaller than the maximum rotation angle of the distance L by a predetermined rotation angle.
 以下に、本実施の形態に係るベーンポンプ1の利点について、比較構成と比較しながら説明する。
 比較構成に係るベーンポンプとして、本実施の形態に係るベーンポンプ1に対して、吸入ポートの終了点が、距離Lが最大となる回転角度(最大距離回転角度)に設定された構成を考える。つまり、比較構成における吸入ポートの終了点の回転角度は、本実施の形態における吸入ポートの終了点の回転角度よりも所定回転角度だけ吐出ポート側(下流側)に設定されている。比較構成に係るベーンポンプのその他の点は、本実施の形態に係るベーンポンプ1と同一である。比較構成に係るベーンポンプの吐出ポートの形状と本実施の形態に係るベーンポンプ1の吐出ポートの形状とは同一であるため、比較構成に係るベーンポンプにおける圧縮工程の区間は、本実施の形態に係るベーンポンプ1における圧縮工程の区間よりも短い。
Hereinafter, advantages of the vane pump 1 according to the present embodiment will be described in comparison with a comparative configuration.
As the vane pump according to the comparative configuration, a configuration is considered in which the end point of the suction port is set to the rotation angle at which the distance L is the maximum (the maximum distance rotation angle) with respect to the vane pump 1 according to the present embodiment. That is, the rotation angle of the end point of the suction port in the comparative configuration is set to the discharge port side (downstream side) by a predetermined rotation angle from the rotation angle of the end point of the suction port in the present embodiment. Other points of the vane pump according to the comparative configuration are the same as those of the vane pump 1 according to the present embodiment. Since the shape of the discharge port of the vane pump according to the comparative configuration is the same as the shape of the discharge port of the vane pump 1 according to the present embodiment, the section of the compression step in the vane pump according to the comparative configuration is the same as the vane pump according to the present embodiment. 1 is shorter than the section of the compression step.
 圧縮工程の区間が短いと、ポンプ室に吸入したオイルに含まれる気泡(エア)を潰す期間が短いために、圧縮工程にあるポンプ室(以下、「圧縮工程ポンプ室」と称する場合がある。)内のオイルの圧力(油圧)を高めることが抑制される。そのため、圧縮工程ポンプ室内の油圧と、吐出ポートの油圧との圧力差が大きくなり易くなる。その結果、圧縮工程ポンプ室の吐出工程が開始する前に圧縮工程ポンプ室を構成する下流側ベーン32がV溝に至ったときに、吐出ポートからV溝を介して圧縮工程ポンプ室内にオイルが流入(逆流)するときに生じる音が大きくなる。吐出ポートから圧縮工程ポンプ室内にオイルが流入(逆流)するときに、圧縮工程ポンプ室内の油圧と吐出ポートの油圧との圧力差が大きいほど、オイルの流速が大きくなったり気泡の潰れ量が急激に多くなったりするためである。 If the section of the compression step is short, the period for crushing bubbles (air) contained in the oil sucked into the pump chamber is short, so the pump chamber in the compression step (hereinafter, may be referred to as “compression step pump chamber”). The increase in the pressure (oil pressure) of the oil in the parentheses) is suppressed. Therefore, the pressure difference between the oil pressure in the compression process pump chamber and the oil pressure in the discharge port tends to increase. As a result, when the downstream vane 32 constituting the compression step pump chamber reaches the V groove before the discharge step of the compression step pump chamber starts, oil enters the compression step pump chamber from the discharge port through the V groove. The sound generated when flowing (backflow) increases. When oil flows (reversely flows) from the discharge port into the compression process pump chamber, the larger the pressure difference between the oil pressure in the compression process pump chamber and the oil pressure in the discharge port, the larger the oil flow rate and the more rapidly the bubbles are crushed. It is because there is much.
 上述した比較構成に係るベーンポンプに対して、本実施の形態に係るベーンポンプ1は、圧縮工程の区間が、比較構成に係るベーンポンプに比べて所定回転角度分長い。その結果、本実施の形態に係るベーンポンプ1によれば、比較構成に係るベーンポンプに比べて、圧縮工程ポンプ室内のオイルに含まれる気泡を潰す期間が長くなるので、圧縮工程ポンプ室内の油圧を高めることができる。そのため、本実施の形態に係るベーンポンプ1によれば、比較構成に係るベーンポンプに比べて、圧縮工程ポンプ室内の油圧と吐出ポートの油圧との圧力差が小さくなる。その結果、圧縮工程ポンプ室の吐出工程が開始する前に圧縮工程ポンプ室を構成する下流側ベーン32がV溝に至ったときに、V溝を介して吐出ポートから圧縮工程ポンプ室内にオイルが流入(逆流)するときに生じる音を抑制することができる。 In the vane pump 1 according to the present embodiment, the section of the compression process is longer than the vane pump according to the comparative configuration by a predetermined rotation angle as compared with the vane pump according to the comparative configuration. As a result, according to the vane pump 1 according to the present embodiment, the period for crushing the bubbles contained in the oil in the compression process pump chamber becomes longer as compared with the vane pump according to the comparative configuration, so that the oil pressure in the compression process pump chamber is increased. be able to. Therefore, according to the vane pump 1 according to the present embodiment, the pressure difference between the oil pressure in the compression process pump chamber and the oil pressure at the discharge port is smaller than that of the vane pump according to the comparative configuration. As a result, when the downstream vane 32 constituting the compression process pump chamber reaches the V-groove before the discharge process of the compression process pump chamber starts, oil is discharged from the discharge port through the V-groove into the compression process pump chamber. It is possible to suppress the sound generated when flowing (backflow).
 ただし、圧縮工程の区間が長い方がポンプ室内のオイルに含まれる気泡を潰す期間が長くなり、ポンプ室内のオイルの圧力を高めることができる一方で、ポンプ効率の観点からは、ポンプ室内に吸入するオイルの体積Voは多い方が望ましい。 However, the longer the section of the compression step, the longer the period of crushing the bubbles contained in the oil in the pump chamber, which can increase the pressure of the oil in the pump chamber. It is desirable that the volume Vo of the oil is large.
 図17は、比較構成に係るベーンポンプにおける回転角度毎のポンプ室内のオイルの体積Voを示す図である。
 図17に示すように、比較構成に係るベーンポンプにおいては、吸入ポートの終了点が、距離Lの最大距離回転角度に設定されているとしても、ポンプ室内のオイルの体積Voが、距離Lの最大距離回転角度にて最大とならないことを示している。これは、ポンプ室の容積Vpが最大となる回転角度を越えた回転角度領域においては、吸入ポートが開いてオイルを吸入可能な状態であるにも関わらず、容積Vpが減少しているためにさらにオイルを吸入することができないからだと考える。ポンプ室の容積Vpが最大となる回転角度を越えた回転角度領域において吸入ポートが開いていてもポンプ室内のオイルの体積Voは増加しないことが分かる。
 なお、図17に示した、ポンプ室の容積Vpとオイルの体積Voとの差は、気泡(エア)の体積である。
FIG. 17 is a diagram illustrating a volume Vo of oil in the pump chamber for each rotation angle in the vane pump according to the comparative configuration.
As shown in FIG. 17, in the vane pump according to the comparative configuration, even if the end point of the suction port is set to the maximum distance rotation angle of the distance L, the oil volume Vo in the pump chamber becomes the maximum of the distance L. This indicates that the maximum value is not obtained at the distance rotation angle. This is because the volume Vp is reduced in a rotation angle region exceeding the rotation angle at which the volume Vp of the pump chamber is maximized, even though the suction port is open and oil can be sucked. I think it is because it is not possible to inhale oil. It can be seen that the volume Vo of the oil in the pump chamber does not increase even if the suction port is open in a rotation angle region exceeding the rotation angle at which the volume Vp of the pump chamber becomes maximum.
The difference between the volume Vp of the pump chamber and the volume Vo of the oil shown in FIG. 17 is the volume of bubbles (air).
 図16に示すように、ポンプ室の容積Vpが最大となる回転角度に至るまでの回転角度領域においては、ポンプ室の容積Vpが徐々に大きくなっているので、ポンプ室内のオイルの体積Voは増加している。また、図17に示すように、ポンプ室の容積Vpが徐々に大きくなっている領域においては、ポンプ室内のオイルの体積Voは増加する。ゆえに、圧縮工程の区間を、比較構成に係るベーンポンプに比べて所定回転角度分長くしたとしても(吸入工程の終了点を最大容積回転角度となるように構成したとしても)、ポンプ室内に吸入するオイルの体積Voは低下しない。 As shown in FIG. 16, in the rotation angle region up to the rotation angle at which the volume Vp of the pump chamber reaches the maximum, the volume Vp of the pump chamber gradually increases, so that the volume Vo of the oil in the pump chamber becomes It has increased. Further, as shown in FIG. 17, in a region where the volume Vp of the pump chamber gradually increases, the volume Vo of the oil in the pump chamber increases. Therefore, even if the section of the compression step is extended by a predetermined rotation angle as compared with the vane pump according to the comparative configuration (even if the end point of the suction step is set to the maximum volume rotation angle), the pressure is sucked into the pump chamber. The volume Vo of the oil does not decrease.
 以上の事項に鑑み、本実施の形態に係るベーンポンプ1においては、吸入工程が終了するタイミングがポンプ室の容積Vpが最大となるタイミングとなるように定める。つまり、カムリング40に形成された高圧側吸入凹部431(441)の高圧側吸入凹部下流端431f(441f)、インナプレート50に形成された高圧側吸入凹部531の高圧側吸入凹部下流端531f、及び、アウタプレート60に形成された高圧側吸入切り欠き部611の高圧側吸入切り欠き部下流端611fが、距離Lの最大回転角度よりも所定回転角度小さい回転角度となるように定めている。 In view of the above, in the vane pump 1 according to the present embodiment, the timing at which the suction process ends is determined to be the timing at which the volume Vp of the pump chamber becomes the maximum. In other words, the downstream end 431f (441f) of the high-pressure suction recess 431 of the high-pressure suction recess 431 (441) formed on the cam ring 40, the downstream end 531f of the high-pressure suction recess 531 formed on the inner plate 50, and The downstream end 611f of the high-pressure suction notch 611 formed in the outer plate 60 has a rotation angle smaller than the maximum rotation angle of the distance L by a predetermined rotation angle.
 図18は、本実施の形態に係るベーンポンプ1における回転角度毎のポンプ室内のオイルの体積Voを示す図である。
 図18に示すように、本実施の形態に係るベーンポンプ1においては、比較構成に係るベーンポンプに比べて圧縮工程の区間を長くしても、ポンプ室内のオイルの体積Voは低下しない。また、圧縮工程ポンプ室内の油圧と吐出ポートの油圧との圧力差が小さいことからV溝を介して流入するオイルの流速は小さくなる。それゆえ、気泡の潰れ量が急激に多くなることを抑制することが可能となる。その結果、本実施の形態に係るベーンポンプ1によれば、ポンプ効率の低下を抑制しつつ、圧縮工程の区間を長くして、騒音を抑制することができる。
FIG. 18 is a diagram showing a volume Vo of oil in the pump chamber for each rotation angle in the vane pump 1 according to the present embodiment.
As shown in FIG. 18, in the vane pump 1 according to the present embodiment, the volume Vo of the oil in the pump chamber does not decrease even if the section of the compression process is made longer than that of the vane pump according to the comparative configuration. Further, since the pressure difference between the oil pressure in the compression process pump chamber and the oil pressure at the discharge port is small, the flow velocity of the oil flowing through the V groove is small. Therefore, it is possible to suppress a sudden increase in the amount of collapse of the bubbles. As a result, according to the vane pump 1 according to the present embodiment, the section of the compression process can be lengthened and noise can be suppressed while suppressing a decrease in pump efficiency.
 本実施の形態に係るベーンポンプ1においては、カムリング40のカムリング内周面42における回転中心Cからの距離Lの最大点の回転角度(最大距離回転角度)とポンプ室の容積Vpが最大となる回転角度(最大容積回転角度)との回転角度差を略9度に設定している。本実施の形態に係るベーンポンプ1においては、10枚のベーン30を有するポンプであることから、この回転角度差の、ポンプ室を構成する2枚のベーン30間の回転角度(ベーン間回転角度)に対する割合は、9/(360/10)=0.25である。 In the vane pump 1 according to the present embodiment, the rotation at which the rotation angle (the maximum distance rotation angle) of the maximum point of the distance L from the rotation center C on the cam ring inner peripheral surface 42 of the cam ring 40 and the volume Vp of the pump chamber becomes maximum. The rotation angle difference from the angle (the maximum volume rotation angle) is set to approximately 9 degrees. Since the vane pump 1 according to the present embodiment is a pump having ten vanes 30, the rotational angle difference between the two vanes 30 forming the pump chamber (rotation angle between vanes) Is 9 / (360/10) = 0.25.
 それゆえ、本実施の形態に係るベーンポンプ1は、吸入ポートの下流端(終了点)が、カムリング内周面42の回転中心Cからの距離Lの最大点の回転角度(最大距離回転角度)よりも略0.25×(360/10(ベーン枚数))の回転角度分、回転方向の上流側に位置するように設定されていることを特徴とする。例えば、ベーン枚数が12枚である場合には、0.25×(360/12)=7.5度分、吸入ポートの下流端が、カムリング内周面42の回転中心Cからの距離Lの最大点の回転角度よりも上流側に位置するように設定しても良い。 Therefore, in the vane pump 1 according to the present embodiment, the downstream end (end point) of the suction port is larger than the rotation angle (maximum distance rotation angle) of the maximum point of the distance L from the rotation center C of the cam ring inner peripheral surface 42. Is also set so as to be located on the upstream side in the rotation direction by a rotation angle of approximately 0.25 × (360/10 (number of vanes)). For example, when the number of vanes is 12, 0.25 × (360/12) = 7.5 degrees, and the downstream end of the suction port is located at a distance L from the rotation center C of the cam ring inner peripheral surface 42. It may be set so as to be located upstream of the rotation angle of the maximum point.
 なお、本発明者らが鋭意研究した結果、本実施の形態に係る10枚のベーン30を有するベーンポンプ1においては、吸入ポートの下流端(終了点)が、最大容積回転角度よりも1度小さい(上流側にある)場合には、ポンプ室内に吸入するオイルの体積Voが許容限度を超えて低下することを確認した。
 また、圧縮工程の区間が比較構成に係るベーンポンプに比べて長ければ、圧縮工程ポンプ室内の油圧と吐出ポートの油圧との圧力差を比較構成に係るベーンポンプに比べて小さくすることができる。
 それゆえ、吸入ポートの下流端が、最大容積回転角度と同じか、最大容積回転角度よりも下流側であって最大距離回転角度(本実施の形態においては9度)よりも上流側に位置するように設定されていることが好ましい。
In addition, as a result of earnest research by the present inventors, in the vane pump 1 having ten vanes 30 according to the present embodiment, the downstream end (end point) of the suction port is smaller by one degree than the maximum volume rotation angle. In the case (on the upstream side), it was confirmed that the volume Vo of the oil sucked into the pump chamber was reduced beyond an allowable limit.
Further, if the section of the compression process is longer than that of the vane pump according to the comparative configuration, the pressure difference between the oil pressure in the compression process pump chamber and the hydraulic pressure at the discharge port can be made smaller than that of the vane pump according to the comparative configuration.
Therefore, the downstream end of the suction port is located at the same position as the maximum volume rotation angle or downstream of the maximum volume rotation angle and upstream of the maximum distance rotation angle (9 degrees in the present embodiment). It is preferable to set as follows.
 本実施の形態に係る10枚のベーン30を有するベーンポンプ1においては、吸入ポートの下流端(終了点)が、最大容積回転角度よりも下流側に3度以下の範囲にある場合には、圧縮工程の区間を、比較構成に係るベーンポンプに対して1.5倍以上にすることができる。そして、本発明者らが鋭意研究した結果、吸入ポートの下流端(終了点)が、最大容積回転角度よりも下流側に3度以下の範囲にある場合には、比較構成に係るベーンポンプに対して、吐出ポートから圧縮工程ポンプ室内にオイルが流入(逆流)する際に生じる音を1/1.15以下にすることができることを確認した。ベーン間回転角度に対する回転角度差3度の割合は、3/(360/10)=0.083である。 In the vane pump 1 having ten vanes 30 according to the present embodiment, when the downstream end (end point) of the suction port is in a range of 3 degrees or less downstream of the maximum volume rotation angle, the compression is performed. The section of the process can be 1.5 times or more the vane pump of the comparative configuration. As a result of intensive studies made by the present inventors, when the downstream end (end point) of the suction port is in a range of 3 degrees or less downstream of the maximum volume rotation angle, the vane pump according to the comparative configuration is Thus, it was confirmed that the noise generated when oil flows (backflow) from the discharge port into the compression process pump chamber can be reduced to 1 / 1.15 or less. The ratio of the rotation angle difference of 3 degrees to the rotation angle between vanes is 3 / (360/10) = 0.083.
 以上のことより、吸入ポートの下流端(終了点)が、最大容積回転角度を基準として、回転方向の下流側に、0度以上、0.083×(360/(ベーン枚数))以下の回転角度範囲内に位置するように設定されていることが好ましい。これにより、ポンプ効率の低下を抑制しつつ、圧縮工程の区間を長くして、騒音を抑制することが可能となる。 From the above, the downstream end (end point) of the suction port is rotated from 0 degree or more to 0.083 × (360 / (number of vanes)) at the downstream side in the rotation direction with respect to the maximum volume rotation angle. It is preferable that the angle is set to be within the angle range. Thus, it is possible to suppress the noise by lengthening the section of the compression process while suppressing a decrease in the pump efficiency.
 一方、吸入工程の区間が長いほどサージ圧が抑制され、特に高回転時にポンプ室内に吸入するオイルの体積Voが増える。オイルの体積Voが増えると、特に高回転時の吸入効率が上がり、ポンプ効率が高まる。そして、本発明者らが鋭意研究した結果、吸入ポートの下流端が、最大容積回転角度よりも下流側に5度の回転角度から9度までの範囲に位置する場合には、吸入ポートの下流端が最大容積回転角度に位置する場合に対して、オイルの体積Voを0.15%多くすることができることを確認した。それゆえ、特に高回転領域において主に使用されるベーンポンプにおいて、ポンプ効率の低下抑制と騒音抑制とを図るためには、吸入ポートの下流端が、最大容積回転角度よりも下流側に5度の回転角度から9度までの範囲に位置するように設定されていることが好ましい。ベーン間回転角度に対する回転角度5度の割合は、5/(360/10)=0.14であるので、吸入ポートの下流端(終了点)が、最大容積回転角度を基準として、回転方向の下流側に、0.14×(360/(ベーン枚数))以上であって、0.25×(360/(ベーン枚数))未満の回転角度範囲内に位置するように設定されていることが好ましい。 On the other hand, the longer the section of the suction process, the more the surge pressure is suppressed, and the volume Vo of the oil sucked into the pump chamber particularly at high rotation increases. When the volume Vo of the oil increases, the suction efficiency particularly at high rotation increases, and the pump efficiency increases. As a result of the inventor's intensive research, when the downstream end of the suction port is located in a range from the rotation angle of 5 degrees to 9 degrees downstream of the maximum volume rotation angle, the downstream of the suction port is It has been confirmed that the oil volume Vo can be increased by 0.15% with respect to the case where the end is located at the maximum volume rotation angle. Therefore, especially in a vane pump mainly used in a high rotation region, in order to suppress a decrease in pump efficiency and suppress noise, the downstream end of the suction port is required to be 5 ° downstream of the maximum volume rotation angle. Preferably, it is set so as to be located in a range from the rotation angle to 9 degrees. Since the ratio of the rotation angle of 5 degrees to the inter-vane rotation angle is 5 / (360/10) = 0.14, the downstream end (end point) of the suction port is rotated in the rotation direction with respect to the maximum volume rotation angle. On the downstream side, the rotation angle is set so as to be within a rotation angle range of 0.14 × (360 / (number of vanes)) or more and less than 0.25 × (360 / (number of vanes)). preferable.
 なお、上述した本実施の形態に係るベーンポンプ1においては、距離Lの最大点の回転角度及びポンプ室の容積Vpが最大である回転角度の区間が1度未満である場合に、最大距離回転角度とポンプ室の容積Vpが最大である回転角度との差が所定回転角度(例えば9度)であることを例示した。例えば、ポンプ室の容積Vpが最大である回転角度の区間が1度以上に亘っている場合には、ポンプ室の容積Vpが最大となるとき(なったとき)の回転角度と、最大距離回転角度との差が所定回転角度(例えば9度)であることが望ましい。これにより、ポンプ室内のオイルの体積Voが低減しないようにしつつ、圧縮工程の区間を長くすることが可能となる。 In the above-described vane pump 1 according to the present embodiment, when the section of the rotation angle at the maximum point of the distance L and the rotation angle at which the volume Vp of the pump chamber is the maximum is less than 1 degree, the maximum distance rotation angle It is illustrated that the difference between the rotation angle at which the volume Vp of the pump chamber is the maximum is a predetermined rotation angle (for example, 9 degrees). For example, when the section of the rotation angle where the volume Vp of the pump chamber is the maximum extends over 1 degree, the rotation angle when the volume Vp of the pump chamber is the maximum (when it becomes) and the maximum distance rotation It is desirable that the difference from the angle is a predetermined rotation angle (for example, 9 degrees). This makes it possible to lengthen the section of the compression process while keeping the volume Vo of the oil in the pump chamber from decreasing.
 上述したように、本実施の形態に係るベーンポンプ1は、複数枚のベーン30を回転半径方向に移動可能に支持して回転するロータ20と、ロータ20の外周面に対向する内周面を有するカムリング40と、を有し、ロータ20の回転に応じて、ロータ20の外周面、カムリング40の内周面及び複数枚のベーン30の内の隣接する2枚のベーン30にて区画される複数のポンプ室を有する。そして、ポンプ室は、容積Vpが変化することにより、少なくとも吸入工程及び吐出工程に遷移し、吸入工程が終了するタイミングはポンプ室の容積Vpが最大である場合であることを特徴とする。これにより、例えば、吸入工程が終了するタイミングが距離Lの最大距離回転角度であるように設定された比較構成に係るベーンポンプと比べて、ポンプ室内のオイルの体積Voが低減しないようにしつつ、圧縮工程の区間を長くすることができ、吐出ポートの油圧と吐出ポンプ室内の油圧との圧力差を小さくすることができる。 As described above, the vane pump 1 according to the present embodiment has the rotor 20 that supports and rotates the plurality of vanes 30 so as to be movable in the rotational radius direction, and the inner peripheral surface facing the outer peripheral surface of the rotor 20. And a plurality of vanes 30 defined by an outer peripheral surface of the rotor 20, an inner peripheral surface of the cam ring 40, and two adjacent vanes 30 among the plurality of vanes 30 in accordance with the rotation of the rotor 20. Pump chamber. The pump chamber changes at least to the suction step and the discharge step by changing the volume Vp, and the suction step ends when the volume Vp of the pump chamber is the maximum. Thus, for example, compared to the vane pump according to the comparative configuration in which the timing at which the suction step ends is the maximum distance rotation angle of the distance L, the compression of the oil in the pump chamber is prevented while the volume Vo is not reduced. The section of the process can be lengthened, and the pressure difference between the hydraulic pressure of the discharge port and the hydraulic pressure in the discharge pump chamber can be reduced.
 ここで、吸入工程が終了するタイミングはポンプ室の容積Vpが最大となるときであると良い。例えば、ポンプ室の容積Vpが最大である回転角度の区間が1度以上に亘っている場合には、吸入工程が終了するタイミングをポンプ室の容積Vpが最大となるときとすることで、圧縮工程の区間をより長くすることができる。 Here, the timing at which the suction step ends is preferably when the volume Vp of the pump chamber becomes the maximum. For example, when the section of the rotation angle where the volume Vp of the pump chamber is the largest extends over 1 degree or more, the timing at which the suction process ends is set to the time when the volume Vp of the pump chamber becomes the maximum. The section of the process can be made longer.
 また、本実施の形態に係るベーンポンプ1においては、ポンプ室の容積Vpが、ロータ20の回転に応じて変化することにより、少なくとも吸入工程及び吐出工程に遷移し、吸入工程終了後であって吐出工程が開始するまでの圧縮区間の一例としての圧縮工程の開始は、距離Lが最大となる回転角度(最大距離回転角度)よりも回転方向上流側である。それゆえ、例えば、圧縮工程の開始が距離Lの最大距離回転角度であるように設定された比較構成に係るベーンポンプと比べて、圧縮工程の区間を長くすることができる。その結果、吐出ポートの油圧と圧縮工程ポンプ室内の油圧との圧力差を小さくすることができる。 Further, in the vane pump 1 according to the present embodiment, the volume Vp of the pump chamber changes according to the rotation of the rotor 20, so that at least a transition is made to the suction step and the discharge step. The start of the compression step as an example of the compression section until the start of the step is on the upstream side in the rotation direction from the rotation angle at which the distance L is maximum (the maximum distance rotation angle). Therefore, for example, compared with the vane pump according to the comparative configuration in which the start of the compression step is set to the maximum distance rotation angle of the distance L, the section of the compression step can be made longer. As a result, the pressure difference between the oil pressure of the discharge port and the oil pressure in the compression process pump chamber can be reduced.
 なお、上述した実施の形態においては、吸入口116から吸入したオイルを、異なる2つの圧力に高めて吐出することが可能なベーンポンプ1の、高圧側及び低圧側の吸入工程が終了するタイミングを最大容積回転角度としているが、特にかかる態様に限定されない。高圧側又は低圧側のいずれか一方の吸入工程が終了するタイミングのみを最大容積回転角度としても良い。 In the above-described embodiment, the timing at which the suction steps on the high pressure side and the low pressure side of the vane pump 1 capable of discharging the oil sucked from the suction port 116 to two different pressures is set to the maximum. Although the volume rotation angle is set, it is not particularly limited to this mode. Only the timing at which either the high-pressure side or the low-pressure side suction step ends may be the maximum volume rotation angle.
 また、吸入工程が終了するタイミングを最大容積回転角度とするのを、吸入ポートおよび吐出ポートを高圧側および低圧側で異ならせることなくカムリング40のカムリング内周面42の形状を異ならせることで異なる2つの圧力に高めるタイプのベーンポンプに適用しているが、特にかかるタイプのベーンポンプに限定されない。例えば、カムリング40のカムリング内周面42の形状を異ならせることなく、吐出ポート形状などポンプ室から吐出されたオイルの流路を異ならせることで異なる2つの圧力に高めるタイプのベーンポンプに適用してもよい。
 また、吸入工程が終了するタイミングを最大容積回転角度とするのを、異なる2つの吐出ポート及び流路を介して同じ圧力に高めたオイルを吐出するベーンポンプに適用しても良い。
Further, the timing at which the suction step ends is set to the maximum volume rotation angle by changing the shape of the cam ring inner peripheral surface 42 of the cam ring 40 without changing the suction port and the discharge port between the high pressure side and the low pressure side. Although the present invention is applied to a vane pump of a type that increases pressure to two pressures, the present invention is not particularly limited to such a type of vane pump. For example, the present invention is applied to a vane pump of a type in which the pressure of the oil discharged from the pump chamber such as the discharge port shape is changed to two different pressures without changing the shape of the cam ring inner peripheral surface 42 of the cam ring 40. Is also good.
The timing at which the suction step is completed may be set to the maximum volume rotation angle, which may be applied to a vane pump that discharges oil at the same pressure through two different discharge ports and flow paths.
 また、上述した実施の形態においては、吸入ポートを構成する、カムリング40の吸入凹部(高圧側吸入凹部431及び高圧側吸入凹部441、又は、低圧側吸入凹部432及び低圧側吸入凹部442)、インナプレート50の吸入凹部(高圧側吸入凹部531又は低圧側吸入凹部532)、アウタプレート60の吸入切り欠き部(高圧側吸入切り欠き部611又は低圧側吸入切り欠き部612)の下流端の回転角度が全て同一である。そのため、吸入ポートの下流端の回転角度を最大容積回転角度とするためには、これら全ての部位の下流端の回転角度を最大容積回転角度とすることが好適である。ただし、これらの部位の下流端が全て同一ではない場合には、下流端を構成する部位の下流端の回転角度を最大容積回転角度とすると良い。 In the above-described embodiment, the suction recesses (the high-pressure suction recess 431 and the high-pressure suction recess 441, or the low-pressure suction recess 432 and the low-pressure suction recess 442) of the cam ring 40, which constitute the suction port, The rotation angle of the downstream end of the suction recess of the plate 50 (the high-pressure side suction recess 531 or the low-pressure side suction recess 532) and the downstream end of the suction notch of the outer plate 60 (the high-pressure side suction notch 611 or the low-pressure side suction notch 612). Are all the same. Therefore, in order to set the rotation angle of the downstream end of the suction port to the maximum volume rotation angle, it is preferable that the rotation angles of the downstream ends of all these parts be the maximum volume rotation angle. However, when the downstream ends of these parts are not all the same, the rotation angle of the downstream end of the part constituting the downstream end may be set as the maximum volume rotation angle.
1…ベーンポンプ、2…高圧側吸入ポート、3…低圧側吸入ポート、4…高圧側吐出ポート、5…低圧側吐出ポート、10…回転軸、20…ロータ、30…ベーン、40…カムリング、50…インナプレート、60…アウタプレート、100…ハウジング、110…ケース、120…カバー DESCRIPTION OF SYMBOLS 1 ... Vane pump, 2 ... High pressure side suction port, 3 ... Low pressure side suction port, 4 ... High pressure side discharge port, 5 ... Low pressure side discharge port, 10 ... Rotating shaft, 20 ... Rotor, 30 ... Vane, 40 ... Cam ring, 50 ... inner plate, 60 ... outer plate, 100 ... housing, 110 ... case, 120 ... cover

Claims (9)

  1.  複数枚のベーンを回転半径方向に移動可能に支持して回転するロータと、
     前記ロータの外周面に対向する内周面を有するカムリングと、
    を有し、
     前記ロータの回転に応じて、前記ロータの外周面、前記カムリングの内周面及び前記複数枚のベーンの内の隣接する2枚のベーンにて区画されるポンプ室の容積が変化することにより、少なくとも吸入工程及び吐出工程に遷移し、前記吸入工程が終了するタイミングは前記ポンプ室の容積が最大である場合である
    ベーンポンプ装置。
    A rotor that supports and rotates a plurality of vanes movably in a rotational radial direction,
    A cam ring having an inner peripheral surface facing the outer peripheral surface of the rotor,
    Has,
    In accordance with the rotation of the rotor, the outer peripheral surface of the rotor, the inner peripheral surface of the cam ring, and the volume of the pump chamber defined by two adjacent vanes of the plurality of vanes change, A vane pump device that transitions at least to a suction step and a discharge step, and ends the suction step when the volume of the pump chamber is maximum.
  2.  前記吸入工程が終了するタイミングは前記ポンプ室の容積が最大となるときである
    請求項1に記載のベーンポンプ装置。
    2. The vane pump device according to claim 1, wherein the suction step ends when the volume of the pump chamber is maximized. 3.
  3.  前記ロータの回転中心から前記カムリングの内周面までの距離が前記ロータの回転角度に応じて変化することで前記ポンプ室の容積が変化し、
     前記吸入工程が終了する前記回転角度は、前記距離が最大となる前記回転角度よりも回転方向の上流側である
    請求項1又は2に記載のベーンポンプ装置。
    The volume of the pump chamber changes by changing the distance from the rotation center of the rotor to the inner peripheral surface of the cam ring according to the rotation angle of the rotor,
    3. The vane pump device according to claim 1, wherein the rotation angle at which the suction step ends is upstream of the rotation angle at which the distance becomes maximum in the rotation direction. 4.
  4.  複数枚のベーンを回転半径方向に移動可能に支持して回転するロータと、
     前記ロータの外周面に対向する内周面を有するカムリングと、
    を有し、
     前記ロータの回転に応じて、前記ロータの外周面、前記カムリングの内周面及び前記複数枚のベーンの内の隣接する2枚のベーンにて区画されるポンプ室の容積が変化することにより、少なくとも吸入工程及び吐出工程に遷移し、
     前記隣接する2枚のベーン間の前記回転角度の間隔に対する、前記吸入工程が終了する前記回転角度と前記ポンプ室の容積が最大となる前記回転角度との回転角度差の割合が0以上0.25未満である
    ベーンポンプ装置。
    A rotor that supports and rotates a plurality of vanes movably in a rotational radial direction,
    A cam ring having an inner peripheral surface facing the outer peripheral surface of the rotor,
    Has,
    In accordance with the rotation of the rotor, the outer peripheral surface of the rotor, the inner peripheral surface of the cam ring, and the volume of the pump chamber defined by two adjacent vanes of the plurality of vanes change, Transition to at least the inhalation step and the discharge step,
    The ratio of the rotation angle difference between the rotation angle at which the suction process ends and the rotation angle at which the volume of the pump chamber is maximized to the interval between the rotation angles between the two adjacent vanes is 0 or more. A vane pump device that is less than 25.
  5.  前記回転角度差の割合が0以上0.083以下である
    請求項4に記載のベーンポンプ装置。
    The vane pump device according to claim 4, wherein a ratio of the rotation angle difference is 0 or more and 0.083 or less.
  6.  前記吸入工程が終了する前記回転角度と前記ポンプ室の容積が最大となる前記回転角度とは同じである
    請求項5に記載のベーンポンプ装置。
    The vane pump device according to claim 5, wherein the rotation angle at which the suction step is completed is the same as the rotation angle at which the volume of the pump chamber is maximized.
  7.  前記回転角度差の割合が0.14以上0.25未満である
    請求項4に記載のベーンポンプ装置。
    The vane pump device according to claim 4, wherein a ratio of the rotation angle difference is 0.14 or more and less than 0.25.
  8.  複数枚のベーンを回転半径方向に移動可能に支持して回転するロータと、
     前記ロータの外周面に対向する内周面を有するカムリングと、
    を有し、
     前記ロータの回転中心から前記カムリングの前記内周面までの距離が前記ロータの回転角度に応じて変化していることで、前記ロータの外周面、前記カムリングの内周面及び前記複数枚のベーンの内の隣接する2枚のベーンにて区画されるポンプ室の容積が、前記ロータの回転に応じて変化することにより、少なくとも吸入工程及び吐出工程に遷移し、前記吸入工程終了後であって前記吐出工程が開始するまでの圧縮区間の開始は、前記距離が最大となる前記回転角度よりも回転方向上流側である
    ベーンポンプ装置。
    A rotor that supports and rotates a plurality of vanes movably in a rotational radial direction,
    A cam ring having an inner peripheral surface facing the outer peripheral surface of the rotor,
    Has,
    Since the distance from the rotation center of the rotor to the inner peripheral surface of the cam ring changes according to the rotation angle of the rotor, the outer peripheral surface of the rotor, the inner peripheral surface of the cam ring, and the plurality of vanes The volume of the pump chamber defined by the two adjacent vanes changes according to the rotation of the rotor, so that at least a transition is made to the suction step and the discharge step. A vane pump device in which the compression section is started before the discharge step is started, is located on the upstream side in the rotation direction from the rotation angle at which the distance becomes maximum.
  9.  前記圧縮区間が開始するタイミングは前記ポンプ室の容積が最大となるときである
    請求項8に記載のベーンポンプ装置。
    The vane pump device according to claim 8, wherein the compression section starts at a time when the volume of the pump chamber is maximized.
PCT/JP2018/029025 2018-08-02 2018-08-02 Vane pump device WO2020026410A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/029025 WO2020026410A1 (en) 2018-08-02 2018-08-02 Vane pump device
JP2018540901A JPWO2020026410A1 (en) 2018-08-02 2018-08-02 Vane pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029025 WO2020026410A1 (en) 2018-08-02 2018-08-02 Vane pump device

Publications (1)

Publication Number Publication Date
WO2020026410A1 true WO2020026410A1 (en) 2020-02-06

Family

ID=69231527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029025 WO2020026410A1 (en) 2018-08-02 2018-08-02 Vane pump device

Country Status (2)

Country Link
JP (1) JPWO2020026410A1 (en)
WO (1) WO2020026410A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027308A1 (en) * 2014-08-19 2016-02-25 東京計器株式会社 Vane pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027308A1 (en) * 2014-08-19 2016-02-25 東京計器株式会社 Vane pump

Also Published As

Publication number Publication date
JPWO2020026410A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US8348645B2 (en) Balanced pressure, variable displacement, dual lobe, single ring, vane pump
US4132504A (en) Liquid ring pump
JP6608673B2 (en) Vane pump device
CN106884791B (en) Vane pump device
JP6615579B2 (en) Vane pump device
JP6628592B2 (en) Vane pump device
JP6670119B2 (en) Vane pump
WO2020026410A1 (en) Vane pump device
WO2020026338A1 (en) Vane pump device
JP7150870B2 (en) vane pump device
CN106939885B (en) Vane pump device
JP6900429B2 (en) Vane pump device
US10731646B2 (en) Vane pump device having two different discharge amounts
JP6738670B2 (en) Internal gear pump
JP6615580B2 (en) Vane pump device, hydraulic device
JP3127973B2 (en) Operation Noise Reduction Structure of Internal Gear Type Liquid Pump Using Trochoidal Tooth
JPH03290083A (en) Vane pump
CN106884790B (en) Vane pump device
CN107013455B (en) Vane pump device
JPH0445677B2 (en)
JP2019027300A (en) Inscription gear pump
KR100471323B1 (en) Improved structure of pumping means in oil pump
JP4855833B2 (en) Variable displacement vane pump
JP2017115845A (en) Vane pump device
JP2020041465A (en) Vane pump

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540901

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928840

Country of ref document: EP

Kind code of ref document: A1