JPH0419307A - Compound power plant - Google Patents

Compound power plant

Info

Publication number
JPH0419307A
JPH0419307A JP12129190A JP12129190A JPH0419307A JP H0419307 A JPH0419307 A JP H0419307A JP 12129190 A JP12129190 A JP 12129190A JP 12129190 A JP12129190 A JP 12129190A JP H0419307 A JPH0419307 A JP H0419307A
Authority
JP
Japan
Prior art keywords
heat recovery
gas
gas turbine
steam
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12129190A
Other languages
Japanese (ja)
Other versions
JP2812534B2 (en
Inventor
Mikio Aida
相田 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2121291A priority Critical patent/JP2812534B2/en
Publication of JPH0419307A publication Critical patent/JPH0419307A/en
Application granted granted Critical
Publication of JP2812534B2 publication Critical patent/JP2812534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To aim at gas turbine output improvement by arranging an exhaust gas inhaling induced draft fan on the outlet of an exhaust heat recovery boiler for a steam turbine to be driven by steam generated in an exhaust heat recovery utilizing gas exhausted from a gas turbine. CONSTITUTION:A compound power plant supplies compressed air generated by a compressor 1 to a combustor 2 and drives a gas turbine 3, which is connected directly to a generator 4, by means of combustion gas generated by burning an object mixed with fuel. The compound power plant then supplies exhaust gas, which has finished its job, to an exhaust heat recovery boiler 6 and generates steam by heat exchange with feedwater from a feed pump 7. The steam is supplied to a steam turbine 10. Here, an induced draft fan 15 is provided on the outlet of the exhaust heat recovery boiler 6 through an induced draft fan inlet duct 16. Thus it makes it possible to reduce the back pressure of the gas turbine, increase the gas turbine thermal efficiency and improve the total efficiency of a compound power plant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合発電プラントに係り、特にガスタービン
の背圧を低減されるのに好適な排ガス通風装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combined cycle power plant, and particularly to an exhaust gas ventilation device suitable for reducing back pressure of a gas turbine.

〔従来の技術〕[Conventional technology]

急増する電力需要に応えるために大容量の火力発電所が
建設されているが、これらの火力発電用ボイラは部分負
荷時においても高い発電効率を得るために変圧運転を行
なうことが要求されている。
Large-capacity thermal power plants are being constructed to meet the rapidly increasing demand for electricity, but these thermal power boilers are required to operate at variable voltage in order to obtain high power generation efficiency even during partial load. .

これは最近の電力需要の特徴として、原子力発電の伸び
と共に、負荷の最大の最小の差も増大し、火力発電用ボ
イラはベースロード用から負荷調整用へと移行する傾向
にあるからである。
This is because, as a feature of recent electricity demand, as nuclear power generation grows, the difference between maximum and minimum loads also increases, and boilers for thermal power generation tend to shift from base load use to load adjustment use.

つまり、火力発電用ボイラを負荷調整用として運転する
場合、ボイラ負荷を常に全負荷で運転されるものは少な
く、負荷を75%負荷、50%負荷、25%負荷へと負
荷を上げ、下げして運転したり、運転を停止するなど、
いわゆる毎日起動停止(Daily 5tart 5t
op以下単にDSSという)運転などを行なって中間負
荷を担い、このDSS運転によって電力需要の多い昼間
のみ運転し、夜間は運転を停止して発電効率を向上させ
るのである。
In other words, when a boiler for thermal power generation is operated for load adjustment, there are few cases in which the boiler load is always operated at full load, and the load is increased and decreased to 75% load, 50% load, and 25% load. or stop driving, etc.
So-called daily startup/stop (Daily 5tart 5t
(hereinafter simply referred to as DSS) operation to take on an intermediate load, and by this DSS operation, it operates only during the day when there is a high demand for electricity, and stops operation at night to improve power generation efficiency.

例えば高効率発電の一環として、最近コンバインドガス
タービンプラントが注目されている。このコンバインド
ガスタービンプラントは、まずガスタービンによる発電
を行なうと共に、ガスタービンから排出される排ガス中
の排熱を排熱回収ボイラによって熱回収し、この排熱回
収ボイラで発生した蒸気によって蒸気タービンを作動さ
せて発電するものである。
For example, combined gas turbine plants have recently been attracting attention as a part of high-efficiency power generation. This combined gas turbine plant first generates electricity using a gas turbine, then recovers the exhaust heat in the exhaust gas discharged from the gas turbine using an exhaust heat recovery boiler, and uses the steam generated by the exhaust heat recovery boiler to power the steam turbine. It is operated to generate electricity.

この様にコンバインドガスタービンプラントはガスター
ビンによる発電と、蒸気タービンによる発電を同時に行
なうために発電効率が高いうえ、ガスタービンの特性で
ある負荷応答性に優れ、このために急激な電力需要の上
昇、下降にも十分対応でき、負荷追従性にも優れており
、DSS運転を行なうには好都合である。
In this way, a combined gas turbine plant has high power generation efficiency because it simultaneously generates power with a gas turbine and a steam turbine, and also has excellent load responsiveness, which is a characteristic of gas turbines. , it can sufficiently cope with descents, has excellent load followability, and is convenient for DSS operation.

第3図は従来の複合発電プラントの概略系統図である。FIG. 3 is a schematic system diagram of a conventional combined cycle power plant.

第3図において、圧縮機1で発生した圧縮空気は燃焼器
2に供給されて、この圧縮空気と燃料との混合体の燃焼
によってガスタービン3を駆動する燃焼ガスを発生させ
る。この燃焼ガスはガスタービン3に供給され熱エネル
ギーを機械エネルギーに換えガスタービン3の回転軸に
直結されているガスタービン用発電機4がガスタービン
3の運転に伴ってガスタービン3による発電を行なう。
In FIG. 3, compressed air generated by a compressor 1 is supplied to a combustor 2, and a mixture of this compressed air and fuel is combusted to generate combustion gas that drives a gas turbine 3. This combustion gas is supplied to the gas turbine 3, where the thermal energy is converted into mechanical energy.The gas turbine generator 4, which is directly connected to the rotating shaft of the gas turbine 3, generates power by the gas turbine 3 as the gas turbine 3 operates. .

ガスタービン3内で仕事を終えた排ガスはガスダクト5
を通って排熱回収ボイラ6に供給されて、庫気発生のた
めの熱源となる。
The exhaust gas that has completed its work in the gas turbine 3 is transferred to the gas duct 5.
It is supplied to the exhaust heat recovery boiler 6 through the exhaust heat recovery boiler 6, and serves as a heat source for generating stored air.

排熱回収ボイラ6の給水は給水ポンプ7により加圧され
て主給水管8を通って排熱回収ボイラ6内に供給される
。供給された給水は排ガスと熱交換を行ない蒸気を発生
させる。この蒸気は主蒸気管9を通って蒸気タービン1
0に供給される。
The water supplied to the exhaust heat recovery boiler 6 is pressurized by a water supply pump 7 and is supplied into the exhaust heat recovery boiler 6 through a main water supply pipe 8 . The supplied water exchanges heat with the exhaust gas to generate steam. This steam passes through the main steam pipe 9 to the steam turbine 1
0.

蒸気タービン10の回転軸に直結されている蒸気タービ
ン用発電機11が、蒸気タービン10の運転に伴って蒸
気タービン10による発電を行なう。次に、蒸気タービ
ン10内で仕事を終えた蒸気は復水器12に導びかれ、
熱交換されて給水となり給水ポンプ7へと再循環される
A steam turbine generator 11 directly connected to the rotating shaft of the steam turbine 10 causes the steam turbine 10 to generate electricity as the steam turbine 10 operates. Next, the steam that has finished its work in the steam turbine 10 is led to the condenser 12,
The heat is exchanged and the water becomes supplied water, which is recirculated to the water supply pump 7.

一方、排熱回収ボイラ6内で仕事を終えた排ガスは排熱
回収ボイラ出口ダクト13を通って煙突14へ供給され
て大気に放出される。
On the other hand, the exhaust gas that has completed its work in the exhaust heat recovery boiler 6 passes through the exhaust heat recovery boiler outlet duct 13, is supplied to the chimney 14, and is discharged into the atmosphere.

以上の説明は複合発電プラントにおける排ガス、供給の
流れの一般的な説明であるが、第3図に示す排ガスのド
ラフトにおいては、排熱回収ボイラ6の性能には直接影
響しないが、排ガス圧力損失が増大すると、ガスタービ
ン3の背圧が高くなり、それだけガスタービン3の出力
が減少し、複合発電プラントの総合発電効率が低下する
ので好ましくない。
The above explanation is a general explanation of the flow of exhaust gas and supply in a combined cycle power plant, but in the exhaust gas draft shown in Fig. 3, although it does not directly affect the performance of the exhaust heat recovery boiler 6, the exhaust gas pressure loss It is undesirable that if .

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来技術の複合発電プラントにおいては、排熱回収ボイ
ラならひに煙突を含む排熱回収ボイラ出口ダクトの排ガ
ス圧力損失によるガスタービン背圧が高くなることがガ
スタービン効率の低下を招き複合発電プラントの総合発
電効率を低下させる欠点があった。
In conventional combined cycle power plants, the gas turbine back pressure increases due to the exhaust gas pressure loss in the exhaust heat recovery boiler outlet duct, which includes the exhaust heat recovery boiler chimney, which leads to a decrease in gas turbine efficiency and reduces the efficiency of the combined cycle power plant. This had the disadvantage of lowering the overall power generation efficiency.

本発明にかかる従来技術の欠点を解消しようとするもの
で、その目的とするところは、複合発電プラントの総合
発電効率を向上させ、しがも排熱回収ボイラや排熱回収
ボイラ出口ダクトなどの後流機器を小形化することにあ
る。
The present invention attempts to eliminate the drawbacks of the prior art, and its purpose is to improve the overall power generation efficiency of a combined cycle power plant, and to improve the efficiency of waste heat recovery boilers, waste heat recovery boiler outlet ducts, etc. The aim is to downsize the wake equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前述の目的を達成するために、排熱回収ボイラ
の出口に排カスを吸引する誘引通風機を配置したもので
ある。
In order to achieve the above-mentioned object, the present invention provides an induced draft fan for sucking waste waste at the outlet of the waste heat recovery boiler.

〔作 用〕[For production]

誘引通風機:よ、常時ガスタービン出口排ガス圧力を大
気に放出する程度(75nmA  )に排ガスを誘引す
る。それによって、ガスタービンのHEは低下するので
ガスタービンの出力が向上する。
Induced draft fan: Induces exhaust gas to a level (75 nmA) that constantly releases the exhaust gas pressure at the gas turbine outlet to the atmosphere. As a result, the HE of the gas turbine decreases and the output of the gas turbine increases.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係る複合発電プラントの概略
系統図、第2図は第1図の他の実施例を示す複合発電プ
ラントの概略系統図である。
FIG. 1 is a schematic system diagram of a combined cycle power plant according to an embodiment of the present invention, and FIG. 2 is a schematic system diagram of a combined cycle power plant showing another embodiment of the invention.

簗1図シこおいて、符号lから符号14までは従来のも
のと同一のものを示す。
In Figure 1, numbers 1 to 14 indicate the same parts as the conventional one.

15は排熱回収ボイラ6の出口に設けた誘引通風機、1
6は誘引通風機入口ダクト、17は誘引通風機出口ダク
ト1.1日はダンパである。
15 is an induced draft fan installed at the outlet of the exhaust heat recovery boiler 6;
6 is an induced draft inlet duct, 17 is an induced draft outlet duct, and 1.1 is a damper.

この様な構造において、排熱回収ボイラ6出口の排ガス
は、排熱回収ボイラ出口ダクト13より誘引通風機入口
ダクト16を通って誘引通風機15でガスタービン3よ
り排出された排ガスを誘引して誘引通風機出口ダクト1
7を通って煙突14へ供給されて大気に放出するのであ
る。
In such a structure, the exhaust gas at the outlet of the exhaust heat recovery boiler 6 passes from the exhaust heat recovery boiler outlet duct 13 through the induced draft fan inlet duct 16, and the induced draft fan 15 induces the exhaust gas discharged from the gas turbine 3. Induced draft fan outlet duct 1
7 and is supplied to the chimney 14 where it is released into the atmosphere.

ここで 複合発電プラントの熱効率ηアは次の式により
表わされる。
Here, the thermal efficiency ηa of the combined cycle power plant is expressed by the following formula.

ηア =ηo + (1−ηG ) ・ η、 ・ η
8 ・・・■ここにη。はガスタービン効率、η、は蒸
気タービン熱効率、η6は、排熱回収ボイラ効率を示す
ηa = ηo + (1-ηG) ・η, ・η
8...■η here. is the gas turbine efficiency, η is the steam turbine thermal efficiency, and η6 is the exhaust heat recovery boiler efficiency.

この様に、本発明の実施例においては、誘引通風機15
の吸引作用によりガスタービンの背圧を低下させること
ができるので、ガスタービン3での断熱膨張を有効に利
用し、排ガス放出の放熱量(等圧放熱)を低下させるこ
とができる。
In this way, in the embodiment of the present invention, the induced draft fan 15
Since the back pressure of the gas turbine can be lowered by the suction action of , the adiabatic expansion in the gas turbine 3 can be effectively utilized and the amount of heat released from exhaust gas (isobaric heat radiation) can be reduced.

また、排熱回収ボイラ6内での排ガスの流速が上昇する
ので、排熱回収ボイラ効率も同上する。
Furthermore, since the flow velocity of the exhaust gas within the exhaust heat recovery boiler 6 increases, the efficiency of the exhaust heat recovery boiler also increases.

したがって蒸気タービンの熱効率は低下するものの0式
においてガスタービンの熱効率η。、排熱回収ボイラの
効率η8を向上させることにより、複合発電プラントの
熱効率ηアが向上し、さらに高効率化が可能となる。
Therefore, although the thermal efficiency of the steam turbine decreases, the thermal efficiency η of the gas turbine in equation 0. By improving the efficiency η8 of the exhaust heat recovery boiler, the thermal efficiency ηa of the combined power plant is improved, making it possible to achieve even higher efficiency.

また、誘引通風機15の能力を上昇させることにより、
ガスタービン出口排ガスダクト5.排熱回収ボイラ6、
および排熱回収ボイラ出口ダクト13を小形にすること
ができる。
In addition, by increasing the capacity of the induced draft fan 15,
Gas turbine outlet exhaust gas duct5. Exhaust heat recovery boiler 6,
Also, the exhaust heat recovery boiler outlet duct 13 can be made smaller.

また誘引通風機15の緊急停止時には、排熱回収ボイラ
出口ダクト13のダンパ18を開けて複合発電プラント
の停止を防止することができる。
Furthermore, in the event of an emergency stop of the induced draft fan 15, the damper 18 of the exhaust heat recovery boiler outlet duct 13 can be opened to prevent the combined power generation plant from stopping.

第2図は他の実施例を示すもので、符号1がら符号18
は第1図のものと同一のものを示す。
FIG. 2 shows another embodiment, from 1 to 18.
indicates the same thing as in FIG.

19は誘引通風機15を駆動する蒸気駆動装置、2゜は
再熱器、21.22.23は蒸気配管である。
19 is a steam drive device that drives the induced draft fan 15, 2° is a reheater, and 21, 22, and 23 are steam piping.

この様な構造において、第1図に示すものと異る点は、
第1図のものにおいては誘引通風機15を電気で回転さ
せたが、第2図のものにおいては、誘引通風機15を蒸
気駆動装置119によって回転させるようにしたもので
ある。
In this structure, the difference from the one shown in Figure 1 is as follows.
In the one shown in FIG. 1, the induced draft fan 15 is electrically rotated, but in the one shown in FIG. 2, the induced draft fan 15 is rotated by a steam drive device 119.

蒸気タービン10出口蒸気の一部を蒸気配管21を通っ
て排熱回収ボイラ6内に設けた再熱器20へ導き、再加
熱された蒸気を蒸気配管22を通って誘引通風機15の
蒸気駆動装置19へ供給される。
A part of the steam at the outlet of the steam turbine 10 is guided through a steam pipe 21 to a reheater 20 provided in the exhaust heat recovery boiler 6, and the reheated steam is passed through a steam pipe 22 to drive the induced draft fan 15. It is supplied to the device 19.

供給された再熱蒸気は、熱エネルギーを機械エネルギー
に換えた後、蒸気配管23を通って復水器12へ戻され
、再循環される。
The supplied reheated steam converts thermal energy into mechanical energy, and then returns to the condenser 12 through the steam piping 23 and is recirculated.

この実施例の効果は、誘引通風機15を蒸気駆動装置1
9により回転させることにより、電力の消費を少なくし
、さらに複合プラン:・熱効率を上昇させることができ
る。
The effect of this embodiment is that the induced draft fan 15 is
9, it is possible to reduce power consumption and further increase thermal efficiency.

〔発明の効果) 本発明によれば、ガスタービンの背圧を低下させること
により、ガスタービン熱効率を上昇させるので、しかも
、複合発電プラントの総合効率を向上させることができ
る。
[Effects of the Invention] According to the present invention, the gas turbine thermal efficiency is increased by lowering the back pressure of the gas turbine, and the overall efficiency of the combined cycle power plant can be improved.

また、排熱回収ボイラおよびダクト内のガス流速を上昇
させることにより、ガスタービン以降の機器を小形にす
ることができる。
Moreover, by increasing the gas flow rate in the exhaust heat recovery boiler and the duct, it is possible to downsize the equipment after the gas turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る複合発電プラントの概略
系統図、第2図は第1図の他の実施例を示す複合発電プ
ラントの概略系統図、第3圓は従来技術の複合発電プラ
ントの概略系統図である。 3・・・ガスタービン、 6・・・排熱回収ボイラ、 10・・・ 謂気々−ビン、 15・・・誘引通風機。 第 図 第2図
FIG. 1 is a schematic system diagram of a combined cycle power plant according to an embodiment of the present invention, FIG. 2 is a schematic system diagram of a combined cycle plant showing another embodiment of FIG. 1, and the third circle is a conventional technology combined cycle system diagram. It is a schematic system diagram of a plant. 3... Gas turbine, 6... Exhaust heat recovery boiler, 10... So-called air-bin, 15... Induced draft fan. Figure 2

Claims (1)

【特許請求の範囲】 ガスタービンからの排ガスを排熱回収ボイラへ導き、排
熱回収ボイラでその排熱を回収し、蒸気タービンを駆動
するものにおいて、 前記排熱回収ボイラの出口に排ガスを吸引する誘引通風
機を配置したことを特徴とする複合発電プラント。
[Scope of Claims] In a device for guiding exhaust gas from a gas turbine to an exhaust heat recovery boiler, recovering the exhaust heat in the exhaust heat recovery boiler, and driving a steam turbine, the exhaust gas is sucked into an outlet of the exhaust heat recovery boiler. A combined power generation plant characterized by the arrangement of induced draft fans.
JP2121291A 1990-05-14 1990-05-14 Combined power plant Expired - Fee Related JP2812534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121291A JP2812534B2 (en) 1990-05-14 1990-05-14 Combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121291A JP2812534B2 (en) 1990-05-14 1990-05-14 Combined power plant

Publications (2)

Publication Number Publication Date
JPH0419307A true JPH0419307A (en) 1992-01-23
JP2812534B2 JP2812534B2 (en) 1998-10-22

Family

ID=14807625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121291A Expired - Fee Related JP2812534B2 (en) 1990-05-14 1990-05-14 Combined power plant

Country Status (1)

Country Link
JP (1) JP2812534B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376546B1 (en) 1997-10-14 2002-04-23 Asahi Kasei Kabushiki Kaisha Biphenyl-5-alkanoic acid derivatives and use thereof
CN107524527A (en) * 2017-07-28 2017-12-29 华北电力大学 A kind of gas turbine available for circulating power station becomes back pressure modernization system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115649U (en) * 1989-02-21 1990-09-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115649U (en) * 1989-02-21 1990-09-17

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376546B1 (en) 1997-10-14 2002-04-23 Asahi Kasei Kabushiki Kaisha Biphenyl-5-alkanoic acid derivatives and use thereof
CN107524527A (en) * 2017-07-28 2017-12-29 华北电力大学 A kind of gas turbine available for circulating power station becomes back pressure modernization system
CN107524527B (en) * 2017-07-28 2024-04-26 华北电力大学 Gas turbine variable back pressure transformation system applicable to combined cycle power station

Also Published As

Publication number Publication date
JP2812534B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US6644011B2 (en) Advanced Cheng Combined Cycle
US5782081A (en) Hydrogen-oxygen burning turbine plant
JPS6388227A (en) Method of operating gas turbine unit
JP2009185809A (en) Method and system for reforming combined-cycle working fluid and promoting its combustion
CN1104718A (en) Exhaust recirculation type combined plant
CN106437875B (en) Fired power generating unit working medium bypassing circulation peak regulation system
JP2565437B2 (en) Gas turbine device equipped with tube nest combustion type combustor
JP3851165B2 (en) Gas turbine and its operating method
US8640437B1 (en) Mini sized combined cycle power plant
JP3882107B2 (en) Gas turbine built-in boiler
JP2812534B2 (en) Combined power plant
JPH1061413A (en) Exhaust reburning type compound power plant
CN206694077U (en) System based on the double drives of air-introduced machine vapour electricity and variable-frequency power generation
JPH01117903A (en) Output regulator for combined gas-steam turbine-generating set
JP2004190558A (en) Cogeneration plant
JPS6332110A (en) Hydrogen and oxygen fired steam turbine plant
JPH0424084Y2 (en)
JP2002242700A (en) Ultra-turbine
CN217001994U (en) High-parameter combined cycle super-power air cooling unit
CN218763353U (en) Combined-cycle temperature-reducing water system of horizontal waste heat boiler
JPH06299805A (en) Hydrogen oxygen combustion turbine plant
Jericha et al. Combined cycle enhancement
JPS6332127A (en) Gas turbine driving equipment
JPH0559905A (en) Refuse incinerating gas turbine composite plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees