JPH04193931A - Hot forged product having superior fatigue strength - Google Patents

Hot forged product having superior fatigue strength

Info

Publication number
JPH04193931A
JPH04193931A JP32747890A JP32747890A JPH04193931A JP H04193931 A JPH04193931 A JP H04193931A JP 32747890 A JP32747890 A JP 32747890A JP 32747890 A JP32747890 A JP 32747890A JP H04193931 A JPH04193931 A JP H04193931A
Authority
JP
Japan
Prior art keywords
fatigue strength
hot
steel
forged product
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32747890A
Other languages
Japanese (ja)
Inventor
Naoki Iwama
直樹 岩間
Kazue Nomura
一衛 野村
Hide Morimoto
森元 秀
Chikatoshi Maeda
千芳利 前田
Shigeru Yasuda
茂 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Aichi Steel Corp filed Critical Toyota Motor Corp
Priority to JP32747890A priority Critical patent/JPH04193931A/en
Publication of JPH04193931A publication Critical patent/JPH04193931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a hot forged product having superior fatigue strength in spite of the forged surface with a black skin by hot forging steel having a specified compsn. consisting of C, Si, Mn, Cr, Al, V and Fe under specified heating conditions, and then carrying out natural air cooling. CONSTITUTION:Steel consisting of, by weight, 0.15-0.50% C, <=0.30% Si, 0.50-1.20% Mn, <=0.50% Cr, 0.010-0.060% Al, 0.15-0.60% V and the balance Fe with impurity elements or further contg. one or more among 0.04-0.12% S, 0.05-0.30% Pb and 0.0005-0.01% Ca and satisfying 100XVX(C-Si/3)>5% is hot forged under heating condition sincluding heating at >=900 deg.C for <=10min, and then natural air cooling is carried out to obtain a hot forged product having superior fatigue strength without carrying out heat treatment such as hardening and tempering after hot forging. The fatigue strength is hardly reduced in spite of the forged surface with a black skin and the forged product is suitable for use as the perform of a connecting rod, etc., of an automotive engine.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱間鍛造後、焼入焼もどし等の熱処理を行わず
、非調質のままで優れた疲労強度を有し、かつ表面が黒
皮鍛造肌のまま使用する場合においても疲労強度の低下
が極めて少ない特徴を有し、特に自動車エンジンのコン
ロッド等の粗形材として有用な熱間鍛造品に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention does not undergo heat treatment such as quenching and tempering after hot forging, and has excellent fatigue strength without heat treatment, and has a smooth surface. The present invention relates to a hot forged product which is characterized by extremely little reduction in fatigue strength even when used as a black forged skin, and which is particularly useful as a rough shaped material such as connecting rods for automobile engines.

(従来技術) 従来、自動車エンジンのコンロッド等は、機械構造用炭
素鋼である550C,555Cなどを用い、熱間鍛造に
より成形後、高強度、高靭性を付与させるため、焼入焼
もどし等の熱処理(以下調質と記す)が施されていた。
(Prior art) Conventionally, connecting rods for automobile engines are made of carbon steel for mechanical structures such as 550C and 555C, and after being formed by hot forging, they are subjected to quenching and tempering to give them high strength and high toughness. Heat treatment (hereinafter referred to as refining) had been performed.

また、熱間鍛造後の調質処理が真人なエネルギーを必要
とすることから、省エネルギーの社会的要請に応えるた
めに、熱間鍛造後の自然空冷にて必要な性能の得られる
非調質鋼の開発が近年盛んに行われ、Cを0.2〜0.
5χ程度含有する中炭素鋼に0.03〜0.20χのV
を添加した非調質鋼が提案され、使用されている。
In addition, since heat treatment after hot forging requires a large amount of energy, in order to meet the social demand for energy conservation, we have developed non-temperature steel that can obtain the necessary performance through natural air cooling after hot forging. In recent years, the development of C has been actively carried out in the range of 0.2 to 0.
V of 0.03 to 0.20χ in medium carbon steel containing about 5χ
Non-temperature steel with addition of is proposed and used.

しかしながら、表面が黒皮鍛造肌のまま使用するコンロ
ンド等の部品は、疲労強度がその表面性状によりほぼ決
定されてしまう。そして、問題となる表面は製造時に高
温にさらされ、脱炭、スケールなどが生成するため、本
来材料が持っている特性を十分に生かすことは非常に難
しい。従って、実際の部品が持つ強度は材料が本来持つ
強度に比べ著しく低くなってしまうのが通常であり、実
部品の疲労強度を上げることができず、高強度化は困難
であった。
However, the fatigue strength of parts such as condoms, which are used with black forged surfaces, is almost determined by the surface properties. The surface in question is exposed to high temperatures during manufacturing, causing decarburization and scale formation, making it extremely difficult to take full advantage of the material's inherent properties. Therefore, the strength of the actual parts is usually significantly lower than the original strength of the material, making it impossible to increase the fatigue strength of the actual parts and making it difficult to increase the strength.

よって、表面が黒皮鍛造肌のまま使用する部品を高強度
化しようとする場合には、使用する材料の強度を上げる
だけでは不十分であり、表面性状を改善することが必要
となる。しかし、実部品の強度と使用する材料や鍛造条
件などとの関係は明確になっておらず、黒皮鍛造肌のま
までも優れた強度を有する熱間鍛造品の製造技術の開発
が強く望まれていた。
Therefore, when trying to increase the strength of a part that is used with a black forged surface, it is insufficient to simply increase the strength of the material used, and it is necessary to improve the surface properties. However, the relationship between the strength of actual parts and the materials used, forging conditions, etc. is not clear, and there is a strong desire to develop a manufacturing technology for hot forged products that have excellent strength even with black forged skin. was.

(発明が解決しようとする課B) 本発明は、表面が黒皮鍛造肌のまま使用する部品の疲労
強度向上に対する前記のごとき問題点を考慮してなされ
たもので、熱間鍛造で成形し、黒皮鍛造肌のまま使用す
る場合においても優れた疲労強度を有する熱間鍛造品を
提供することを目的とする。
(Problem B to be Solved by the Invention) The present invention has been made in consideration of the above-mentioned problems in improving the fatigue strength of parts whose surfaces are used with black forged skin, and which are formed by hot forging. An object of the present invention is to provide a hot forged product having excellent fatigue strength even when used as a black skin forging.

(課題を解決するための手段) 本発明者は前記目的の下に、熱間鍛造品の表面性状、中
でも特に表面脱炭層の改善について鋭意研究を重ねた結
果、以下の知見をなし本発明を得た。すなわち、調質炭
素綱に比べて、■添加のフェライト・パーライト型非調
質鋼はフェライト脱炭量が少なく、フェライト脱炭層の
硬さも高いことを発見した。そして、さらに検討を進め
た結果、フェライト脱炭量はC量、V量に反比例しSi
量に比例すること、Vを含有すると、フェライト脱炭層
がV炭窒化物により析出強化され硬さの低下を抑えるた
め、■を含有しない場合に比べ芯部硬さに対するフェラ
イト脱炭層の硬さ低下が小さくなることを見出した。そ
して、以上の知見をもとにフェライト脱炭しにくく、か
つ芯部硬さに対するフェライト脱炭層の硬さ低下が少な
い成分組成について検討した結果、使用する鋼の成分組
成を100 X V (χ)X(C(χ)−St(χ)
/3)>5に限定すると効果があることを見出したもの
である。
(Means for Solving the Problems) With the above objective in mind, the present inventor has conducted intensive research on improving the surface properties of hot forged products, especially on improving the surface decarburized layer, and has made the following findings and has developed the present invention. Obtained. In other words, it was discovered that compared to tempered carbon steel, ferrite/pearlite type non-tempered steel with ■ addition had less ferrite decarburization and the hardness of the ferrite decarburized layer was higher. As a result of further investigation, we found that the amount of ferrite decarburization is inversely proportional to the amount of C and V.
When V is contained, the ferrite decarburized layer is precipitated and strengthened by V carbonitride, suppressing the decrease in hardness, so the hardness of the ferrite decarburized layer relative to the core hardness decreases compared to the case where V is not contained. I found that it becomes smaller. Based on the above knowledge, we investigated a composition that is difficult to decarburize ferrite and has a small decrease in the hardness of the decarburized layer of ferrite relative to the hardness of the core.As a result, we determined the composition of the steel to be used as 100 X V (χ) X(C(χ)−St(χ)
/3) It was found that it is effective to limit the value to >5.

さらにこの鋼を使用した場合の疲労強度向上効果をより
高くする鍛造時の加熱条件についても検討した結果、9
00℃以上の加熱時間を10分以下とすればよいことを
実験により確認し、本発明を完成させたものである。
Furthermore, as a result of studying the heating conditions during forging that would further increase the fatigue strength improvement effect when using this steel, we found that 9
The present invention was completed by confirming through experiments that the heating time above 00° C. should be 10 minutes or less.

すなわち、本発明の第1発明は、重量比にしてC:0.
15〜0.50%、Si:0.30%以下、Mn:0.
50〜1.20%、Cr:0.50%以下、Al:0.
010〜0.060%、V:0.15〜0.602を含
有し、かツ100xV(X) X (C(X)−Si(
X)/3)〉5を満足し、残部がFeならびに不純物元
素からなる鋼を用い、900℃以上の加熱時間が10分
以下となる加熱で熱間鍛造後自然空冷を行うことを特徴
とする疲労強度の優れた熱間鍛造品であり、第2発明は
、第1発明に比べ被削性を改善するために、さらにS:
0.04〜0.12%、Pb:0.05〜0.30%、
Ca:O,0005〜0.01χのうち1種または2種
以上を使用する鋼中に含有させたものである。
That is, the first invention of the present invention has a weight ratio of C:0.
15-0.50%, Si: 0.30% or less, Mn: 0.
50-1.20%, Cr: 0.50% or less, Al: 0.
010 to 0.060%, V: 0.15 to 0.602, and 100xV(X)
A steel that satisfies X)/3)>5 and the remainder consists of Fe and impurity elements is used, and is characterized by performing natural air cooling after hot forging at a temperature of 900°C or higher for a heating time of 10 minutes or less. The second invention is a hot forged product with excellent fatigue strength, and in order to improve machinability compared to the first invention, S:
0.04-0.12%, Pb: 0.05-0.30%,
Ca: One or more of O, 0005 to 0.01χ is contained in the steel used.

次に本発明の疲労強度の優れた熱間鍛造品の鋼の成分組
成限定理由及び製造条件限定理由について以下に説明す
る。
Next, the reasons for limiting the composition and manufacturing conditions of the steel for the hot forged product with excellent fatigue strength of the present invention will be explained below.

C:0.15〜0.50χ Cは強度の確保ならびにフェライト脱炭量の低減に必要
な元素であり、0.15%以上の含有が必要である。し
かし0.50χを越えて含有させても効果が飽和すると
ともに、靭性が低下するので上限を0.50χとした。
C: 0.15 to 0.50χ C is an element necessary for ensuring strength and reducing the amount of ferrite decarburization, and must be contained in an amount of 0.15% or more. However, even if the content exceeds 0.50χ, the effect will be saturated and the toughness will decrease, so the upper limit was set at 0.50χ.

Si:0.30%以下 Siはフェライト脱炭量の低減のため極力含有量を低く
することが望ましいが、製鋼時の脱酸材として不可欠で
あるため、上限を0.30χとした。
Si: 0.30% or less It is desirable to keep the Si content as low as possible in order to reduce the amount of ferrite decarburization, but since it is essential as a deoxidizing agent during steel manufacturing, the upper limit was set to 0.30χ.

Mn:0.50〜1.20χ Mnは製鋼時の脱酸ならびに鋼の強度・靭性バランスを
調節するため添加される元素であり、0.501以上の
含有が必要である。しかし過剰に添加すると焼入性が向
上しすぎてヘイナイト組織が生成し、■炭窒化物による
フェライト脱炭層の析出強化が不十分となり、フェライ
ト脱炭層の強化ならびに疲労強度の向上に対して妨げと
なる。よって本発明においては鍛造放冷でヘイナイト組
織が生成しないようにするため、上限を1.20χとし
た。
Mn: 0.50 to 1.20χ Mn is an element added for deoxidation during steel manufacturing and for adjusting the strength/toughness balance of steel, and must be contained in an amount of 0.501 or more. However, if it is added in excess, the hardenability will improve too much and a haynite structure will be formed, and the precipitation strengthening of the ferrite decarburized layer by carbonitride will become insufficient, which will hinder the strengthening of the ferrite decarburized layer and the improvement of fatigue strength. Become. Therefore, in the present invention, the upper limit is set to 1.20χ in order to prevent the formation of a haynite structure during forging and cooling.

Cr:0.50%以下 Crも鋼の強度・靭性バランスを調節するために有効な
元素であり、必要に応して添加されるが、過剰の添加は
Mnと同様ベイナイトを生成するため、上限を0.50
χとした。
Cr: 0.50% or less Cr is also an effective element for adjusting the strength/toughness balance of steel, and is added as necessary, but the upper limit is set as excessive addition produces bainite like Mn. 0.50
It was set as χ.

AI:O,OIO〜0.060χ AIは強力な脱酸効果を持つ元素であるが、0.010
χ未満の含有では脱酸効果が認められなくなるので、下
限を0.010χとした。しかし0.060χを越えて
含有させると前記効果が飽和するとともに被削性を低下
させるので、上限を0.060χとした。
AI: O, OIO ~ 0.060χ AI is an element with a strong deoxidizing effect, but 0.010
If the content is less than χ, the deoxidizing effect will not be observed, so the lower limit was set to 0.010χ. However, if the content exceeds 0.060χ, the above effect will be saturated and the machinability will decrease, so the upper limit was set at 0.060χ.

V:0.15〜0.60χ νは鋼中のC,Nと結びついて炭窒化物となって鍛造後
の冷却中に微細に析出することにより、フェライトを析
出強化するという非調質鋼にとっては必須の元素であり
、通常は0.1χ前後添加されている。ただし、本発明
の場合にはそれ以外の効果として、VがCと結びついて
トランプし、フェライト脱炭量を低減させることと、生
成したフェライト脱炭層をVの炭窒化物により強固に析
出強化させることをも狙いとしており、それらの効果が
得られる最低量である0、15!を下限とした。しかし
ながら、0.60χを越えて含有させても前記効果が飽
和するとともにコスト高となるため、上限を0.60χ
とした。
V: 0.15 to 0.60χ ν combines with C and N in the steel to form carbonitrides, which precipitate finely during cooling after forging, thereby strengthening the ferrite by precipitation. is an essential element, and is usually added at around 0.1χ. However, in the case of the present invention, other effects include that V combines with C and tramps, reducing the amount of ferrite decarburized, and that the generated ferrite decarburized layer is strongly precipitation-strengthened by carbonitrides of V. This is also the aim, and the minimum amount to obtain these effects is 0.15! was set as the lower limit. However, even if the content exceeds 0.60χ, the above effect is saturated and the cost increases, so the upper limit is set to 0.60χ.
And so.

S:0.04〜0.12%、Pb:0.05〜0.30
Z 、Ca:0.0005〜0.01χ S 、 Pb、 Caは被削性の改善に有効な元素であ
り、熱間鍛造後の切削の程度に応じて必要量添加される
ものである。前記効果を得るためにはそれぞれ0.04
%、0.05%、0.0005%の含をが必要である。
S: 0.04-0.12%, Pb: 0.05-0.30
Z, Ca: 0.0005 to 0.01χ S, Pb, and Ca are elements effective in improving machinability, and are added in necessary amounts depending on the degree of cutting after hot forging. In order to obtain the above effect, each 0.04
%, 0.05%, and 0.0005%.

しかし多量に含有させてもその効果が飽和するとともに
靭性を低下させるので、上限をそれぞれ0.12%、0
.30%、0.01χとした。
However, even if a large amount is contained, the effect will be saturated and the toughness will decrease, so the upper limits have been set at 0.12% and 0.12%, respectively.
.. 30% and 0.01χ.

100 X V (χ)X(C(χ)−Si(χ)/3
)>5100×V(X) X (C(Z)−3i(χ)
/3)>5はフェライト脱炭の生成やそれによる硬さ低
下を極力小さくし、優れた疲労強度を得るための必須条
件である。C1νの含有量が少なかったり、Siを過剰
に含有して100 ×V(χ)X(C(X)−Si(り
/3)≦5 トナルト、フェライト脱炭層が増加し、表
面近傍の硬さが大きく低下して部品の疲労強度が低下す
るので、100xv(z)x(C($)−Si($)/
3)>5とする必要がある。
100 X V (χ)X(C(χ)-Si(χ)/3
)>5100×V(X) X (C(Z)-3i(χ)
/3)>5 is an essential condition to minimize the formation of ferrite decarburization and the resulting decrease in hardness, and to obtain excellent fatigue strength. If the content of C1ν is low or Si is excessively contained, the 100 × V (χ) 100xv(z)x(C($)-Si($)/
3) It is necessary to set >5.

900℃以上の加熱時間が10分以下 900℃以上の加熱時間が10分以下という製造時の限
定条件は、前記した鋼を使用して製造した熱間鍛造品の
性能を最大限に生かす必須条件である。
Heating time at 900°C or higher is 10 minutes or less The limited manufacturing condition that heating time at 900°C or higher is 10 minutes or less is an essential condition for maximizing the performance of hot forged products manufactured using the above-mentioned steel. It is.

もし900℃以上の加熱時間が10分を越えると表面性
状が悪化し疲労強度が大きく低下するので、900℃以
上の加熱時間を10分以下とした。
If the heating time at 900° C. or higher exceeds 10 minutes, the surface quality deteriorates and the fatigue strength decreases significantly, so the heating time at 900° C. or higher was set to 10 minutes or less.

(実施例) 以下に本発明の特徴を実施例でもって明らかにする。(Example) The features of the present invention will be clarified by examples below.

第1表は実施例に用いた供試材の化学成分を示すもので
ある。
Table 1 shows the chemical components of the test materials used in the examples.

(以下余白) 第1表 (gl)−、−1(XlxV(X)x(C(X)−3i
1m/3)>5.0− 満足する、×−満足しない)第
1表においてA−Ht#は前述した本発明の条件を満足
する銅であり、A−D銅は第1発明、E〜HEは第2発
明に該当する鋼である。またI〜MEは本発明に使用す
る鋼としての条件を部分的に満足しない比較鋼であり、
N鋼は従来から使用されている網である555Cである
(Margin below) Table 1 (gl)-, -1(XlxV(X)x(C(X)-3i
1m/3)>5.0-Satisfied, HE is steel that falls under the second invention. In addition, I to ME are comparison steels that do not partially satisfy the conditions for steels used in the present invention,
The N steel is 555C, which is a conventionally used mesh.

実施例として使用した供試材は熱間圧延にて製造した直
径50mmの丸棒を高周波加熱炉により900℃以上の
加熱時間が約5分となるような条件で1200゛Cに加
熱後1150〜1100℃で第1図に示すような形状に
鍛造し、室温まで自然空冷したものであり、従来鋼のN
mを使用して製造した鍛造品のみ空冷後880℃にて加
熱後油浴中にて焼入、580℃にて焼もどしを行った。
The test material used as an example was a round bar with a diameter of 50 mm produced by hot rolling, heated to 1200 °C in a high frequency heating furnace under conditions such that the heating time at 900 °C or higher was about 5 minutes, and then heated to 1150 °C. It is forged at 1100℃ into the shape shown in Figure 1 and naturally air-cooled to room temperature.
Only the forged products manufactured using M were air-cooled, heated at 880°C, quenched in an oil bath, and tempered at 580°C.

これらの各供試材を機械加工によりコンロノド完成品と
して試験材とし、電気油圧式疲労試験機により引張・圧
縮荷重負荷方式の実体疲労試験を行い、耐久限を求めた
。また表面から0.1mmと中心部における硬さ、フェ
ライト脱炭層の深さの測定及びミクロ組織の観察も併せ
て行った。以上の測定結果により、使用する鋼の成分の
違いによる実部品の耐久限への影響及び硬さ、脱炭レヘ
ルの変化について検討を行った。第2表にこれらの結果
を示す。なお、硬さの測定はピンカース硬度計により測
定荷重500gfで行い、フェライト脱炭層の深さ測定
およびミクロ組織の観察は光学顕微鏡を用い400倍の
倍率で行った。
Each of these test materials was machined into a finished stove and used as a test material, and subjected to a physical fatigue test using a tensile/compressive load method using an electro-hydraulic fatigue tester to determine the durability limit. In addition, the hardness at 0.1 mm from the surface and the center, the depth of the ferrite decarburized layer, and the microstructure were also observed. Based on the above measurement results, we investigated the effects of differences in the composition of the steel used on the durability limits of actual parts, as well as changes in hardness and decarburization level. Table 2 shows these results. The hardness was measured using a Pinkers hardness meter at a measurement load of 500 gf, and the depth of the ferrite decarburized layer and observation of the microstructure were performed using an optical microscope at a magnification of 400 times.

(以下余白) 第2表 (ト)ν。、1− 表mカ・ら0.1mの七コrでの硬
さ)第2表から明らかなように比較鋼、従来鋼を使用し
て製造した熱間鍛造品である実施例No、9〜14を本
発明の熱間鍛造品と比較すると、9はC含有率が低いた
め、フェライト脱炭層の深さが大きく、表面から0.1
mmの硬さが低(なって、耐久限が劣るものであり、1
0はSi含有率が高いため、9と同様な理由により耐久
限が劣るものであり、11はCr含有率が高いため、焼
入性が向上しすぎてフェライトパーライト組織にヘイナ
イト組織が混在し、フェライト脱炭層がV炭窒化物によ
り十分に析出強化されなかったため耐久限が劣るもので
あり、12はVの含有率が低く、13は化学成分は本発
明の範囲に入っているが、弐(1)(第1表参照)を満
足しないため、フェライト脱炭層の深さが大きく表面近
傍の硬さが低くなってしまい、耐久限が劣るものである
。また、555Cを使用した従来の熱間鍛造品である1
4は調質を行っても表面性状は改善されず、むしろ調質
時の加熱によりフェライト脱炭層の深さが大きくなって
しまい耐久限が劣るものである。
(Left below) Table 2 (G) ν. , 1-Hardness at 7 ko r of 0.1 m) As is clear from Table 2, Example No. 9 is a hot forged product manufactured using comparative steel and conventional steel. Comparing No. 1 to No. 14 with the hot forged products of the present invention, No. 9 has a low C content, so the depth of the ferrite decarburized layer is large, and the depth is 0.1 from the surface.
The hardness of mm is low (and the durability limit is inferior, and 1
No. 0 has a high Si content, so the durability limit is poor for the same reason as No. 9, and No. 11 has a high Cr content, so the hardenability is too improved and the ferrite pearlite structure is mixed with the heinite structure. The durability limit was poor because the ferrite decarburized layer was not sufficiently precipitation strengthened by V carbonitride, No. 12 had a low V content, and No. 13 had a chemical composition within the scope of the present invention, but 1) (see Table 1), the depth of the ferrite decarburized layer is large and the hardness near the surface is low, resulting in poor durability. In addition, 1 is a conventional hot forged product using 555C.
In No. 4, the surface quality was not improved even after thermal refining, but rather the depth of the ferrite decarburized layer increased due to the heating during thermal refining, resulting in poor durability.

これに対して、本発明の熱間鍛造品である実施例N0.
1〜8はC,■を適量添加し、Siの添加量を抑え、1
00 X V (χ)X(C(%)−Si(χ)/3)
>5を満足する鯖を使用じて適当な加熱条件で鍛造を行
ったことにより、フェライト脱炭量が0.2mm以下と
なり、表面近傍の硬さ低下を最小限に抑えられた結果、
実体疲労試験における耐久限が34kgf/mm2以上
という優れた疲労強度を示すものである。
On the other hand, Example No. 0, which is a hot forged product of the present invention.
1 to 8 added appropriate amounts of C and ■, and suppressed the amount of Si added.
00 X V (χ)X(C(%)-Si(χ)/3)
By using mackerel that satisfies >5 and performing forging under appropriate heating conditions, the amount of ferrite decarburization was reduced to 0.2 mm or less, and as a result, the decrease in hardness near the surface was minimized.
It shows excellent fatigue strength with a durability limit of 34 kgf/mm2 or more in a physical fatigue test.

次に鍛造時の加熱条件の変化による影響を調査した実施
例について以下に示す。第1表に示す鍛のうち本発明対
象網であるり、HI3と比較鋼のJ鋼および従来針であ
るN鋼の直径50mmの熱間圧延棒鋼を各種の加熱条件
で1200”Cに加熱後、1150〜1100℃で図1
に示す部品に鍛造し、室温まで空冷して、NwAについ
てのみその後880℃にて加熱後油浴中にて焼入れ、続
いて580℃にて焼もどしを行い、試験材を作製した。
Next, an example in which the influence of changes in heating conditions during forging was investigated will be described below. Among the forgings shown in Table 1, hot-rolled steel bars with a diameter of 50 mm of J steel, which is the target of the present invention, HI3 and comparative steel, and N steel, which is the conventional needle, were heated to 1200''C under various heating conditions. , Figure 1 at 1150-1100℃
A test material was produced by forging into the parts shown in , air cooling to room temperature, heating only NwA at 880°C, quenching in an oil bath, and subsequently tempering at 580°C.

そして出来上がった試験材を用いて実体疲労試験、硬さ
試験、脱炭層およびミクロ組織の観察を前記実施例と同
一の方法で行い、その性能を評価した。第3表にこれら
の結果を示す。なお、加熱条件は高周波炉および電気炉
を用いることにより900℃以上の加熱時間を5〜30
分に変化させて、加熱時間の変化による影響を評価した
Then, using the finished test material, a physical fatigue test, a hardness test, and observation of the decarburized layer and microstructure were conducted in the same manner as in the above example to evaluate its performance. Table 3 shows these results. The heating conditions are as follows: 5 to 30 hours of heating at 900°C or higher using a high frequency furnace and an electric furnace.
The effect of changing the heating time was evaluated.

C以下余白) 第3表から明らかなように、本発明対象鋼であるり、H
調を使用しても900℃以上の加熱時間が一定時間を越
えて長くなるとフェライト脱炭の深さが大きく、表面近
傍の硬さ低下が大きくなり耐久限が低くなっている。こ
のデータから本発明の効果を充分に引き出すためには高
周波炉等を用いて、900″C以上の加熱時間を10分
以下とする必要があることがわかる。
(margins below C) As is clear from Table 3, steels subject to the present invention, H
Even if heat is used, if the heating time at 900° C. or higher exceeds a certain time, the depth of ferrite decarburization becomes large, the hardness decreases near the surface becomes large, and the durability limit becomes low. From this data, it can be seen that in order to fully bring out the effects of the present invention, it is necessary to use a high frequency furnace or the like and keep the heating time at 900''C or higher to 10 minutes or less.

(発明の効果) 本発明により熱間鍛造品の製造において従来不明確であ
った実部品の疲労強度と製造条件の関係を明らかにする
ことができた。その結果、表面が黒皮鍛造肌のまま使用
する場合においても、使用する材料の本来保有する疲労
強度に比べ実部品の強度が大きく低下することなく、優
れた疲労強度を有する熱間鍛造品の提供を可能とするも
のである。特に自動車エンジンのコンロシト等の粗形材
として有用なものであって、軽量化、低燃費化等産業上
寄与するところは極めて大きい。
(Effects of the Invention) The present invention has made it possible to clarify the relationship between the fatigue strength of actual parts and manufacturing conditions, which was previously unclear in the manufacturing of hot forged products. As a result, even when the surface is used with black forged skin, the strength of the actual part does not decrease significantly compared to the fatigue strength originally possessed by the material used, and the hot forged product has excellent fatigue strength. This makes it possible to provide the following information. It is particularly useful as a rough-shaped material for automobile engine burners, etc., and has extremely significant industrial contributions such as weight reduction and fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例として作製したコンロッドの形状を示す
図である。
FIG. 1 is a diagram showing the shape of a connecting rod produced as an example.

Claims (2)

【特許請求の範囲】[Claims] (1)重量比にしてC:0.15〜0.50%、Si:
0.30%以下、Mn:0.50〜1.20%、Cr:
0.50%以下、Al:0.010〜0.060%、V
:0.15〜0.60%を含有し、かつ100×V(%
)×(C(%)−Si(%)/3)>5を満足し、残部
がFeならびに不純物元素からなる鋼を用い、900℃
以上の加熱時間が10分以下となる加熱で熱間鍛造後自
然空冷を行うことを特徴とする疲労強度の優れた熱間鍛
造品。
(1) C: 0.15-0.50%, Si: in weight ratio
0.30% or less, Mn: 0.50-1.20%, Cr:
0.50% or less, Al: 0.010-0.060%, V
: Contains 0.15 to 0.60%, and 100×V(%
) × (C (%) - Si (%) / 3) > 5, using steel with the balance consisting of Fe and impurity elements, and heated at 900 ° C.
A hot forged product with excellent fatigue strength characterized by performing natural air cooling after hot forging with heating time of 10 minutes or less.
(2)重量比にしてC:0.15〜0.50%、Si:
0.30%以下、Mn:0.50〜1.20%、Cr:
0.50%以下、Al:0.010〜0.060%、V
:0.15〜0.60%を含有し、さらにS:0.04
〜0.12%、Pb:0.05〜0.30%、Ca:0
.0005〜0.01%のうち1種または2種以上を含
有し、かつ100×V(%)×(C(%)−Si(%)
/3)>5を満足し、残部がFeならびに不純物元素か
らなる鋼を用い、900℃以上の加熱時間が10分以下
となる加熱で熱間鍛造後自然空冷を行うことを特徴とす
る疲労強度の優れた熱間鍛造品。
(2) C: 0.15-0.50%, Si: in terms of weight ratio
0.30% or less, Mn: 0.50-1.20%, Cr:
0.50% or less, Al: 0.010-0.060%, V
: Contains 0.15 to 0.60%, and further S: 0.04
~0.12%, Pb: 0.05~0.30%, Ca: 0
.. 0005 to 0.01%, and 100 x V (%) x (C (%) - Si (%)
/3) Fatigue strength characterized by using a steel that satisfies >5, the remainder consisting of Fe and impurity elements, and performing natural air cooling after hot forging at 900°C or higher for 10 minutes or less. Excellent hot forged products.
JP32747890A 1990-11-28 1990-11-28 Hot forged product having superior fatigue strength Pending JPH04193931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32747890A JPH04193931A (en) 1990-11-28 1990-11-28 Hot forged product having superior fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32747890A JPH04193931A (en) 1990-11-28 1990-11-28 Hot forged product having superior fatigue strength

Publications (1)

Publication Number Publication Date
JPH04193931A true JPH04193931A (en) 1992-07-14

Family

ID=18199607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32747890A Pending JPH04193931A (en) 1990-11-28 1990-11-28 Hot forged product having superior fatigue strength

Country Status (1)

Country Link
JP (1) JPH04193931A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128690A (en) * 1992-10-19 1994-05-10 Aichi Steel Works Ltd Crankshaft steel excellent in wear resistance
US5985044A (en) * 1994-12-15 1999-11-16 Sumitomo Metal Industries, Ltd. Forged, non-heat treated, nitrided steel parts and process of making
US6083455A (en) * 1998-01-05 2000-07-04 Sumitomo Metal Industries, Ltd. Steels, steel products for nitriding, nitrided steel parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128690A (en) * 1992-10-19 1994-05-10 Aichi Steel Works Ltd Crankshaft steel excellent in wear resistance
US5985044A (en) * 1994-12-15 1999-11-16 Sumitomo Metal Industries, Ltd. Forged, non-heat treated, nitrided steel parts and process of making
US6083455A (en) * 1998-01-05 2000-07-04 Sumitomo Metal Industries, Ltd. Steels, steel products for nitriding, nitrided steel parts

Similar Documents

Publication Publication Date Title
US8382918B2 (en) Steel wire material for spring and its producing method
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
US4702778A (en) Method for softening rolled medium carbon machine structural steels
JPH11236644A (en) Steel for induction hardening excellent in high strength characteristic and low heat treating strain characteristic and its production
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JPS62199718A (en) Direct softening method for rolling material of steel for machine structural use
JPH04193931A (en) Hot forged product having superior fatigue strength
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JPS63166949A (en) Non-heattreated steel for hot forging
JP2017071859A (en) Non-heat-treated steel and method for producing the same
JPS62205245A (en) Non-heattreated steel for hot forging
JPS60255957A (en) Steel for cold forging
JPH1150191A (en) Carburized axial parts and production thereof
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP2002146438A (en) Method for producing case-hardening steel having excellent cold workability and grain size characteristic
JPH0483848A (en) Carburizing gear steel having high fatigue strength
JPH04202741A (en) Hot forged material excellent in fatigue strength
JP3255937B2 (en) Manufacturing method of quenched steel for hot forging
JPH02179841A (en) Non-heattreated steel for induction hardening and its manufacture
KR900006688B1 (en) Method of steel for hot rolled forging
JPS61166922A (en) Manufacture of wire rod for carburization
JPH06212344A (en) Steel for warm forging having high fatigue strength
KR100276285B1 (en) The manufacturing method for decarburizing steel sheet with excellent bending workability