JPH0419392A - Method for detecting operation condition of pump and method for supplying lubricating water to bearing of pump - Google Patents

Method for detecting operation condition of pump and method for supplying lubricating water to bearing of pump

Info

Publication number
JPH0419392A
JPH0419392A JP12167390A JP12167390A JPH0419392A JP H0419392 A JPH0419392 A JP H0419392A JP 12167390 A JP12167390 A JP 12167390A JP 12167390 A JP12167390 A JP 12167390A JP H0419392 A JPH0419392 A JP H0419392A
Authority
JP
Japan
Prior art keywords
pump
water
detected
transmission shaft
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12167390A
Other languages
Japanese (ja)
Other versions
JP2673734B2 (en
Inventor
Yasuhiro Murayama
靖洋 村山
Hirohiko Furukawa
博彦 古川
Masahide Konishi
小西 正英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2121673A priority Critical patent/JP2673734B2/en
Publication of JPH0419392A publication Critical patent/JPH0419392A/en
Application granted granted Critical
Publication of JP2673734B2 publication Critical patent/JP2673734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To precisely detect an operation condition of a pump by providing two detected parts with an interval in an axial direction on a transmission shaft which transmits an output of a motor to the pump, and detecting relative positional displacement between both detected parts. CONSTITUTION:In a device wherein a vertical shaft pump 1 is rotationally driven by a motor 10 such as an engine, fist and second disc plates 16, 18 are provided with an interval in an axial direction on a transmission shaft 14 for transmitting an output of the motor 10 to a main shaft 2 of the pump l, which plates 16, 18 have detected parts 15, 17 composed of slits. First and second detectors Ca, Cb composed of optical sensors, etc., are oppositely provided respectively on the detected parts 15, 17. The signals from the detectors are input to a detecting circuit 19. A lap period S during which detected periods Sa, Sb of the detectors Ca, Cb overlap each other is detected and input to a comparing circuit 21. When the lap period S is less than a first set value S1, 'pumping' is displayed on a display 33. When the lap period S is more than a second set value S2, 'waiting' is displayed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポンプの運転状況を検出する方法およびポン
プの軸受に対する潤滑水の供給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of detecting the operating status of a pump and a method of supplying lubricating water to the bearings of the pump.

〔従来の技術〕[Conventional technology]

たとえば室軸ポンプの軸受として、自揚水によって潤滑
および冷却がなされて、安定運転を継続できるセラミッ
クス軸受が採用されている。
For example, ceramic bearings are used as bearings for indoor shaft pumps, which are lubricated and cooled by self-pumped water and can continue stable operation.

この種の軸受では、ポンプの起動直後のきわめて短い時
間だけドライ運転がなされ、この短い時間が経過すると
、直ちに自揚水によって潤滑および冷却されて安定運転
に入る。即ち、セラミックス軸受では、トライ運転が短
時間に制限されることになる。
This type of bearing operates dry for a very short period of time immediately after the pump is started, and after this short period of time, it is immediately lubricated and cooled by self-pumped water and begins stable operation. That is, with ceramic bearings, trial operation is limited to a short time.

一方、都市化の急激な進展に伴い、水路に配備されてい
る揚水機場への雨水流入量が大量がっ急激なものとなり
つつある。このような状況には、揚水機場における吸水
井の水位が室軸ポンプの揚水遮断水位以下に低下しても
ドライ運転を継続して、ポンプの運転状態を先行させる
先行待機運転や気中管理運転を行うことによって対応し
ている前記先行待機運転や気中管理運転に使用される豆
粕ポンプでは、長時間ドライ運転が継続されることにな
り、この間、軸受に対して潤滑水が供給されなくなる。
On the other hand, with the rapid progress of urbanization, the amount of rainwater flowing into pumping stations located along waterways is rapidly increasing. In such a situation, even if the water level in the water intake well at the pumping station drops below the pumping cutoff level of the indoor shaft pump, dry operation is continued, and advance standby operation or air management operation that precedes the pump operation status is recommended. In the soybean cake pump used for the preceding standby operation and the air management operation, dry operation continues for a long time, and during this period, no lubricating water is supplied to the bearings.

したがって、先行待機運転や気中管理運転を行う豆粕ポ
ンプに、ドライ運転時間が短時間に制限されるセラミッ
クス軸受を採用し得なかった。
Therefore, it has not been possible to use a ceramic bearing, which limits the dry operation time to a short time, in a soybean cake pump that performs advance standby operation or air management operation.

このような問題を解決する手段として、軸受に対して外
部から潤滑水を供給することが考えられるが、この場合
揚水運転中であるにもかかわらず外部から潤滑水の供給
を続けることは無意味である。したがって、吸水井の水
位を測定することにより、その水位が予め設定した水位
、つまり豆粕ポンプの揚水開始水位よりも低い水位に低
下した場合に、軸受に対して潤滑水の供給を行う方法が
採用されていた。
One possible solution to this problem is to supply lubricating water to the bearing from the outside, but in this case, it is pointless to continue supplying lubricating water from the outside even during pumping operation. It is. Therefore, by measuring the water level in the water suction well, a method has been adopted in which lubricating water is supplied to the bearings when the water level drops to a preset water level, that is, lower than the water level at which the bean cake pump starts pumping. It had been.

〔発明が解決しようとする課題〕 しかし、このように、吸水井の水位に基づいて軸受に対
する潤滑水の供給を行う方法では、吸水井の水面が平穏
である場合と波立っている場合を考慮しなければならず
、通常は波立っている場合を考慮して、潤滑水の供給停
止水位を余裕をみて高目に設定してお(必要があった。
[Problem to be solved by the invention] However, in this method of supplying lubricating water to the bearing based on the water level of the water absorption well, cases where the water surface of the water absorption well is calm and undulating are taken into consideration. It was necessary to set the lubricating water supply stop level to a high level with some margin in consideration of the situation where the water is rippled.

ところが、このような制御方法では、水面が比較的穏や
かな場合において、揚水運転中であるのにもかかわらず
、潤滑水の供給がなされることになる。つまり、ポンプ
の運転状況を正確に知ることができず、そのため、無駄
な潤滑水の供給が長時間にわたって続けられ、軸受に対
して無駄な注水を行わないようにすることができながっ
た。
However, in such a control method, when the water surface is relatively calm, lubricating water is supplied even though pumping operation is in progress. In other words, it was not possible to accurately know the operating status of the pump, and as a result, the wasted supply of lubricating water continued for a long time, making it impossible to prevent unnecessary water injection into the bearings. .

本発明は、このような事情に鑑み、がっ、揚水運転時と
気中運転時のトルクの変動によって、原動機の出力をポ
ンプに伝達する伝達軸のねじれが変動する点に着目して
なされたものであって、ポンプの運転状況を正確に検知
することができるポンプの運転状況検出方法、ならびに
、軸受に対する潤滑水の供給を確実にしかも必要最小限
に制御して行うことができるポンプの軸受に対する潤滑
水供給方法の提供を目的とする。
In view of these circumstances, the present invention was made by focusing on the fact that the torsion of the transmission shaft that transmits the output of the prime mover to the pump changes due to fluctuations in torque during pumping operation and submerged operation. A pump operating status detection method that can accurately detect the pump operating status, and a pump bearing that can reliably control the supply of lubricating water to the bearing to the minimum necessary level. The purpose is to provide a lubricating water supply method for

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、第1の発明は、原動機の出
力をポンプに伝達する伝達軸に、第1および第2被検出
部を上記伝達軸の軸方向に離間させて設け、上記第1お
よび第2被検出部をそれぞれ検出して第1および第2検
出信号を出力する第1および第2検出器を設け、上記両
検出信号に基づいてポンプの運転状況を検出するように
したものである。
In order to achieve the above object, a first invention provides a transmission shaft that transmits the output of a prime mover to a pump, and a first and a second detected portion are provided spaced apart in the axial direction of the transmission shaft, and and a second detected part, respectively, and output first and second detection signals, and the operating status of the pump is detected based on both of the detection signals. be.

第2の発明は、原動機の出力をポンプに伝達する伝達軸
に、第1および第2被検出部を上記伝達軸の軸方向に離
間させて設け、上記第1および第2被検出部をそれぞれ
検出して第1および第2検出信号を出力する第1および
第2検出器を設け、上記両検出信号に基づいて、潤滑水
供給系からポンプ主軸の軸受に対する潤滑水の供給停止
を制御するようにしたものである。
A second invention provides a transmission shaft that transmits the output of a prime mover to a pump, and a first and a second detected portion are provided spaced apart in the axial direction of the transmission shaft, and the first and second detected portions are respectively provided. First and second detectors are provided for detecting and outputting first and second detection signals, and based on both of the detection signals, the supply of lubricating water from the lubricating water supply system to the bearing of the pump main shaft is controlled to be stopped. This is what I did.

〔作用〕[Effect]

本発明によれば、原動機の出力をポンプに伝達する伝達
軸は、ポンプの軸動力が大きい程、太き(ねじれ、その
ため、伝達軸に軸方向に離れて設けた第1および第2被
検出部が回転方向に相対的に位置ずれし、第1および第
2検出器からの出力に位相が生じる。一方、ポンプの軸
動力と吐出量とは、ポンプの種類や設置条件によって一
定の関係にあるから、予めポンプの特性を調べておけば
、上記第1および第2検出器からの出力によりポンプが
揚水運転であるか否かや、吐出量などの運転状況を知る
ことができる。
According to the present invention, the larger the shaft power of the pump, the thicker (twisted) the transmission shaft that transmits the output of the prime mover to the pump. relative position shift in the direction of rotation, and a phase difference occurs in the outputs from the first and second detectors.On the other hand, the shaft power and discharge amount of the pump have a fixed relationship depending on the type of pump and installation conditions. Therefore, if the characteristics of the pump are investigated in advance, it is possible to know whether the pump is in pumping operation or not, and the operating status such as the discharge amount, from the outputs from the first and second detectors.

また、ポンプが揚水運転か気中運転かを知ることができ
るから、上配両検出信号に基づいて、気中運転時には潤
滑水を供給し、一方、揚水運転時には潤滑水の供給を停
止することができる。
In addition, since it is possible to know whether the pump is in pumping operation or submerged operation, it is possible to supply lubricating water during submerged operation, and to stop supplying lubricating water during pumping operation, based on the upper distribution detection signal. I can do it.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明を適用した豆粕ポンプを示し、図におい
て、豆粕ポンプ1の主軸2は羽根車3上側のガイドベー
ン4の基部に固定された軸受5と、吸水井6の床面7と
略同じ高さレベルに固定されている軸受8によって回転
自在に軸支され、たとえば、モータやエンジンなどの原
動機10によって回転駆動される。
FIG. 1 shows a soybean cake pump to which the present invention is applied. In the figure, the main shaft 2 of the soybean cake pump 1 has a bearing 5 fixed to the base of a guide vane 4 above an impeller 3, and a floor surface 7 of a water suction well 6. It is rotatably supported by a bearing 8 fixed at substantially the same height level, and is rotationally driven by a prime mover 10 such as a motor or an engine.

前記軸受5.8はそれぞれ炭化ケイ素などのセラミック
スによって形成されており、それぞれに潤滑水供給系9
から潤滑および冷却用の潤滑水が供給されるようになっ
ている。
The bearings 5.8 are each made of ceramics such as silicon carbide, and are each provided with a lubricating water supply system 9.
Lubricant water for lubrication and cooling is supplied from the

潤滑水供給系9は潤滑水供給源9Aと、この潤滑水供給
源9Aから軸受5,8に潤滑水を供給する管路9Bと、
この管路9Bに介設した、たとえば電磁弁や電動ボール
弁などの弁9Cによって構成されている。
The lubricating water supply system 9 includes a lubricating water supply source 9A, a pipe line 9B that supplies lubricating water from the lubricating water supply source 9A to the bearings 5 and 8,
It is constituted by a valve 9C, such as a solenoid valve or an electric ball valve, which is interposed in this conduit 9B.

したがって、弁9Cの開弁時に潤滑水供給源9Aから軸
受5,8に潤滑水の供給がなされ、弁9Cの閉弁時には
軸受5,8に対する潤滑水の供給が止められる。
Therefore, when the valve 9C is opened, lubricant water is supplied from the lubricant water supply source 9A to the bearings 5 and 8, and when the valve 9C is closed, the supply of lubricant water to the bearings 5 and 8 is stopped.

上記原動機10の出力をポンプ1の主軸2に伝達する伝
達軸14には、スリットからなる第1被検出部15を有
する第1の円板16と、スリットからなる第2被検出部
17を有する第2の円板18とが、伝達軸14の軸方向
に離間して設けられている。
The transmission shaft 14 that transmits the output of the prime mover 10 to the main shaft 2 of the pump 1 has a first disc 16 having a first detected part 15 made of a slit, and a second detected part 17 made of a slit. A second disk 18 is provided spaced apart from each other in the axial direction of the transmission shaft 14 .

上記第1および第2被検出部15.17には、それぞれ
、第1および第2検出器Ca、 Cbか対向して設けら
れている。上記第1および第2検出器(、a、 Cbは
、それぞれ、上記第1および第2被検出部15゜17を
検出するもので、たとえば投光器と受光器を一体に備え
た反射型の光センサからなる。上記第1および第2検出
器Ca、 Cbは、伝達軸14に負荷が加わっていない
状態で伝達軸14が回転している場合には、それぞれ、
第1および第2被検出部1517を同時に検出するよう
に配置されており、各々、第1および第2検出信号a、
 bを検出回路19に出力する。
The first and second detected parts 15.17 are provided with first and second detectors Ca and Cb facing each other, respectively. The first and second detectors (, a, and Cb are for detecting the first and second detected parts 15 and 17, respectively, and are, for example, reflective optical sensors integrally equipped with a light emitter and a light receiver). When the transmission shaft 14 is rotating with no load applied to the transmission shaft 14, the first and second detectors Ca and Cb each have the following characteristics:
The first and second detected parts 1517 are arranged to be detected simultaneously, and the first and second detection signals a,
b is output to the detection circuit 19.

伝達軸14に負荷が加わっている場合は、伝達軸14が
ねじれるので、上記第1および第2検出器Ca。
When a load is applied to the transmission shaft 14, the transmission shaft 14 is twisted, so the first and second detectors Ca.

cbが検出する第1および第2検出信号a、 bは、第
2図のように、位相がずれる。上記検出回路19は、上
記第1および第2検出器Ca、 Cbの検出時間Sa。
The first and second detection signals a and b detected by cb are out of phase as shown in FIG. The detection circuit 19 detects the detection time Sa of the first and second detectors Ca and Cb.

sbがラップしているラップ時間Sを検出するもので、
上記ラップ時間Sのラップ信号Cを、第1図の比較回路
21に出力する。
It detects the lap time S when sb wraps,
The wrap signal C of the wrap time S is output to the comparator circuit 21 in FIG.

上記比較回路21には、セレクタを備えた設定器22か
ら、第1設定値S1または第2設定値S2が入力される
。上記比較回路21は、ラップ時間Sと第1設定値S1
とを比較して、ラップ時間Sが第1設定値S1よりも小
さい場合、つまり、揚水運転中に弁9Cを閉止させる閉
止信号shを出力し、同時に表示器33に“揚水中”で
ある旨、表示させる。一方、上記比較回路21は、ラッ
プ時間Sと第2設定値S2とを比較して、ラップ時間S
が第2設定値S2よりも大きい場合、つまり、気中運転
時に弁9Cを開弁させる開弁信号Opを出力し、同時に
表示器33に“待機中”である旨、表示させる。なお、
第1設定値Slは第2設定値S2よりも小さい。
The comparison circuit 21 receives the first set value S1 or the second set value S2 from a setter 22 including a selector. The comparison circuit 21 compares the lap time S and the first set value S1.
If the lap time S is smaller than the first set value S1, a closing signal sh is output to close the valve 9C during pumping operation, and at the same time, the display 33 indicates that "pumping is in progress". , display. On the other hand, the comparison circuit 21 compares the wrap time S and the second set value S2, and compares the wrap time S with the second set value S2.
is larger than the second set value S2, that is, during submerged operation, a valve opening signal Op is output to open the valve 9C, and at the same time, the display 33 is made to display that it is "on standby". In addition,
The first set value Sl is smaller than the second set value S2.

上記検出回路19と比較回路21と設定器22は、1つ
の制御装置120に組み込まれている。
The detection circuit 19, comparison circuit 21, and setting device 22 are incorporated into one control device 120.

また、この室軸ポンプ1では、吸水口の深さがこれ以下
では空気を吸込んでしまうポンプ固有の最低水位LWL
よりも上方に羽根車3が配設されるとともに、羽根車3
の入口下方、つまり羽根車室に開口され、かつその途中
に気水切替用吸気弁12を介装した吸気管13を装備し
ている。したがって、水位降下時には羽根車入口レベル
の揚水開始水位HWLと最低水位(揚水遮断水位)LW
Lの間の所定水位になったときに、吸気弁12を開成し
て羽根車3の入口に空気を送り込んで揚水運転から気中
運転に切替え、水位上昇時には、吸水井6の水位が羽根
車3の人ロレヘル)IWLになったとき、吸気弁12を
閉成し、残留空気を吸い揚げながら気中運転から揚水運
転に切替えるようにしている。
In addition, in this chamber shaft pump 1, if the depth of the water inlet is less than this, the lowest water level LWL unique to the pump will suck in air.
The impeller 3 is disposed above the impeller 3.
An intake pipe 13 is provided which opens below the inlet of the engine, that is, into the impeller chamber, and has an air/water switching intake valve 12 interposed therebetween. Therefore, when the water level drops, the pumping start water level HWL at the impeller inlet level and the lowest water level (pumping cutoff water level) LW
When the water level reaches a predetermined level between L, the intake valve 12 is opened and air is sent to the inlet of the impeller 3 to switch from pumping operation to air operation. 3) When the condition reaches IWL, the intake valve 12 is closed and the remaining air is sucked up while switching from air operation to pumping operation.

なお、吸気弁12の開閉は、図示されていない水位計に
よって、前記揚水開始水位IL またはLWLを検知し
、ここから吸気弁12に出力される信号に基づいてなさ
れる。
The opening and closing of the intake valve 12 is performed based on a signal outputted from the pumping start water level IL or LWL to the intake valve 12 by detecting the pumping start water level IL or LWL using a water level gauge (not shown).

つぎに、室軸ポンプ1の運転状況検出方法、ならびに、
軸受5,8に対する潤滑水の供給方法について説明する
Next, a method for detecting the operating status of the indoor shaft pump 1, and
A method of supplying lubricating water to the bearings 5 and 8 will be explained.

主軸2が回転駆動されている室軸ポンプ1の運転状態に
おいて、吸水井6の水位が揚水開始水位HWL以上であ
れば、吸気管13の吸気弁12は閉弁されており、羽根
車3によって水が吸い揚げられるので揚水運転がなされ
る。この場合、主軸2の軸動力は気中運転時よりも大き
いので、伝達軸14のねじれが大きくなり、2つの被検
出部15.17の相対的な位置ずれが大きくなる。その
ため、第2図に示す2つの検出信号a、 bのラップ時
間Sが小さくなる。このラップ時間Sが第1図の検出回
路19によって検出され、比較回路21を経由して表示
器33に表示されることにより、豆粕ポンプ1が揚水運
転中であることを知ることができる。
In the operating state of the chamber shaft pump 1 in which the main shaft 2 is rotationally driven, if the water level in the water suction well 6 is equal to or higher than the pumping start water level HWL, the intake valve 12 of the intake pipe 13 is closed, and the impeller 3 Pumping operation is performed because water is sucked up. In this case, since the shaft power of the main shaft 2 is larger than that during air operation, the torsion of the transmission shaft 14 becomes large, and the relative positional deviation between the two detected parts 15 and 17 becomes large. Therefore, the wrap time S of the two detection signals a and b shown in FIG. 2 becomes small. This lap time S is detected by the detection circuit 19 in FIG. 1 and displayed on the display 33 via the comparison circuit 21, so that it can be known that the soybean cake pump 1 is in pumping operation.

さらに、主軸2の軸動力と吐出量とは、ポンプの種類や
設置条件によって一定の関係にあるから、予めポンプの
特性を調べ比較回路21に入力しておくことにより、上
記検出回路19からの検出信号Cを比較回路21を経由
して表示器33に軸動力や吐出量に変換してデジタル表
示させることにより、ポンプの運転状況を知ることがで
きる。
Furthermore, since the shaft power of the main shaft 2 and the discharge amount have a certain relationship depending on the type of pump and installation conditions, by checking the characteristics of the pump in advance and inputting it to the comparison circuit 21, the The operating status of the pump can be known by converting the detection signal C into shaft power and discharge amount on the display 33 via the comparison circuit 21 and digitally displaying the converted information.

一方、検出回路工9からの検出信号Cを受けた比較回路
21は、上記ラップ時間Sと設定器22からの第1設定
値Stとを比較して、ラップ時間Sが第1設定値S1よ
りも小さい場合に、つまり、軸動力が所定値よりも大き
い揚水運転時に、弁9Cに閉止信号shを出力し、弁9
Cが閉止される。この場合、軸受5.8は羽根車3によ
って吸い揚げられる自揚水によって潤滑および冷却され
る。
On the other hand, the comparison circuit 21 receiving the detection signal C from the detection circuit engineer 9 compares the lap time S with the first set value St from the setting device 22, and determines that the lap time S is lower than the first set value S1. When the shaft power is smaller than a predetermined value, that is, during pumping operation when the shaft power is larger than a predetermined value, a closing signal sh is output to the valve 9C, and the valve 9C is closed.
C is closed. In this case, the bearing 5.8 is lubricated and cooled by the self-lifted water sucked up by the impeller 3.

揚水運転の継続によって、水位が揚水開始水位)IWL
未満に低下しても、揚水遮断水位IJLに低下するまで
の間は、吸気弁12の閉成状態が保持されるとともに、
自揚水による軸受5,8の潤滑および冷却が継続される
As the pumping operation continues, the water level will rise to the pumping start water level (IWL).
Even if the pumping cutoff water level drops below IJL, the intake valve 12 remains closed until the pumping cutoff water level drops to IJL.
Lubrication and cooling of the bearings 5 and 8 by self-pumped water continues.

水位が揚水遮断水位LWL付近に低下すると、吸気弁1
2を開成して羽根車3の入口に空気を送り込んで揚水運
転から気中運転に切替えられる。この気中運転時には、
主軸2および伝達軸14のトルクは著しく小さくなるの
で、両検出器Ca、 Cbから出力される第1および第
2検出信号a、 bの位相は小さ(なり、第2図のラッ
プ時間Sが大きくなる。
When the water level drops to around the pumping cutoff water level LWL, the intake valve 1
2 is opened to send air to the inlet of the impeller 3, and the pumping operation is switched to the air operation. During this driving,
Since the torque of the main shaft 2 and the transmission shaft 14 becomes significantly small, the phases of the first and second detection signals a and b output from both detectors Ca and Cb become small (and the wrap time S in Fig. 2 becomes large). Become.

ここで、第1図の比較回路21は、検出回路19からの
ラップ信号Cのラップ時間Sと設定器22からの第2設
定値S2とを比較して、ラップ時間が第2設定値S2よ
りも大きい場合に、弁9Cに開弁信号Opを出力する。
Here, the comparison circuit 21 in FIG. 1 compares the wrap time S of the wrap signal C from the detection circuit 19 with the second set value S2 from the setter 22, and determines that the wrap time is greater than the second set value S2. If it is also large, a valve opening signal Op is output to the valve 9C.

これにより、弁9Cが開成して潤滑水供給系9からポン
プ主軸2の軸受5,8に対して潤滑水が供給され、軸受
5,8の潤滑および冷却が行われ、安定運転を継続する
ことができる。
As a result, the valve 9C opens and lubricating water is supplied from the lubricating water supply system 9 to the bearings 5 and 8 of the pump main shaft 2, and the bearings 5 and 8 are lubricated and cooled to continue stable operation. I can do it.

気中運転の継続によって、吸水井6の水位が上昇して、
揚水開始水位HWLに達すると、前述のように揚水運転
に切替えられ、軸受5,8は自揚水によって潤滑される
As the submerged operation continues, the water level in the water intake well 6 rises,
When the pumping start water level HWL is reached, the pumping operation is switched to as described above, and the bearings 5 and 8 are lubricated by the self-pumping water.

このように、豆粕ポンプ1の気中運転中は、潤滑水供給
源9から供給される潤滑水によって軸受5.8の潤滑お
よび冷却がなされるので、ドライ運転が長時間継続され
る先行待機運転や気中管理運転を行う豆粕ポンプ1にも
、セラミックス軸受5゜8を採用することができる。
In this way, while the soybean cake pump 1 is operating in air, the bearing 5.8 is lubricated and cooled by the lubricating water supplied from the lubricating water supply source 9, so that the dry operation is continued for a long time during the advance standby operation. The ceramic bearing 5°8 can also be used in the soybean cake pump 1 that performs atmospheric control operation.

なお、本発明は、前記実施例で述べた豆粕ポンプ1のみ
に限らず、気中運転を行うことのできる他のポンプにも
採用できることはいうまでもない。
It goes without saying that the present invention is not limited to the soybean cake pump 1 described in the above embodiment, but can also be applied to other pumps that can be operated in air.

また、上記実施例では、第1および第2の円板16、1
8にスリットからなる第1および第2被検出部15.1
7を設けたが、両波検出部15.17は、反射板で形成
してもよく、あるいは、伝達軸14に直接設けてもよい
Further, in the above embodiment, the first and second discs 16, 1
First and second detected parts 15.1 each having a slit at 8.
7 is provided, however, the dual-wave detection portions 15 and 17 may be formed by a reflecting plate, or may be provided directly on the transmission shaft 14.

また、上記実施例では、両検出器Ca、 Cbを反射型
の光センサとしたか、両検出器Ca、 Cbは、透過形
の光センサとしてもよい。
Further, in the above embodiment, both the detectors Ca and Cb are reflective type optical sensors, or both the detectors Ca and Cb may be transmissive type optical sensors.

さらに、上記実施例では、第2図の雨検出信号a、 b
のラップ時間Sに基づいて、運転状況の検出や潤滑水の
供給を行ったが、雨検出信号a、 bの位相φに基づい
て行ってもよい。
Furthermore, in the above embodiment, the rain detection signals a and b in FIG.
Although the operating conditions are detected and the lubricating water is supplied based on the lap time S of the rain detection signals a and b, the detection may also be performed based on the phases φ of the rain detection signals a and b.

また、上記実施例では、ラップ時間Sを第1図の第1設
定値Slおよび第2設定値S2と比較したが、5I=5
2としてもよい。また、制御装置1i20の構成も上記
実施例のものに限定されるものではない。
In addition, in the above embodiment, the lap time S was compared with the first set value Sl and the second set value S2 in FIG. 1, but 5I=5
It may be set to 2. Further, the configuration of the control device 1i20 is not limited to that of the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、第1の発明によれば、ポンプの軸
動力や吐出量と一定の関係にある伝達軸のねじれを検出
するので、ポンプの運転状況を正確に検出することがで
きる。
As described above, according to the first aspect of the invention, the torsion of the transmission shaft, which has a certain relationship with the shaft power and discharge amount of the pump, is detected, so the operating status of the pump can be accurately detected.

また、伝達軸のねじれから、ポンプが揚水運転か気中運
転かを知ることができるので、自揚水によって軸受を潤
滑することのできる揚水運転時には、潤滑水供給系を閉
成し、一方、自揚水によって軸受を潤滑することのでき
ない気中運転時には、潤滑水供給系を開成し、ここから
供給される潤滑水によって軸受を潤滑および冷却して、
安定運転を継続させることができる。したがって、従来
より採用不可能とされていた先行待機運転や気中管理運
転を行うポンプにも、セラミックス軸受の採用が可能に
なり、汎用性の向上を実現できる。
In addition, it is possible to tell from the twist of the transmission shaft whether the pump is in pumping operation or in air operation, so during pumping operation when the bearings can be lubricated by self-pumped water, the lubricating water supply system is closed, while self-pumping water is used to lubricate the bearings. During air operation when the bearings cannot be lubricated by pumped water, a lubricating water supply system is opened, and the lubricating water supplied from this system lubricates and cools the bearings.
Stable operation can be continued. Therefore, ceramic bearings can be used even in pumps that perform advance standby operation or air management operation, which were conventionally considered impossible, and can improve versatility.

しかも、軸受に対する潤滑水の供給量を必要最小限に抑
えることができるから、潤滑水およびこれを供給するた
めの動力などの節減を達成できる。
Furthermore, since the amount of lubricating water supplied to the bearing can be suppressed to the necessary minimum, it is possible to achieve savings in lubricating water and power for supplying the lubricating water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した豆粕ポンプの実施例を示す概
略構成図、第2図は第1および第2検出信号とラップ信
号との関係を示す特性図である。 1・・・ポンプ(豆粕ポンプ)、2・・・主軸、5.8
・・・軸受、9・・・潤滑水供給系、10・・・原動機
、14・・・伝達軸、15・・・第1被検出部、17・
・第2被検出部、Ca・・・第1検出器、cb・・・第
2検出器、 a・・・第1検出信号、 b・・・第2検出信号。 特 許 出 願 人 株式会社 クホタ
FIG. 1 is a schematic configuration diagram showing an embodiment of a bean cake pump to which the present invention is applied, and FIG. 2 is a characteristic diagram showing the relationship between the first and second detection signals and the lap signal. 1... Pump (bean cake pump), 2... Main shaft, 5.8
... bearing, 9 ... lubricating water supply system, 10 ... prime mover, 14 ... transmission shaft, 15 ... first detected part, 17.
- Second detected part, Ca...first detector, cb...second detector, a...first detection signal, b...second detection signal. Patent applicant Kuhota Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)原動機の出力をポンプに伝達する伝達軸に、第1
および第2被検出部を上記伝達軸の軸方向に離間させて
設け、上記第1および第2被検出部をそれぞれ検出して
第1および第2検出信号を出力する第1および第2検出
器を設け、上記両検出信号に基づいてポンプの運転状況
を検出するようにしたことを特徴とするポンプの運転状
況検出方法。
(1) The transmission shaft that transmits the output of the prime mover to the pump has a
and first and second detectors, which are provided with a second detected part separated from each other in the axial direction of the transmission shaft, and which detect the first and second detected parts, respectively, and output first and second detection signals. A method for detecting the operating status of a pump, characterized in that the operating status of the pump is detected based on both of the detection signals.
(2)原動機の出力をポンプに伝達する伝達軸に、第1
および第2被検出部を上記伝達軸の軸方向に離間させて
設け、上記第1および第2被検出部をそれぞれ検出して
第1および第2検出信号を出力する第1および第2検出
器を設け、上記両検出信号に基づいて、潤滑水供給系か
らポンプ主軸の軸受に対する潤滑水の供給停止を制御す
るようにしたことを特徴とするポンプの軸受に対する潤
滑水供給方法。
(2) The transmission shaft that transmits the output of the prime mover to the pump has a first
and first and second detectors, which are provided with a second detected part separated from each other in the axial direction of the transmission shaft, and which detect the first and second detected parts, respectively, and output first and second detection signals. A method for supplying lubricating water to a bearing of a pump, characterized in that the supply of lubricating water to the bearing of the main shaft of the pump is controlled to be stopped from the lubricating water supply system based on both of the detection signals.
JP2121673A 1990-05-10 1990-05-10 Pump operating status detection method Expired - Lifetime JP2673734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121673A JP2673734B2 (en) 1990-05-10 1990-05-10 Pump operating status detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121673A JP2673734B2 (en) 1990-05-10 1990-05-10 Pump operating status detection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1279196A Division JPH08240196A (en) 1996-01-29 1996-01-29 Lubricating water supply control method for bearing of pump

Publications (2)

Publication Number Publication Date
JPH0419392A true JPH0419392A (en) 1992-01-23
JP2673734B2 JP2673734B2 (en) 1997-11-05

Family

ID=14817058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121673A Expired - Lifetime JP2673734B2 (en) 1990-05-10 1990-05-10 Pump operating status detection method

Country Status (1)

Country Link
JP (1) JP2673734B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261335A (en) * 2007-04-11 2008-10-30 Hamilton Sundstrand Corp Turbomachine
JP2019124180A (en) * 2018-01-17 2019-07-25 株式会社酉島製作所 pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207940A (en) * 1985-03-12 1986-09-16 Mitsubishi Heavy Ind Ltd Measuring method for torque
JPS62237096A (en) * 1986-04-04 1987-10-17 Kubota Ltd Operation method of rotational conical type pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207940A (en) * 1985-03-12 1986-09-16 Mitsubishi Heavy Ind Ltd Measuring method for torque
JPS62237096A (en) * 1986-04-04 1987-10-17 Kubota Ltd Operation method of rotational conical type pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261335A (en) * 2007-04-11 2008-10-30 Hamilton Sundstrand Corp Turbomachine
JP2019124180A (en) * 2018-01-17 2019-07-25 株式会社酉島製作所 pump

Also Published As

Publication number Publication date
JP2673734B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
KR20070085658A (en) Method for regulating the maximum speed of a working machine and associated hydrodynamic coupling
JPH0733829B2 (en) Scroll compressor
US5634772A (en) System for controlling operation of turbo type fluid machinery
JPH0419392A (en) Method for detecting operation condition of pump and method for supplying lubricating water to bearing of pump
JP2008128000A (en) Pump device
JPH0419393A (en) Method for detecting operation condition of pump and method for supplying lubricating water to bearing of pump
JP7055737B2 (en) Drive unit with multiple motor assemblies
KR20000059905A (en) Method for controlling compressor drive of the inverter refrigerator
JPH04269395A (en) Pump operating state detecting method and lubricating water supply method to pump bearing
JPH0726623B2 (en) Vacuum unit
JPH08240196A (en) Lubricating water supply control method for bearing of pump
JP2673736B2 (en) Method of detecting operating condition of engine driven pump and method of supplying lubricating water to pump bearing
JP2665996B2 (en) Pump operating condition detection method and lubricating water supply method for pump bearings
JP2626828B2 (en) Lubricating water supply method for bearing of induction motor driven pump
KR20010063168A (en) Method for controlling a compressor of air conditioning systems
JPH03100395A (en) Enclosed compressor
JPH03111696A (en) Supply of lubricating water to bearing of engine driving pump
JPH09209902A (en) Hydraulic machine and operation method thereof
JP3030847U (en) Variable speed water pressurizer
JPH03117700A (en) Method for supplying lubricating water to bearing of diesel engine drive pump
JPH07305692A (en) Method for driving motor pump device and motor pump device
JP4240599B2 (en) Water supply equipment
JPH03124999A (en) Lubricalting water feeding method to bearing of induction motor-driven pump
JPH0861282A (en) Operation control method for vacuum pump attached to mixed flow pump
JPS61108790A (en) Surge control system