JPH04193466A - Polishing method for sedimentary film for electronic photography and manufacture of photosensitive body for electronic photography - Google Patents

Polishing method for sedimentary film for electronic photography and manufacture of photosensitive body for electronic photography

Info

Publication number
JPH04193466A
JPH04193466A JP31806990A JP31806990A JPH04193466A JP H04193466 A JPH04193466 A JP H04193466A JP 31806990 A JP31806990 A JP 31806990A JP 31806990 A JP31806990 A JP 31806990A JP H04193466 A JPH04193466 A JP H04193466A
Authority
JP
Japan
Prior art keywords
polishing
deposited film
resin layer
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31806990A
Other languages
Japanese (ja)
Inventor
Shigenori Ueda
重教 植田
Koji Yamazaki
晃司 山崎
Toshiyuki Ebara
俊幸 江原
Hitoshi Murayama
仁 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31806990A priority Critical patent/JPH04193466A/en
Publication of JPH04193466A publication Critical patent/JPH04193466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformly polish without missing the head of a spherical projection even if a foreign matter is developed abnormally as a spherical projection with its sticking to the surface at the sedimentary film forming time of the sedimentary film for an electronic photography, by forming a resin layer on the sedimentary film prior to polishing the sedimentary film. CONSTITUTION:A sedimentary film 2 for an electronic photography composed of a noncrystalline substance which makes a silicon atom as the host formed on a substrate 1 with a microwave plasma CVD method, is polished by a polishing tape 108. In this case, a resin layer 3 is formed on the sedimentary film 2 prior to polishing this sedimentary film 2. It can thus by polished without missing the spherical projection 404 and can be polished without giving the damage of a flaw, etc., on the sedimentary film 2 surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は円筒状等の回転体形状を有する被加工物を回転
させながら表面研磨する方法に関して、例えば電子写真
感光体等のようにMII密で均一な表面研磨処理の要求
される堆積膜の表面に傷等のダメージを与えることなく
研磨するのに好適な研磨方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of polishing the surface of a workpiece having a rotating body shape such as a cylinder while rotating it, and relates to a method for polishing the surface of a workpiece having a rotating body shape such as a cylinder, etc. The present invention relates to a polishing method suitable for polishing the surface of a deposited film, which requires uniform surface polishing, without causing damage such as scratches.

〔従来の技術〕[Conventional technology]

従東 電子写真感光体に用いる素子部材として、非単結
晶堆積既 例えば水素又は/及びハロゲン(例えば弗乳
 塩素等)で補償されたアモルファスシリコン等のアモ
ルファス堆積膜が提案さ枳その幾つかは実用に付されて
いる。
Yoto: Amorphous deposited films such as amorphous silicon compensated with non-single crystal deposits (e.g., hydrogen and/or halogens (e.g., chlorine, etc.)) have been proposed as element components for use in electrophotographic photoreceptors, but some of them have been put into practical use. It is attached to.

こうした堆積膜の形成方法として従東 スパッタリング
法、熱により原料ガスを分解する方法(熱CVD法)、
光により原料ガスを分解する方法(光CVD法)、プラ
ズマにより遼料ガスを分解する方法(プラズマCVD法
)鳳 多数知られている。中でも、プラズマCVD法、
すなわち、原料ガスを直流又は高周波、マイクロ波グロ
ー放電等によって分解し ガラス、石英、耐熱合成樹脂
フィルム、ステンレス、アルミニウム等の基体上に薄膜
状の堆積膜を形成する方法は電子写真用アモルファスシ
リコン堆積膜の形成方法瓢 現在実用化が非常に進んで
おり、そのための装置も各種提案されている。特しミ 
近年堆積膜形成方法としてマイクロ波グロー放電分解を
用いたプラズマCVD法すなわちマイクロ波プラズマC
VD法が工業的にも注目されている。
Methods for forming such deposited films include the Yoto sputtering method, a method of decomposing raw material gas with heat (thermal CVD method),
Many methods are known, including a method of decomposing raw material gas using light (photo-CVD method) and a method of decomposing fluorine gas using plasma (plasma CVD method). Among them, plasma CVD method,
That is, amorphous silicon deposition for electrophotography is a method in which a raw material gas is decomposed by direct current, high frequency, microwave glow discharge, etc., and a thin film is formed on a substrate such as glass, quartz, heat-resistant synthetic resin film, stainless steel, aluminum, etc. Film Formation Method Practical use is currently very advanced, and various devices have been proposed for this purpose. Special Mi
In recent years, the plasma CVD method using microwave glow discharge decomposition, that is, microwave plasma C, has been used as a deposited film forming method.
The VD method is also attracting attention from an industrial perspective.

マイクロ波プラズマCVD法IL  他の方法に比べ高
いデポジション速度と高い原料ガス利用効率という利点
を有している。こうした利点を生かしたマイクロ波プラ
ズマCVD技術の1つの例が、米国特許4,504. 
518号に記載されている。
Microwave plasma CVD method IL has the advantage of higher deposition rate and higher raw material gas utilization efficiency than other methods. One example of microwave plasma CVD technology that takes advantage of these advantages is U.S. Pat. No. 4,504.
It is described in No. 518.

該特許に記載の技術1i、0. 1Torr以下の低圧
によりマイクロ波プラズマCVD法により高速の堆積速
度で良質の堆積膜を得るというものであ更へ マイクロ
波プラズマCVD法により原料ガスの利用効率を改善す
るための技術が特開昭60−186849号公報に記載
されている。該公報に記載の技術は、概要、マイクロ波
エネルギーの導入手段を取り囲むように基体を配置して
内部チャンバー(すなわち放電空間)を形成するように
して、原料ガス利用効率を非常に高めるようにしたもの
である。
The technology described in the patent 1i, 0. The method is to obtain a high-quality deposited film at a high deposition rate using the microwave plasma CVD method using a low pressure of 1 Torr or less.A technology for improving the utilization efficiency of raw material gas by the microwave plasma CVD method was published in 1983. It is described in the publication No.-186849. The technology described in this publication is summarized as follows: A base body is arranged to surround a means for introducing microwave energy to form an internal chamber (i.e., a discharge space), thereby greatly increasing the raw material gas utilization efficiency. It is something.

また、特開昭61−283116号公報には、半導体部
材製造用の改良形マイクロ波技術が開示されている。す
なわち、当該公報は、放電空間中にプラズマ電位制御と
して電極(バイアス電極)を設はミ このバイアス電極
に所望の電圧(バイアス電圧)を印加して堆積膜へのイ
オン衝撃を制御しながら膜堆積を行うようにして堆積膜
の特性を向上させる技術を開示している。
Additionally, Japanese Patent Laid-Open No. 61-283116 discloses an improved microwave technique for manufacturing semiconductor components. In other words, the publication discloses that an electrode (bias electrode) is installed in the discharge space to control the plasma potential, and a desired voltage (bias voltage) is applied to this bias electrode to deposit a film while controlling ion bombardment on the deposited film. Discloses a technique for improving the characteristics of a deposited film by performing the following steps.

これらの従来の技術により比較的厚い光導電性材料を、
ある程度高速の堆積速度と原料ガスの利用効率で製造す
ることが可能となっf、  このようにして改良された
従来の電子写真感光体製造方法頃 例えば第2図aの縦
断面1 第2図すの横断面図で示されている電子写真感
光体の生産用の堆積膜形成装置によって実施されれる。
These conventional techniques make relatively thick photoconductive materials
It has become possible to manufacture the electrophotographic photoreceptor with a relatively high deposition rate and raw material gas utilization efficiency. This is carried out by a deposited film forming apparatus for producing an electrophotographic photoreceptor, which is shown in a cross-sectional view.

第2図a及び、第2図すにおいて201は反応容器であ
り、真空気密化構造を成している。また、202檄 マ
イクロ波電力を反応容器内に効率よく透過し かつ真空
気密を保持し得るような材料(例えば石英ガラス、アル
ミナセラミックス等)で形成されたマイクロ波導入誘電
体窓である。203はマイクロ波電力の伝送を行う導波
管であり、マイクロ波電源から反応容器近傍までの矩形
の部分と、反応容器に挿入された円筒形の部分から成っ
ている。導波管203はスタブチューナー(図示せず)
、アイソレーター(図示せず)とともにマイクロ波電源
(図示せず)に接続されている。
In FIGS. 2a and 2, 201 is a reaction vessel, which has a vacuum-tight structure. In addition, it is a microwave introduction dielectric window made of a material (for example, quartz glass, alumina ceramics, etc.) that can efficiently transmit microwave power into the reaction vessel and maintain vacuum tightness. A waveguide 203 transmits microwave power, and consists of a rectangular portion extending from the microwave power source to the vicinity of the reaction container, and a cylindrical portion inserted into the reaction container. The waveguide 203 is a stub tuner (not shown)
, connected to a microwave power source (not shown) along with an isolator (not shown).

誘電体窓202は反応容器内の雰囲気を保持するために
導波管203の円筒形の部分、内壁に気密封止されてい
る。204は一端が反応容器20i内に関ロレ 他端が
排気装置(図示せず)に連通している排気管である。2
06は基体1により囲まれた放電空間を示す。電源21
1はバイアス電極212に直流電圧を印加するための直
流電源(バイアス電源)であり電極212に電気的に接
続されている。
The dielectric window 202 is hermetically sealed to the inner wall of the cylindrical portion of the waveguide 203 in order to maintain the atmosphere within the reaction vessel. Reference numeral 204 is an exhaust pipe having one end connected to the inside of the reaction vessel 20i and the other end communicating with an exhaust system (not shown). 2
06 indicates a discharge space surrounded by the base 1. power supply 21
1 is a DC power supply (bias power supply) for applying a DC voltage to the bias electrode 212, and is electrically connected to the electrode 212.

こうした堆積膜形成装置を使用した従来の電子写真感光
体製造方法による従来の電子写真感光体の製造は以下の
ようにして行われる。まず真空ポンプ(図示せず)によ
り排気管204を介して、反応容器201を排気し、反
応容器201内の圧力をlXl0−7Torr以下に調
整する。ついでヒーター207により、基体1の温度を
200℃以上、300℃以下の温度に加熱保持する。そ
こで不図示のガス導入手段を介して、シランガス、水素
ガス等の原料ガスが反応容器201内に導入される。そ
れと同時併行的にマイクロ波電源208により周波数2
.45GHzのマイクロ波を発生させ、導波管203を
通し 誘電体窓202を介して反応容器201内に導入
される。更に放電空間206中のバイアス電極212に
電気的に接′ 続されたバイアス電源211により、バ
イアス電極212に基体1に対してバイアス電圧を印加
する。かくして基体1により囲まれた放電空間206に
おいて、原料ガスはマイクロ波のエネルギーにより励起
されて解離し 更にバイアス電極211と基体1の間の
電界により定常的に基体1上にイオン衝撃を受けながら
、基体1表面に堆積膜が形成される。この時、基体1が
設置された回転軸209をモーター210により回転さ
せ、基体1を基体母線方向中心軸の回りに回転させるこ
とにより、基体l全周に渡って均一に堆積膜が形成され
る。
Manufacturing of a conventional electrophotographic photoreceptor by a conventional method of manufacturing an electrophotographic photoreceptor using such a deposited film forming apparatus is performed as follows. First, the reaction vessel 201 is evacuated by a vacuum pump (not shown) through the exhaust pipe 204, and the pressure inside the reaction vessel 201 is adjusted to 1X10-7 Torr or less. Next, the temperature of the substrate 1 is heated and maintained at a temperature of 200° C. or higher and 300° C. or lower using the heater 207. Therefore, a raw material gas such as silane gas or hydrogen gas is introduced into the reaction vessel 201 via a gas introducing means (not shown). At the same time, the microwave power source 208 generates frequency 2.
.. Microwaves of 45 GHz are generated and introduced into the reaction vessel 201 through the waveguide 203 and the dielectric window 202 . Furthermore, a bias voltage is applied to the substrate 1 to the bias electrode 212 by a bias power supply 211 electrically connected to the bias electrode 212 in the discharge space 206 . Thus, in the discharge space 206 surrounded by the substrate 1, the raw material gas is excited by the microwave energy and dissociated, and is constantly bombarded with ions onto the substrate 1 by the electric field between the bias electrode 211 and the substrate 1. A deposited film is formed on the surface of the substrate 1. At this time, the rotating shaft 209 on which the substrate 1 is installed is rotated by the motor 210, and the substrate 1 is rotated around the central axis in the substrate generatrix direction, thereby forming a deposited film uniformly over the entire circumference of the substrate 1. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

アモルファスシリコン1戴 他の感光体よりも表面硬度
が高いことからクリーニング性の高いブレード式クリー
ニング方式が適し 弾性ゴムブレード等が順方な カウ
ンタ一方向等の当接方法により広く用いられている。し
かしながら、このようなブレード式クリーニング方式に
おいては、アモルファスシリコン表面の凹凸部により、
長期間使用した場合、ブレードのエツジ面が破損してし
まい画像上に黒いスジ状のクリーニング不良として発生
してしまうという問題があった 上記アモルファスシリコン表面の凹凸の原因を観察した
結果、ブレード破損部に対応するアモルファスシリコン
表面にほぼ円形の形状をした突起(球状突起)が認めら
れた この部分の堆積膜を基体ごと切取り断面を顕微観
で観察すると基体近傍又1戴 堆積膜の途中&ミ 数μ
mから数十μmの大きさの異物が有り、この異物を核と
して表面に向かい柱状又は逆円錐状の異常成長が始まっ
ていることがわかった これらの球状突起は次のようなメカニズムにより発生す
ると考えられる。基体又は正常な堆積膜上へ 堆積膜の
破片等の異物が乗るとその部分でのプラズマ中の電位が
変化するため、近傍のプラズマ空間で生成される、又は
輸送されてくる活性種が異なってくる。またこのような
異物のために活性種の表面での運動が阻害さ帳 堆積膜
形成時の表面反応も異なってくる。そのため従来の電子
写真製造方法において、このように異物の上に成長した
堆積膜の部分は他の正常部分と性質の異なり電子写真的
に不十分な(特に暗抵抗の小さな)膜となる。このよう
に正常部と異なる膜質である球状突起は、正常部との密
着性も弱く欠落し易くくアモルファスシリコン表面上の
凹になり易い。
Amorphous silicon 1 Amorphous silicon has a higher surface hardness than other photoreceptors, so a blade-type cleaning method with high cleaning performance is suitable.An elastic rubber blade is widely used for contact methods such as one-way counter contact. However, in such a blade-type cleaning method, due to the unevenness of the amorphous silicon surface,
When used for a long period of time, the edge surface of the blade is damaged, resulting in poor cleaning in the form of black streaks on the image.As a result of observing the cause of the unevenness on the surface of the amorphous silicon, we found that the damaged part of the blade Approximately circular protrusions (spherical protrusions) were observed on the surface of the amorphous silicon corresponding to the above. When the deposited film in this area was cut out along with the substrate and the cross section was observed under a microscope, there were also 1 protrusions in the vicinity of the substrate. μ
It was found that there was a foreign object with a size of several tens of micrometers, and that abnormal columnar or inverted conical growth started toward the surface using this foreign object as a nucleus.These spherical protrusions are thought to occur by the following mechanism. Conceivable. When a foreign object such as a fragment of a deposited film gets on the substrate or a normal deposited film, the potential in the plasma at that part changes, so the active species generated or transported in the nearby plasma space are different. come. In addition, such foreign substances inhibit the movement of active species on the surface, resulting in different surface reactions during the formation of deposited films. Therefore, in the conventional electrophotographic manufacturing method, the portion of the deposited film that has grown on the foreign matter has different properties from other normal portions, resulting in a film that is insufficient electrophotographically (particularly with low dark resistance). In this way, the spherical protrusion, which has a film quality different from that of the normal part, has weak adhesion to the normal part and is easily broken off, and easily becomes a depression on the surface of the amorphous silicon.

この凹もクリーニングブレードのエツジを破損する原因
の一つでもある。一般に凸部の高さil  1〜30μ
mであり、凹部は1〜30μm程度ある。
This concavity is also one of the causes of damage to the edge of the cleaning blade. Generally, the height of the convex portion is 1 to 30μ
m, and the recessed portion is approximately 1 to 30 μm.

また、球状突起部は正常部分と膜の性質が異なり暗抵抗
の小さな膜となる。電子写真用堆積膜を複写機で実際に
使用する場合、帯電器による電子写真用堆積膜表面に均
一にコロナ帯電を行い、できた表面電化のクーロン力に
よりトナー像を作製する。ところカー 球状突起周辺に
帯電された表面電荷は前述の暗抵抗の小さな部分を通り
速やかに基体に抜けてしまうため番ミ その部分だけ、
 トナーを引きつけることができず、全面黒の画像では
球状突起の位置に対応した白点(白ポチと称する)とし
て画像欠陥として現わ札 画質を低下させてしまう。上
記白ポチの現象は堆積膜中に炭素を含有することにより
、球状突起部の暗抵抗がやや大きくなり、正常部分の膜
質に近くなるため、電荷保持能力が高まり、白ポチとし
て出にくくなることが検討の未判明しており球状突起の
頭部を研磨しても電荷保持能力はなんら変化せず白ポチ
の大きさ頃 変化しないことも判明したため、この球状
突起の頭部のみを研磨し 平坦化させる手段を検討する
必要があった そこで上記球状突起の頭部を研磨する手段が多々検討さ
れたが、球状突起は欠落し易く、また、硬度的にももろ
く、破損し易いためその破片によりアモルファスシリコ
ンの表面を傷付けることがあった そのため球状突起の
研磨条件は球状突起を欠落させないように研磨部材の圧
接圧や研磨速度、研磨時間等が狭い範囲に限定されてし
まう問題点があり、これらの問題点を解決する研磨方法
が要望されていた 本発明は上記の問題点を解決−球状突起を欠落させずに
研磨が可能であり、堆積膜表面に傷等のダメージを与え
ずに研磨が可能な、しかも広範囲の研磨条件が実施でき
る堆積膜の研磨方法を提供することを目的とする。また
本発明は研磨により欠陥を生じることのない電子写真用
感光体ドラムの製造方法を提供することを目的とする。
Furthermore, the film properties of the spherical protrusion are different from those of the normal part, and the film has a small dark resistance. When a deposited film for electrophotography is actually used in a copying machine, the surface of the deposited film for electrophotography is uniformly charged with corona using a charger, and a toner image is created by the Coulomb force of the surface electrification. However, the surface charge around the spherical protrusion passes through the small dark resistance area mentioned above and quickly escapes to the substrate.
It cannot attract toner, and in an entirely black image, an image defect appears as a white dot (referred to as a white dot) corresponding to the position of the spherical protrusion, degrading the image quality of the tag. The phenomenon of white spots mentioned above is caused by the inclusion of carbon in the deposited film, which causes the dark resistance of the spherical protrusions to become slightly larger, making the film quality closer to that of a normal part, increasing the charge retention ability and making it difficult for white spots to appear. However, it has not been investigated yet, and it was found that polishing the head of the spherical protrusion does not change the charge retention ability, which is about the size of a white dot. Therefore, only the head of the spherical protrusion was polished to make it flat. Therefore, many methods were considered to polish the head of the spherical protrusion, but since the spherical protrusion is easily chipped, and is brittle and easily damaged, The surface of the amorphous silicon may be damaged.Therefore, the polishing conditions for the spherical protrusions are limited to the pressure of the polishing member, the polishing speed, the polishing time, etc. in order to prevent the spherical protrusions from being chipped. There was a need for a polishing method that would solve the problems.The present invention solves the above problems - it is possible to polish without missing the spherical protrusions, and polishing can be performed without causing damage such as scratches to the surface of the deposited film. It is an object of the present invention to provide a method for polishing a deposited film that is possible and can be carried out under a wide range of polishing conditions. Another object of the present invention is to provide a method for manufacturing an electrophotographic photosensitive drum that does not cause defects due to polishing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明1戴 マイクロ波プラズマCVD法により基体上
に形成された珪素原子を母体とする非単結晶質からなる
電子写真用堆積膜を研磨する方法において、堆積膜を研
磨するに先だって堆積膜上に樹脂層を形成する電子写真
用堆積膜の研磨方法である。
Invention 1 In a method for polishing a deposited film for electrophotography made of a non-single crystal substance with silicon atoms as a matrix formed on a substrate by microwave plasma CVD method, before polishing the deposited film, This is a method of polishing an electrophotographic deposited film forming a resin layer.

また本発明哄 マイクロ波プラズマCVD法により基体
上に珪素原子を母体とする非単結晶質からなる電子写真
用堆積膜を形成する工私 該堆積膜上に樹脂層を形成す
る工私 並びに該樹脂層および堆積膜を研磨する工程を
有する電子写真用感光体の製造方法である。
The present invention also provides a method for forming an electrophotographic deposited film made of a non-single-crystalline silicon atom on a substrate by microwave plasma CVD, a method for forming a resin layer on the deposited film, and the resin. This is a method for manufacturing an electrophotographic photoreceptor, which includes a step of polishing a layer and a deposited film.

本発明によれ1戴 電子写真用堆積膜を良好に研磨する
ことができ、優れた電子写真用感光体を製造することが
できる。
According to the present invention, an electrophotographic deposited film can be polished well, and an excellent electrophotographic photoreceptor can be manufactured.

基体としては電子写真用感光体に用いられている公知の
基体を特に制限なく用いることができる。
As the substrate, any known substrate used in electrophotographic photoreceptors can be used without particular limitation.

本発明が適用できる基体の形状としては回転体形状 特
に円筒状が好ましい。
The shape of the base body to which the present invention can be applied is preferably a rotating body shape, particularly a cylindrical shape.

基体上に形成される堆積膜には、またその形成方法も公
知の珪素原子を母体とする非単結晶もの、マイクロ波プ
ラズマCVD法を適用できる。該電子写真用堆積膜には
炭素原子を含有させることが好ましい。
The deposited film formed on the substrate can also be formed by a known non-single crystal film using silicon atoms as a matrix, or by a microwave plasma CVD method. It is preferable that the electrophotographic deposited film contains carbon atoms.

樹脂層に用いる樹脂はアクリル樹脂、ポリエステル樹脂
、アクリル化ウレタン樹脂、ウレタン樹脂その他の樹脂
等が好適な樹脂として挙げられる。
Suitable resins used for the resin layer include acrylic resin, polyester resin, acrylated urethane resin, urethane resin, and other resins.

樹脂の特性1戴 JIS K 72鳳 AST閘D78
5に定められるロックウェル硬さで、ロックウェルR9
0〜120、ASTM D 256に定められる衝撃強
さ(アイゾツト・ノツチ)で、5.0kgcm/cm以
L  ASTM D570に定められる吸水率で0.1
%以下がそれぞれ好ましい。
Characteristics of resin 1 JIS K 72 Otori AST lock D78
Rockwell hardness defined as 5, Rockwell R9
0 to 120, impact strength (isot notch) defined by ASTM D 256, 5.0 kgcm/cm or more, water absorption rate defined by ASTM D570, 0.1
% or less is preferable.

樹脂層の厚さ1戴 好ましくは1μm〜50μ亀さらに
好適には10μm〜30μmである。
The thickness of the resin layer is preferably 1 μm to 50 μm, more preferably 10 μm to 30 μm.

樹脂の塗布方法にも特に制限はないが、浸漬塗布法本 
均一な厚さの樹脂層を形成できる方法が好ましい。
There are no particular restrictions on the resin application method, but dip coating methods are recommended.
A method that can form a resin layer of uniform thickness is preferred.

樹脂層および堆積膜を研磨する方法としても特に制限は
ない力τ、電子写真用堆積膜および樹脂層が形成された
円筒状基体をその中心を軸として回転させ、該円筒状基
体の局面に研磨部材を当接させつつ該円筒状基体の周速
度と異なる速度で該研磨部材を送ることにより研磨を行
うことが好ましい。研磨部材の送り方向代 円筒状基体
の回転方向に対して順方向とするのが更に好ましい。研
磨部材は円筒状基体の母線方向と平行に配置することも
好ましい。円筒状基体の回転速度は好ましくは50〜6
00mm/see、  さらに好ましくは200〜40
0mm/seeであり、研磨部材の送り速度は好ましく
は5〜100mm+/win、  さらに好ましくは4
0〜60mm/a+inである。
There are no particular restrictions on the method of polishing the resin layer and the deposited film.The cylindrical substrate on which the deposited film for electrophotography and the resin layer are formed is rotated around its center using a force τ, and the cylindrical substrate is polished on the curved surface. It is preferable to carry out polishing by sending the polishing member at a speed different from the circumferential speed of the cylindrical base while bringing the members into contact with each other. It is more preferable to feed the polishing member in the forward direction with respect to the rotational direction of the cylindrical base. It is also preferable that the polishing member is arranged parallel to the generatrix direction of the cylindrical substrate. The rotational speed of the cylindrical substrate is preferably 50 to 6
00mm/see, more preferably 200-40
0mm/see, and the feed rate of the polishing member is preferably 5 to 100mm+/win, more preferably 4
It is 0 to 60 mm/a+in.

ところで、マイクロ被プラズマCVD法以外の従来の技
術として、特開昭5.6−62254号及び特開昭57
−119356号に哄 アモルファスシリコンを主体と
する電子写真感光体の堆積膜中に炭素原子を含有させる
ことにより電子写真特性を向上させる技術が開示されて
いる。しがし、これらの公報に頃 球状突起を原因とす
るクリーニング不良についての記載は無く、更に堆積膜
形成後に表面の球状突起の頭部を研磨することを示唆す
る記載もない。
By the way, as conventional techniques other than the micro plasma CVD method, Japanese Patent Laid-Open No. 5.6-62254 and Japanese Patent Laid-open No. 57
No. 119356 discloses a technique for improving electrophotographic characteristics by incorporating carbon atoms into a deposited film of an electrophotographic photoreceptor mainly composed of amorphous silicon. However, these publications do not mention cleaning failures caused by spherical protrusions, and furthermore, there is no mention of polishing the heads of the spherical protrusions on the surface after forming a deposited film.

また、特開昭62−84965号及び特開昭62−18
8665号には電子写真感光体の表面を研磨することに
より膜厚むらを補正する技術が開示されている。また、
特開昭63−311259号に1戴 表面の粗さを平滑
にすることにより、画像流れを防止する技術が開示され
ている。しがしこれらの公報で哄 クリーニング不良と
表面研磨の関係については全く示唆されていない。
Also, JP-A-62-84965 and JP-A-62-18
No. 8665 discloses a technique for correcting film thickness unevenness by polishing the surface of an electrophotographic photoreceptor. Also,
JP-A-63-311259 discloses a technique for preventing image blurring by smoothing the roughness of the surface. However, these publications do not at all suggest a relationship between poor cleaning and surface polishing.

〔実施例〕〔Example〕

以下、本発明の効果を実験例を用いて具体的に説明する
カー 本発明はこれらによりなんら限定されるものでは
ない。
Hereinafter, the effects of the present invention will be specifically explained using experimental examples.The present invention is not limited to these in any way.

実施例1 マイクロ波プラズマCVD法によりアモルファスシリコ
ン膜を堆積形成した後にその表面に、本発明の樹脂コー
ティングを行いその後に研磨工程を行い評価を行っjら まず第2図a及び第2図すで示す堆積膜形成装置を用い
、第1表の条件に従い第7図aに示す3層構成(電化注
入阻止層2 a、  光導電層2および表面保護層2c
)の堆積膜をアルミ基体1上に形成した。
Example 1 After an amorphous silicon film was deposited and formed by microwave plasma CVD, the surface of the amorphous silicon film was coated with the resin of the present invention, and then a polishing process was performed for evaluation. A three-layer structure (charge injection blocking layer 2a, photoconductive layer 2 and surface protective layer 2c) shown in FIG.
) was formed on the aluminum substrate 1.

アルミ基体上に堆積膜を形成した後、第3図に示した塗
工装置を用いた浸漬塗布により樹脂層を基体周面に均一
に形成した 樹脂層の浸漬塗布工程を第3図を参照しつつ説明する。
After forming a deposited film on an aluminum substrate, a resin layer is uniformly formed on the circumferential surface of the substrate by dip coating using the coating device shown in FIG. 3. Referring to FIG. I will explain.

塗布ポット307の中の樹脂303が攪拌モーター30
5により回転する攪拌器304により攪拌されている。
The resin 303 in the coating pot 307 is connected to the stirring motor 30.
The mixture is stirred by a stirrer 304 rotated by a rotor 5.

アモルファスシリコン感光体(円筒状基体に堆積膜を形
成したもの)5は、シリンダー306の上にクランプ3
02により固定さね液状樹脂303へ浸漬し 次に12
0mm/ s e第1表 (以下余白) Cの速度で上昇し アモルファスシリコンドラム301
の表面に樹脂層を形成する。
An amorphous silicon photoreceptor (a deposited film formed on a cylindrical base) 5 is placed on a cylinder 306 by a clamp 3.
Dip the fixed tongue into liquid resin 303 by 02 and then 12
0mm/s eTable 1 (margins below) Rising at a speed of C Amorphous silicon drum 301
Form a resin layer on the surface.

本例においては、微粉砕したPTFE樹脂(商品名 ル
ブロンL2、ダイキン工業製)20服塩ビー酢ビ共重合
体(商品名: VMCH,UCC製)100部をメチル
エチルケトン溶剤で粘度240cps (センチポイズ
)に希釈した液状樹脂を用い、 120mm/mi n
の速度で浸漬塗布を行い、さらに100℃で5分間の乾
燥を行い30μmの樹脂層を形成した 次に第1図に示す研磨装置により以下の手順で研磨し感
光体表面を平滑化した まず研磨装置本体101中の研磨ユニット102を上方
に上げクランプ103により固定しておく。堆積膜およ
び樹脂層が形成された円筒状基体からなる電子写真用感
光体5を支持体104と組み合わせ、シャフト106に
固定し九 ついでクランプ103を緩め、研磨ユニット
102を下方に降ろし 圧接ローラー107により研磨
テープ108を電子写真感光体5に圧接させtら 研磨
テープ108としてはポリエステルフィルム上に平均粒
径8μmの炭化珪素粉末を塗布したものを用いへ 圧接
ローラー107は表面にウレタンゴム(JIS硬度′ 
60)を被覆したものを用いたこの時、圧差用のバネ1
09を調節して、圧接ローラー107を介して研磨テー
プ108を電子写真感光体105に圧着させる圧力な線
圧40g/ c m、  接触中(以降「ニップ巾」と
称する)を0、 5mmとした。
In this example, 100 parts of finely ground PTFE resin (trade name: Lublon L2, manufactured by Daikin Industries, Ltd.) and 100 parts of chloride-vinyl acetate copolymer (trade name: VMCH, manufactured by UCC) were adjusted to a viscosity of 240 cps (centipoise) using a methyl ethyl ketone solvent. Using diluted liquid resin, 120mm/min
The coating was carried out by dip coating at a speed of The polishing unit 102 in the apparatus main body 101 is raised upward and fixed with a clamp 103. An electrophotographic photoreceptor 5 consisting of a cylindrical substrate on which a deposited film and a resin layer have been formed is combined with a support 104 and fixed to a shaft 106. Next, the clamp 103 is loosened, and the polishing unit 102 is lowered downward by a pressure roller 107. The polishing tape 108 is brought into pressure contact with the electrophotographic photoreceptor 5.The polishing tape 108 is a polyester film coated with silicon carbide powder having an average particle size of 8 μm.The pressure roller 107 has a surface made of urethane rubber (JIS hardness
At this time, the spring 1 for pressure difference is
09 was adjusted so that the linear pressure for pressing the abrasive tape 108 onto the electrophotographic photoreceptor 105 via the pressure roller 107 was 40 g/cm, and the contact (hereinafter referred to as "nip width") was 0.5 mm. .

次を−回転数が可変のモーター110及び111を回転
味 研磨を開始した 研磨テープ108の送り速度は5
0mm/min、  被研磨部材である電子写真感光体
5の回転速度は周速度で300mm/s ecとした 
この研磨テープ108の送り速度と電子写真感光体5の
回転速度の差分により研磨が実行される。
Next - Rotate the motors 110 and 111 with variable rotation speed. Polishing has started. The feed speed of the polishing tape 108 is 5.
0 mm/min, and the rotational speed of the electrophotographic photoreceptor 5, which is the member to be polished, was 300 mm/sec in peripheral speed.
Polishing is performed based on the difference between the feeding speed of the polishing tape 108 and the rotational speed of the electrophotographic photoreceptor 5.

上記の条件の元で30分間研磨を行い研磨工程を終了し
た。
The polishing process was completed by polishing for 30 minutes under the above conditions.

研磨工程で代 特に限定はされないカー 研磨材を塗布
した研′磨テープを用いる研磨方法が好適である。
Although the polishing process is not particularly limited, a polishing method using a polishing tape coated with an abrasive is preferred.

好ましい研磨材としてはシリカ(S i O2)、  
アルミナ(A 203 )、酸化鉄(Fe2rs)、炭
化珪素(SiC)、窒化炭素(Cs N a )、酸化
セリウム(CaO)等の微粉末がある。研磨材の平均粒
径として1戴 平均粒径が小さすぎると研磨速度が低下
し、実質的な研磨時間の増大を招き、大きすぎると研磨
速度が非常に速くなり、口約とする球状突起以外の部分
にも影響を与えてしまう。具体的に番戴 1μm以上、
 20μm以下が望ましい。
Preferred abrasives include silica (S i O2),
There are fine powders of alumina (A203), iron oxide (Fe2rs), silicon carbide (SiC), carbon nitride (CsNa), cerium oxide (CaO), and the like. The average particle size of the abrasive is 1. If the average particle size is too small, the polishing speed will decrease and the polishing time will actually increase. It also affects the parts of Specifically, the number is 1μm or more,
The thickness is preferably 20 μm or less.

研磨材の微粉末を塗布するベース材料としてはフィルム
状の形状のものが好ましく、ポリアミド、ポリエステル
、ポリウレタン、ポリ深黒 ポリオレフィン、ポリスチ
レン、ポリ塩化カビニル、ポリ塩化ビニリデン、ポリ弗
化エチレン、ポリアクリロニトリル、ポリビニルアルコ
ール、ポリシアン化ビニリデン等の有機高分子、ステン
レス等の金属薄罠 紙等が挙げられる。中でも軽量且つ
強度もあること、安価で大量生産が可能で環境変化に強
い等の理白により有機高分子フィルムが最適である。具
体的に法 富士フィルム社製ラッピングテープC−20
00,住友スリーエム社製ラッピングテープ等が挙げら
れる。
The base material on which the fine abrasive powder is applied is preferably in the form of a film, such as polyamide, polyester, polyurethane, polyolefin, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyfluoroethylene, polyacrylonitrile, Examples include organic polymers such as polyvinyl alcohol and vinylidene polycyanide, and thin metal paper such as stainless steel. Among these, organic polymer films are most suitable because they are lightweight and strong, can be produced in large quantities at low cost, and are resistant to environmental changes. Specifically, Wrapping tape C-20 manufactured by Fuji Film Co., Ltd.
00, wrapping tape manufactured by Sumitomo 3M Co., Ltd., and the like.

研磨装置に用いられる圧接ローラーとしてはいずれの材
質でも良いが(例えばネオプレンゴム、シリコンゴム等
でJIS)(S硬度が40〜60・のものが好ましい。
The pressure roller used in the polishing device may be made of any material (for example, neoprene rubber, silicone rubber, etc. according to JIS standards) (with an S hardness of 40 to 60.

)圧接ローラーが必要以上に堅い場合には研磨テープに
よる傷が被研磨部材である電子写真感光体に発生し ま
た、必要以上に柔らかい場合には圧接圧力が研磨テープ
に伝わらず、実質的に研磨速度の低下を招くため、例え
ば表面をシリコンゴムあるいはウレタン等の材料で被覆
したものが望ましい。更!、  圧接圧力に応じて研磨
テープと電子写真感光体との間で、適切な量のニップ巾
をもたせることが可能なローラーが好ましい。この時ニ
ップ巾としては、001mm以上、 3mm以下が望ま
しい。圧接圧力としては線圧として10 g / c 
m以1,500g/cm以下が望ましい。
) If the pressure roller is harder than necessary, scratches from the polishing tape will occur on the electrophotographic photoreceptor, which is the member to be polished.If the pressure roller is softer than necessary, the pressure will not be transmitted to the polishing tape, and the polishing will not actually be done. To avoid slowing down the speed, it is desirable that the surface be coated with a material such as silicone rubber or urethane. More! A roller that can provide an appropriate amount of nip width between the abrasive tape and the electrophotographic photoreceptor depending on the pressing pressure is preferable. At this time, the nip width is desirably 0.001 mm or more and 3 mm or less. The contact pressure is 10 g/c as a linear pressure.
m or more and 1,500 g/cm or less.

更シミ 圧接ローラーの代わりに凸型に湾曲した圧接部
材を用いても良い。
A convexly curved pressing member may be used instead of the pressing roller.

第4図a及びbに示すようをミ 研磨が進につれて、核
405より異常成長した球状突起404は樹脂層3ごと
研磨される。
As shown in FIGS. 4a and 4b, as the polishing progresses, the spherical protrusion 404 that has grown abnormally from the nucleus 405 is polished together with the resin layer 3.

研磨工程終了後アモルファスシリコン感光体表面及び断
面を顕微鏡により観察したところ研磨工程による球状突
起の欠落や欠落による口拡 また、球状突起の破片によ
るアモルファスシリコン表面のキズはなかっtラ  更
1ミ 第4図Cに示すようへ初期より堆積膜が剥がれて
いた凹部406には樹脂が残り平坦な面になっており、
また球状突起404の頭部が5μm程度残った部分は樹
脂層403がスロープ状に残っていた 比較例1 実施例1と同様に3層構成の堆積膜を形成したその後、
第1図に示す研磨装置により研磨工程を行った ただし
 堆積膜形成後樹脂の浸漬塗布は行わなかった このよ
うにして研磨工程を終了したアモルファスシリコン感光
体を実施例1と同様に観察した結果 球状突起の欠落に
よる四部が増加した また球状突起の欠落した破片によ
りアモルファスシリコン感光体の表面の周方向に傷が発
生しているのが確認された 実施例2 実施例1と同様に3層構成の堆積膜を形成し樹脂層を形
成し 研磨を行った 但し樹脂層は実施例1と異なり、
光硬化壓アクリル化ウレタン樹脂(商品名″ ゾンネ、
関西ペイント社製)をメチルアルコール/メチルエチル
ケトン(31)の混合溶剤により粘度を12(Lcps
に希釈し120mm/minの速度で浸漬塗布した後、
炉内温度100℃のUV乾燥装置(図示せず)により5
分間乾燥し さらに30秒間紫外線を照射して30μm
の樹脂層を形成した 研磨工程を終了したアモルファス
シリコン感光体を実施例1と同様の方法で表面及び断面
を顕微鏡により観察した結果実施例1と同様の結果が得
られた 実施例3 第2図a1  第2図すに示す堆積膜形成装置を用いて
マイクロ波プラズマCVD法により、第1表の条件によ
り表面荒さ○ 15s以下の表面粗度のアルミニウム製
円筒形基体1に第7図aで示した3層構成の非晶質シリ
コンを堆積しf。
After the polishing process was completed, the surface and cross section of the amorphous silicon photoreceptor were observed under a microscope. There was no damage to the amorphous silicon surface due to the loss of spherical protrusions due to the polishing process or the opening caused by the loss of the spherical protrusions. As shown in Figure C, resin remains in the concave portion 406 where the deposited film had peeled off from the initial stage, resulting in a flat surface.
Comparative Example 1 In which the resin layer 403 remained in the shape of a slope where the head of the spherical protrusion 404 remained by about 5 μm, a three-layer deposited film was formed in the same manner as in Example 1.
The polishing process was carried out using the polishing apparatus shown in Fig. 1.However, dip coating of the resin was not performed after the deposited film was formed.The amorphous silicon photoconductor that had undergone the polishing process in this way was observed in the same manner as in Example 1.The result was a spherical shape. Example 2 In addition, it was confirmed that the number of four parts increased due to missing protrusions.Founds were also observed in the circumferential direction of the surface of the amorphous silicon photoreceptor due to fragments of missing spherical protrusions.Similar to Example 1, a three-layer structure was used. A deposited film was formed, a resin layer was formed, and polishing was performed. However, the resin layer was different from Example 1.
Light-cured acrylic urethane resin (product name: Sonne,
(manufactured by Kansai Paint Co., Ltd.) was reduced to a viscosity of 12 (Lcps) using a mixed solvent of methyl alcohol/methyl ethyl ketone (31).
After diluting it and applying it by dip coating at a speed of 120 mm/min,
5 using a UV drying device (not shown) with a furnace temperature of 100°C.
Dry for a minute, then irradiate with ultraviolet light for another 30 seconds to create a 30μm
Example 3 The surface and cross section of the amorphous silicon photoreceptor that had undergone the polishing process on which the resin layer was formed were observed under a microscope in the same manner as in Example 1, and the same results as in Example 1 were obtained. a1 Using the deposited film forming apparatus shown in Fig. 2, a microwave plasma CVD method was applied to an aluminum cylindrical substrate 1 with a surface roughness of ○ 15 seconds or less according to the conditions shown in Table 1, as shown in Fig. 7a. A three-layer structure of amorphous silicon is deposited.

樹脂層の形成工程で(戴 微粉砕したPTFE樹脂(商
品名ニルブロンL2、ダイキン工業社製)20服 塩ビ
ー酢ビ共重合体(商品名 VMCH1UCC社製)10
0部をメチルエチルケトン溶剤で粘度240cpsに希
釈した後に120mm/m i nの速度で第3図に示
した浸漬塗工装置により浸漬塗布を行い100℃で5分
間の乾燥を行い30μmのPTFE層を形成した また、研磨工゛程では第1図の研磨装置を用い実施例1
と同様に研磨を行った 研磨工程を終了したアモルファスシリコン感光体の電子
写真装置に与える耐久性の評価を以下のようにして行っ
た 上記工程を終了したアモルファスシリコン感光体をキャ
ノン■製複写機、N−P−7550を実験用に改造した
複写装置に設置し 通常の複写プロセスにより転写紙上
に画像を作製する工程を50万枚連続して行った 第6図に示すように、この複写装置には感光体から転写
紙を剥すための分離爪603、クリーニングのためのク
リーニングローラ604およびブレード504を有する
クリーニング装置602が設けられている。
In the process of forming the resin layer (Dai) 20 pieces of finely ground PTFE resin (product name: Nilbron L2, manufactured by Daikin Industries, Ltd.) 10 pieces of vinyl chloride-vinyl acetate copolymer (product name: VMCH1, manufactured by UCC Company)
After diluting 0 part with methyl ethyl ketone solvent to a viscosity of 240 cps, dip coating was performed using the dip coating device shown in Figure 3 at a speed of 120 mm/min, and drying was performed at 100° C. for 5 minutes to form a PTFE layer of 30 μm. In addition, in the polishing process, the polishing apparatus shown in FIG. 1 was used in Example 1.
The amorphous silicon photoreceptor that had undergone the polishing process was evaluated for its durability in an electrophotographic device as described below. The NP-7550 was installed in a copying machine modified for experimental purposes, and the process of creating images on 500,000 pieces of transfer paper using the normal copying process was performed continuously.As shown in Figure 6, this copying machine A cleaning device 602 having a separation claw 603 for peeling the transfer paper from the photoreceptor, a cleaning roller 604 for cleaning, and a blade 504 is provided.

評価結果を第3表に示す。表中の記号は各々、以下のこ
とを示している。
The evaluation results are shown in Table 3. Each symbol in the table indicates the following.

1)ブレード傷 ○・ブレードエツジ面に破損が認められない。1) Blade scratches ○・No damage is observed on the blade edge surface.

△・ ブレードエツジ面に小さい破損が認められる。△・Small damage is observed on the blade edge surface.

×・・・ブレードエツジ面に大きな破損が認められる。×...Significant damage is observed on the blade edge surface.

2)クリーニング不良 ○・白画像上に黒スジが認められる。2) Poor cleaning ○: Black streaks are observed on the white image.

△・・・白画像上に数cmの黒スジが2〜3本認められ
る。
Δ: 2 to 3 black streaks of several cm are observed on the white image.

×・・白画像上に長い黒スジが認められる。×: Long black streaks are observed on the white image.

3)分離爪の摩耗 O・・分離爪の先端に摩耗が認められない。3) Wear of separation claw O: No wear is observed on the tip of the separation claw.

Δ・・分離爪の先端に摩耗が認められるが、画像上に影
響なし。
Δ: Wear is observed at the tip of the separation claw, but it does not affect the image.

×・分離爪の先端が摩耗し 爪の先端にトナーがたまり
、画像の上に落下して、画像上に黒点として吊る。
× - The tip of the separation claw is worn out, and toner accumulates on the tip of the claw, falls onto the image, and hangs as a black dot on the image.

比較例2 樹脂層を形成しなかった以外は実施例3と同様にマイク
ロ波プラズマCVD法により堆積膜を形成し アモルフ
ァスシリコン感光体の研磨工程を行った。
Comparative Example 2 A deposited film was formed by the microwave plasma CVD method in the same manner as in Example 3, except that no resin layer was formed, and a polishing process of an amorphous silicon photoreceptor was performed.

研磨工程を終了したアモルファスシリコン感光体を実施
例3と同様の評価を行った この結果を第4表に示す。
The amorphous silicon photoreceptor that had undergone the polishing process was evaluated in the same manner as in Example 3. The results are shown in Table 4.

実施例4 第2図a1  第2図すに示す堆積膜形成装置を用いて
マイクロ波プラズマCVD法により第2表の条件のもと
て4層構成の堆積膜を得た この堆積膜は第7図すに示
すよう番−基体1 (実施例3と同じもの)上&へ 電
荷注入阻止層2 al  電荷輸送層2b−1、電荷発
生層2b−2および表面保護層2Cがこの順に形成され
てなる。
Example 4 A deposited film having a four-layer structure was obtained under the conditions shown in Table 2 by the microwave plasma CVD method using the deposited film forming apparatus shown in FIG. As shown in the figure - Substrate 1 (same as in Example 3) Charge injection blocking layer 2 al Charge transport layer 2b-1, charge generation layer 2b-2 and surface protection layer 2C are formed in this order. Become.

人心へ 第3図に示す浸漬塗工装置により光硬化型アク
リル化ウレタン樹脂(商品名 ゾンネ、関西ペイント社
製)をソイチルアルコール/メチルエチルケトン(3°
 l)の混合溶剤により粘度を120cpsに希釈1.
、 120mm/m i nの速度で堆積膜上に浸漬塗
布した後、炉内温度100℃のUV乾燥装置(図示せず
)により5分間乾燥した 次に30秒間紫外線を照射し
て30pmの樹脂層を形成した さらに実施例3と同様に研磨したアモルファスシリコン
感光体について、実施例3と同様の評価を行った この
結果を第5表に示す。
Towards the human heart Soytyl alcohol/methyl ethyl ketone (3°
Dilute the viscosity to 120 cps with the mixed solvent of 1.
After coating the deposited film by dip coating at a speed of 120 mm/min, it was dried for 5 minutes using a UV drying device (not shown) with an oven temperature of 100°C, and then irradiated with ultraviolet light for 30 seconds to form a 30 pm resin layer. The same evaluation as in Example 3 was performed on the amorphous silicon photoreceptor which was further polished in the same manner as in Example 3. The results are shown in Table 5.

(以下余・白) 第2表 第3表 第4表 第5表 以上の結果、実施例3及び実施例4では第6図に示した
クリーニング装置602のブレード5゜4ばかりでなく
分離爪603をも傷付けることなく50万枚の耐久後で
もクリーニング不良がないばかりか、分離爪603の摩
耗によるトナーのボタ落ちもない良好な画像が得られた
 しかし比較例2では、第5図に示す球状突起の欠落部
406が耐久初期より増加し また、球状突起が欠落し
た破片により感光体表面を傷付けており、ブレード50
4や第6図のクリーニング装置602の分離爪603の
先端が破損したり摩耗してしまい、クリーニング不良や
分離爪603にたまったトナーの落ちによるボタ落ちと
称する黒点が画像上に発生してしまい、良好な画像は得
られなかったこれは樹脂が凹部をうめたり研磨によって
均一化されてはいるものの数μmの段差を有する凸部に
もスロープ状の樹脂層が形成されるため特に剛性の大き
い分離爪の摩耗に対して実施例3及び実施例4で鷹 顕
著な効果が認められ九 また、球状突起部は画像上、白い小さな(直径0.1m
m〜2. 0mm程度)画像抜けとなるカζ球状突起の
頭部が欠落したり半分かけたりすると帯電のコロナ放電
の偏りにより上記白抜けの周りに数mm〜数十mmにな
るポチ影と称される形状の像が白抜けと同時に発生して
しまう。ところが実施例3及び実施例4では球状突起の
破損が発生しないため上記の形状の像である画像欠陥が
激減するという予期せぬ効果もあった 更に堆積膜に炭素を含有させることにより球状突起部の
前記白い小さな画像抜けが減少L 本発明の効果をより
一層引き立てることが判明した〔発明の効果〕 本発明の電子写真用堆積膜の表面に樹脂層を設は研磨工
程を行う研磨方法により研磨を行えi!、たとえ電子写
真用堆積膜の堆積膜形成時に表面に異物が付着して球状
突起として異常成長しても球状突起の頭部を欠落するこ
となく均一な研磨が可能となり、複写機、プリンター等
で使用中にブレードや分離爪等の摩耗が少なく、サービ
スコスト等の低減に大きな効果がある。また、ハーフト
ーンモードや写真モード等のコピー時に発生する形状の
像である画像欠陥が激減するという思わぬ効果も得られ
(Hereinafter referred to as margins/blanks) Table 2 Table 3 Table 4 Table 5 As a result of the above results, in Examples 3 and 4, not only the blade 5° 4 of the cleaning device 602 shown in FIG. 6 but also the separation claw 603 Even after 500,000 sheets of printing, good images were obtained with no toner droplets due to abrasion of the separating claw 603. However, in Comparative Example 2, the spherical shape shown in FIG. The number of missing protrusions 406 has increased since the beginning of durability, and the photoreceptor surface is damaged by fragments of missing spherical protrusions, and the blade 50
The tip of the separation claw 603 of the cleaning device 602 shown in FIG. , a good image could not be obtained.Although the resin filled the recesses and made it uniform by polishing, a sloped resin layer was formed even on the convex parts with steps of several micrometers, so the rigidity was particularly high. A remarkable effect was observed in Examples 3 and 4 on the wear of the separation claws.In addition, the spherical protrusions are small white (0.1 m in diameter) in the image.
m~2. If the head of the spherical protrusion is missing or half of it is missing (approximately 0 mm), there will be a shape called a dot shadow, which will be several mm to several tens of mm around the white spot due to the bias of the charged corona discharge. The image appears at the same time as the white spot. However, in Examples 3 and 4, no breakage of the spherical protrusions occurred, so there was an unexpected effect that image defects, which are images of the above shape, were drastically reduced.Furthermore, by incorporating carbon into the deposited film, the spherical protrusions were It has been found that the effects of the present invention are further enhanced. [Effects of the Invention] The deposited film for electrophotography of the present invention is polished by a polishing method in which a resin layer is provided on the surface and a polishing step is performed. Do it! Even if foreign matter adheres to the surface of the deposited film for electrophotography and grows abnormally as a spherical protrusion, uniform polishing is possible without missing the head of the spherical protrusion. There is little wear on blades, separation claws, etc. during use, which has a great effect on reducing service costs. In addition, an unexpected effect was obtained in that image defects, which are shaped images that occur when copying in halftone mode, photo mode, etc., were drastically reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子写真感光体の研磨方法を実施する
ための研磨装置である。第2図[a>及び第2図(b)
はマイクロ波プラズマCVD法により円筒形基体上に堆
積膜を形成するための堆積膜形成装置の模式図である。 第3図は実施例で用いた浸漬塗工装置の模式図である。 第4図(a)〜(C)は本発明における研磨工程中の研
磨状況を示すための樹脂層および堆積膜の模式的断面図
である。第5図は球状突起の欠落部付近の拡大図である
。第6図は実施例で用いた評価用の電子写真装置におけ
るクリーニング装置の模式図である。第7図は実施例で
形成した堆積膜の模式的断面図である。 に基体       2.堆積膜 2a: 電荷注入阻止層 2b゛ 光導電層2b−1:
 電荷輸送層 2b−2: 電荷発生層2C:表面保護
層   3:樹脂層 5 感光体 101、研磨装置本体 102 研磨ユニット103、
 302  クランプ 104 支持体    106 シャフト107 圧接
ローラー 108 研磨テープ109° バネ 110.111、210.305 モーター112:研
磨テープロール 113:研磨テープ巻き取りロール、 114.115: ベルト 201゛反応容器 202“ マイクロ波導入窓 203、導波管    204.排気管206′放電空
間   207.ヒーター209゛ 回転軸    2
11 直流電源212 バイアス電極 303.樹脂塗
料304:攪拌器    306: シリンダー307
: 塗布ポット  403:樹脂層404 球状突起 
  405:球状突起の核406:球状突起の欠落部 504: ブレード 602° クリーニング装置 603 分難型 604′ クリーニングローラー 特許呂願人 キャノン株式会社 代 理 人 弁理士゛苦杯 忠
FIG. 1 shows a polishing apparatus for carrying out the method of polishing an electrophotographic photoreceptor of the present invention. Figure 2 [a> and Figure 2 (b)
1 is a schematic diagram of a deposited film forming apparatus for forming a deposited film on a cylindrical substrate by a microwave plasma CVD method. FIG. 3 is a schematic diagram of the dip coating apparatus used in the examples. FIGS. 4(a) to 4(C) are schematic cross-sectional views of the resin layer and the deposited film to show the polishing situation during the polishing process in the present invention. FIG. 5 is an enlarged view of the vicinity of the missing portion of the spherical protrusion. FIG. 6 is a schematic diagram of a cleaning device in an electrophotographic apparatus for evaluation used in Examples. FIG. 7 is a schematic cross-sectional view of the deposited film formed in the example. Substrate 2. Deposited film 2a: Charge injection blocking layer 2b' Photoconductive layer 2b-1:
Charge transport layer 2b-2: Charge generation layer 2C: Surface protective layer 3: Resin layer 5 Photoreceptor 101, polishing device main body 102, polishing unit 103,
302 Clamp 104 Support 106 Shaft 107 Pressure roller 108 Polishing tape 109° Springs 110, 111, 210, 305 Motor 112: Polishing tape roll 113: Polishing tape take-up roll, 114, 115: Belt 201゛Reaction vessel 202'' Microwave Inlet window 203, waveguide 204. Exhaust pipe 206' discharge space 207. Heater 209' Rotating shaft 2
11 DC power supply 212 Bias electrode 303. Resin paint 304: Stirrer 306: Cylinder 307
: Application pot 403: Resin layer 404 Spherical projection
405: Nucleus of spherical protrusion 406: Missing part of spherical protrusion 504: Blade 602° Cleaning device 603 Difficult to separate type 604' Cleaning roller Patent attorney Canon Co., Ltd. representative Patent attorney Tadashi Kukai

Claims (3)

【特許請求の範囲】[Claims] 1.マイクロ波プラズマCVD法により基体上に形成さ
れた珪素原子を母体とする非単結晶質からなる電子写真
用堆積膜を研磨する方法において、堆積膜を研磨するに
先だって堆積膜上に樹脂層を形成する電子写真用堆積膜
の研磨方法。
1. In a method for polishing a deposited film for electrophotography made of a non-single crystal substance with silicon atoms as a matrix formed on a substrate by microwave plasma CVD method, a resin layer is formed on the deposited film before polishing the deposited film. A method for polishing a deposited film for electrophotography.
2.前記研磨工程を、電子写真用堆積膜および樹脂層が
形成された基体をその中心を軸として回転させ、該基体
の周面に研磨部材を当接させつつ該基体の周速度と異な
る速度で該研磨部材を送ることにより行う請求項1に記
載の電子写真用堆積膜の研磨方法。
2. The polishing step is carried out by rotating the base on which the electrophotographic deposited film and the resin layer are formed around its center, and applying polishing at a speed different from the peripheral speed of the base while a polishing member is brought into contact with the circumferential surface of the base. The method of polishing a deposited film for electrophotography according to claim 1, which is carried out by sending a polishing member.
3.マイクロ波プラズマCVD法により基体上に珪素原
子を母体とする非単結晶質からなる電子写真用堆積膜を
形成する工程、該堆積膜上に樹脂層を形成する工程、並
びに該樹脂層および堆積膜を研磨する工程を有する電子
写真用感光体の製造方法。
3. A step of forming a deposited film for electrophotography consisting of a non-single crystal substance with silicon atoms as a matrix on a substrate by a microwave plasma CVD method, a step of forming a resin layer on the deposited film, and the resin layer and the deposited film. A method for manufacturing an electrophotographic photoreceptor, comprising the step of polishing.
JP31806990A 1990-11-26 1990-11-26 Polishing method for sedimentary film for electronic photography and manufacture of photosensitive body for electronic photography Pending JPH04193466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31806990A JPH04193466A (en) 1990-11-26 1990-11-26 Polishing method for sedimentary film for electronic photography and manufacture of photosensitive body for electronic photography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31806990A JPH04193466A (en) 1990-11-26 1990-11-26 Polishing method for sedimentary film for electronic photography and manufacture of photosensitive body for electronic photography

Publications (1)

Publication Number Publication Date
JPH04193466A true JPH04193466A (en) 1992-07-13

Family

ID=18095136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31806990A Pending JPH04193466A (en) 1990-11-26 1990-11-26 Polishing method for sedimentary film for electronic photography and manufacture of photosensitive body for electronic photography

Country Status (1)

Country Link
JP (1) JPH04193466A (en)

Similar Documents

Publication Publication Date Title
KR100256197B1 (en) Plasma process apparatus and plasma process method
JP3530667B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
WO2006134781A1 (en) Method and device for depositing film, deposited film and photosensitive body employing same
US5976745A (en) Photosensitive member for electrophotography and fabrication process thereof
EP0872770B1 (en) Light-receiving member, image forming apparatus having the member, and image forming method utilizing the member
KR100230540B1 (en) Light-receiving member, process for its production and its use in electrophotographic apparatus and method
JPH04193466A (en) Polishing method for sedimentary film for electronic photography and manufacture of photosensitive body for electronic photography
EP1004938B1 (en) Electrophotographic photosensitive member and elecrophotographic apparatus having the photosensitive member
JP3010199B2 (en) Photoconductor
WO1993025940A1 (en) Electrophotographic photoreceptor provided with light-receiving layer made of non-single crystal silicon and having columnar structure regions, and manufacturing method therefor
JPH04191748A (en) Electrophotographic sensitive body and manufacture thereof
JP3710304B2 (en) Electrophotographic equipment
JP2003084469A (en) Method and device for manufacturing electrophotographic photoreceptor
JPH10288852A (en) Electrophotographic photoreceptor
JP3571917B2 (en) Electrophotographic equipment
JPH11184121A (en) Electrophotographic photoreceptor and its production
JP2925298B2 (en) Deposition film formation method
JP3260912B2 (en) Electrophotographic photoreceptor provided with photoreceptive layer composed of non-single-crystal silicon having columnar structure region and method of manufacturing the same
JPH10301310A (en) Electrophotographic photoreceptor and its production
JP2000010313A (en) Electrophotographic device
JP2004133398A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus
JP2002139857A (en) Electrophotographic photoreceptor, electrophotographic device and method for manufacturing electrophotogaphic photoreceptor
JPH04191749A (en) Electrophotographic sensitive body and manufacture thereof
JPH04350171A (en) Method and device for forming deposited film by microwave plasma cvd device
JPH04328560A (en) Deposited film forming device