JPH04192508A - Self-cooling type gas-insulated transformer - Google Patents

Self-cooling type gas-insulated transformer

Info

Publication number
JPH04192508A
JPH04192508A JP32431390A JP32431390A JPH04192508A JP H04192508 A JPH04192508 A JP H04192508A JP 32431390 A JP32431390 A JP 32431390A JP 32431390 A JP32431390 A JP 32431390A JP H04192508 A JPH04192508 A JP H04192508A
Authority
JP
Japan
Prior art keywords
gas
piping
self
transformer
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32431390A
Other languages
Japanese (ja)
Inventor
Yoshito Ebisawa
海老沢 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32431390A priority Critical patent/JPH04192508A/en
Publication of JPH04192508A publication Critical patent/JPH04192508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To improve cooling characteristics of an external cooling device by providing metallic heat radiators to an upper gas piping of a self-cooling type gas-insulated transformer in such a manner that the radiator becomes vertical to the ground. CONSTITUTION:A plurality of metallic heat radiators 9 are provided with adequate intervals to the upper gas piping 6 provided horizontally in such a manner that these radiators become vertical to the gas piping and the ground. In the case the upper piping 6 is inclined, the heat radiators 9 are provided in the desired angle for the piping but vertically to the ground considering the circulation of the external air. Therefore, the heat is radiated externally by the heat radiators 9 from the upper piping 6 having a high cooling efficiency due to the random flow of the insulating gas 4 and moreover the heat radiators 9 accelerate circulation of heated air. Thereby, the cooling efficiency can be improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、SF、ガスのような絶縁ガスを絶縁及び冷却
媒体として用いた自冷式ガス絶縁変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a self-cooled gas insulated transformer using an insulating gas such as SF or gas as an insulation and cooling medium.

(従来の技術) 近年市街化区域に設置される受変電機器、例えば変圧器
等に対しては、万一の事故時にも火災による災害が発生
しないように不燃化の要求が高まっている。変圧器にお
いてはこの要求に対応するものとして、従来の絶縁油に
かえて、不燃性の六弗化硫黄(SF4 )ガスを冷却及
び絶縁媒体として使用したいわゆるガス絶縁変圧器が実
用化されている。
(Prior Art) In recent years, there has been an increasing demand for power receiving and transforming equipment installed in urbanized areas, such as transformers, to be non-combustible to prevent disasters caused by fire in the event of an accident. In response to this demand, so-called gas-insulated transformers have been put into practical use in transformers that use nonflammable sulfur hexafluoride (SF4) gas as a cooling and insulating medium instead of conventional insulating oil. .

このようなガス絶縁変圧器の内でも自冷式ガス絶縁変圧
器においては、ガスを循環させるための補機が不要とな
るため、構造、保守が著しく簡略化、される。しかしそ
の反面、絶縁ガスは、一般に絶縁油に比べ熱容量が小さ
く、冷却特性が劣るため、絶縁ガスを冷却する外部冷却
器は一般的に油入変圧器の外部冷却器より大きなものと
なり、特に自冷式のものは十分な冷却効果をあげるため
より大きくなるという欠点があった。
Among such gas insulated transformers, the self-cooled gas insulated transformer does not require any auxiliary equipment for circulating gas, so its structure and maintenance are significantly simplified. On the other hand, however, insulating gas generally has a smaller heat capacity and inferior cooling properties than insulating oil, so external coolers for cooling insulating gas are generally larger than external coolers for oil-immersed transformers, especially self-contained transformers. The cold type had the disadvantage of being larger because it had a sufficient cooling effect.

第3図及び第4図は、従来の自冷式ガス絶縁変圧器の側
面図及び平面図である。図に示すように変圧器タンクl
の中に鉄心2及びこの鉄心2に巻回された巻線3からな
る変圧器中身か納められると共に絶縁及び冷却媒体であ
るSF6カス等の不燃性の絶縁ガス4が所定の圧力で封
入されている。
3 and 4 are a side view and a plan view of a conventional self-cooling gas insulated transformer. Transformer tank l as shown in the figure
The contents of the transformer consisting of an iron core 2 and a winding 3 wound around the iron core 2 are housed inside the transformer, and a nonflammable insulating gas 4 such as SF6 scum, which is an insulation and cooling medium, is sealed at a predetermined pressure. There is.

また、変圧器タンクlの外部にはタンク内で温められた
絶縁ガス4を冷却するための冷却器5が設けられ、上部
ガス配管6と下部ガス配管7及び絶縁カス4を各冷却器
5に分流させる共通カス配管8等により変圧器タンク1
に接続されている。第3図および第4図の各配管内部S
こ夫々示された矢印は、絶縁ガス4の流れを示すもので
ある。
Furthermore, a cooler 5 for cooling the insulating gas 4 warmed in the tank is provided outside the transformer tank l, and the upper gas pipe 6, the lower gas pipe 7, and the insulating gas 4 are connected to each cooler 5. The transformer tank 1 is connected to the common waste piping 8, etc. that separates the flow.
It is connected to the. Inside each piping S in Figures 3 and 4
The arrows shown here each indicate the flow of the insulating gas 4.

(発明が解決しようとする課題) しかしながら、上記のような構成を存する従来の自冷式
ガス絶縁変圧器においては、以下に述べる様な解決すべ
き課題があった。
(Problems to be Solved by the Invention) However, in the conventional self-cooled gas insulated transformer having the above configuration, there were problems to be solved as described below.

即ち、前述のごとく、絶縁ガス4は油入変圧器の絶縁油
に比べて熱容量が小さいので冷却特性が悪く、巻線3の
冷却効率が劣るばかりてな(、変圧器中身の発生損失が
仮りに同一の油入変圧器に比べても、冷却器5の大きさ
はその数倍となり、大形化すると共に冷却器5における
絶縁カスの冷却特性か著しく悪い。これは絶縁ガスと絶
縁油の冷却器内面における熱伝達率の差二二負うところ
である。
That is, as mentioned above, the insulating gas 4 has a lower heat capacity than the insulating oil of an oil-immersed transformer, so its cooling characteristics are poor, and the cooling efficiency of the winding 3 is inferior (the losses generated in the transformer are reduced). Compared to the same oil-immersed transformer, the size of the cooler 5 is several times larger, and the cooling properties of the insulation scum in the cooler 5 are significantly worse. This is due to the difference in heat transfer coefficient on the inner surface of the cooler.

本発明は、以上の様な従来技術の欠点を解消するために
提案されたもので、その目的は、冷却効率を向上させ、
コンパクトな外部冷却器を有した自冷式ガス絶縁変圧器
を提供することにある。
The present invention was proposed to eliminate the drawbacks of the prior art as described above, and its purpose is to improve cooling efficiency,
An object of the present invention is to provide a self-cooling gas insulated transformer having a compact external cooler.

〔発明の構成] (課題を解決するための手段) 本発明は、鉄心及び巻線を収納じた変圧器タンク内に絶
縁ガスを封入し、タンク内で温められたw7!縁ガスを
冷却する冷却器を備えたガス絶縁変圧器において、変圧
器タンクとガス冷却器を結ぶ上部ガス配管に適当な間隔
にて複数枚の金属製放熱板を少くとも大地に対して垂直
に取り付けたことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention is characterized in that an insulating gas is sealed in a transformer tank containing an iron core and a winding, and the w7! In a gas insulated transformer equipped with a cooler for cooling edge gas, install multiple metal heat sinks at appropriate intervals on the upper gas pipe connecting the transformer tank and the gas cooler, at least perpendicular to the ground. It is characterized by the fact that it is attached.

(作 用) このように構成することにより、絶縁ガスの流れが乱流
になっている冷却効率の高い上部ガス配管から放熱板に
よって熱が外部に放出され、更に放熱板が温められた空
気の対流を促進し、より冷却効率を同上することができ
る。
(Function) With this configuration, heat is released to the outside by the heat sink from the upper gas pipe with high cooling efficiency, where the flow of insulating gas is turbulent, and the heat sink further releases the heated air. It can promote convection and improve cooling efficiency.

(実施例) 以下本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明による自冷式カス絶縁変圧器
の構成を示す側面図及び平面図で、第3図及び第4図と
同一部分には同一符号を付してその説明を省略する。
1 and 2 are a side view and a plan view showing the configuration of a self-cooled gas-insulated transformer according to the present invention, and the same parts as in FIGS. Omitted.

本発明においては図に示すように水平に取り付けられた
上部ガス配管6に適当な間隔で配管に対して垂直に、且
つ大地に対しても垂直方向に延びるように複数枚の金属
製放熱板を取り付けている。
In the present invention, as shown in the figure, a plurality of metal heat sinks are installed at appropriate intervals on the upper gas pipe 6 installed horizontally so as to extend perpendicularly to the pipe and also perpendicularly to the ground. It is installed.

上部配管6が傾斜している場合等に1ま金属製放熱板9
は外部空気の対流を考慮して、配管に対しで任意の角度
で大地に対して垂直となるように取り付ける。
If the upper piping 6 is sloped, etc., use a metal heat sink 9.
is installed perpendicular to the ground at an arbitrary angle to the piping, taking into account the convection of external air.

一般に自冷式ガス絶縁変圧器の温度試験を実施すると興
味深いことが解かる。それは、第3図に示した自冷式ガ
ス絶縁変圧器の上部ガス配管6の温度が冷却器6の上部
温度よりかなり高くなっているということである。しか
し、上部ガス配管6及び冷却器5の中を流れている絶縁
カスにそれ程の温度差があるとは考えられない。
In general, interesting things are revealed when temperature tests are performed on self-cooled gas insulated transformers. That is, the temperature of the upper gas pipe 6 of the self-cooling gas insulated transformer shown in FIG. 3 is considerably higher than the temperature of the upper part of the cooler 6. However, it is unlikely that there is such a temperature difference between the insulation scum flowing in the upper gas pipe 6 and the cooler 5.

この理由は、夫々の中を流れている絶縁ガスの流速が異
なり、絶縁ガスとガス配管もしくは冷却器の内面での熱
伝達率が大きく異なっているためと考えられる。
The reason for this is thought to be that the flow rates of the insulating gases flowing through each are different, and the heat transfer coefficients between the insulating gas and the inner surface of the gas pipe or cooler are significantly different.

ガス配管内部では絶縁ガスが集中して流れるため、流速
が他に比べ著しく速くなっている。理論的には、絶縁ガ
スの流速Vと接している金属面での熱伝達率りとの関係
は、 (1)絶縁ガス流が一様に流れている層流の場合 11ocy”’ (11)絶縁ガス流がうす流を伴う乱流の場合11cc
y” であることが知られている。
Inside the gas pipe, the insulating gas flows in a concentrated manner, so the flow rate is significantly faster than elsewhere. Theoretically, the relationship between the flow velocity V of the insulating gas and the heat transfer coefficient on the metal surface in contact is as follows: (1) If the insulating gas flow is a uniform laminar flow, 11ocy"' (11) 11cc if the insulating gas flow is turbulent with thin flow
It is known that y”.

実際の温度試験においてガス絶縁変圧器内部の発生損失
と冷却器上部及び下部での絶縁ガス温度差よりガス循環
量を知り これから上部カス配管内のガス流速を推定す
ると、数メートル7′秒となっていると考えられる。こ
の状態では、!!縁ガス流は乱流となり、上部ガス配管
内面との熱伝達率は、はぼ自冷式油入変圧器の絶縁油と
冷却器内面間の熱伝達率に匹敵する程、高まっている。
In an actual temperature test, the amount of gas circulation was determined from the loss generated inside the gas insulated transformer and the temperature difference of the insulating gas between the upper and lower parts of the cooler. From this, the gas flow velocity in the upper waste pipe was estimated to be several meters and 7' seconds. It is thought that In this state! ! The edge gas flow becomes turbulent, and the heat transfer coefficient with the inner surface of the upper gas pipe has increased to the extent that it is comparable to the heat transfer coefficient between the insulating oil and the inner surface of the cooler in a self-cooling oil-immersed transformer.

冷却器上部壁面及び上部カス配管壁面を介じての絶縁ガ
ス側と外部空気側温度分布を第5図と第6図に示す。第
6図に示す上部ガス配管6の壁面6aでは、その断面積
か、冷却器の総断面積2こ比べかなり小さいため、流れ
が集中して流速が速まり、熱伝達率が高まって、絶縁ガ
ス温度θGasと壁面内部温度θ′1との差が小さく、
外部空気温度θAirと壁面外部温度θ′2の差が大き
くなっている。
FIGS. 5 and 6 show the temperature distribution on the insulating gas side and outside air side via the upper wall surface of the cooler and the wall surface of the upper waste pipe. The cross-sectional area of the wall surface 6a of the upper gas pipe 6 shown in FIG. 6 is considerably smaller than the total cross-sectional area of the cooler, so the flow concentrates, the flow speed increases, the heat transfer coefficient increases, and the insulation The difference between the gas temperature θGas and the wall internal temperature θ′1 is small,
The difference between the external air temperature θAir and the wall external temperature θ'2 is large.

第5図の冷却器5の上部壁面5aて;よ、第6図の場合
とは反対に絶縁ガス流速が遅くなるため、熱伝達率は低
く、壁面の温度は上部配管面程、高くなっていない。
As for the upper wall surface 5a of the cooler 5 in FIG. 5, contrary to the case in FIG. 6, the flow rate of the insulating gas is slow, so the heat transfer coefficient is low, and the temperature of the wall surface is higher as it approaches the upper piping surface. do not have.

ここで、両者表面かろの一定面積当たりの排熱量Qにつ
いて考えると、 Q=tlA;r  −3−(θ2−θ1..)]IAi
r:空気側熱伝達率 S  ニ一定面積 θ2  :配管もしくは冷却器上部の表面温度 θ^、r =外部空気温度 となり、排熱量Q、即ち冷却効率は、表面温度と外部空
気温度の差が大きい程優れ、明らかに上部ガス配管壁面
6aの方が冷却効率が高くなっていることがわかる。
Now, considering the amount of waste heat Q per constant area of both surfaces, Q=tlA;r −3−(θ2−θ1..)]IAi
r: Air side heat transfer coefficient S D Constant area θ2: Surface temperature of the upper part of the pipe or cooler θ^, r = external air temperature, and the amount of exhaust heat Q, that is, the cooling efficiency, is the difference between the surface temperature and the external air temperature. It can be seen that the cooling efficiency is clearly higher on the upper gas pipe wall surface 6a.

従って、この上部ガス配管の周囲に外部空気の対流を良
くするように縦方向に金属製の放熱板9を取り付けるこ
とにより放熱面積が拡大されその冷却効率は一層増すこ
とになる。
Therefore, by vertically attaching a metal heat radiating plate 9 around the upper gas pipe to improve the convection of external air, the heat radiating area is expanded and the cooling efficiency is further increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、自冷式ガス絶縁
変圧器の上部ガス配管に金属製の放熱板を少くとも大地
に対して垂直になるように取り付けたので、従来に比べ
、外部冷却器の冷却特性を向上させることができ、コン
パクトな外部冷却器を備えた自冷式ガス絶縁変圧器を提
供することができる。
As explained above, in the present invention, a metal heat sink is attached to the upper gas piping of a self-cooled gas insulated transformer so that it is at least perpendicular to the ground. The cooling characteristics of the transformer can be improved, and a self-cooled gas insulated transformer with a compact external cooler can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による自冷式ガス絶縁変圧器
の側面図及び平面図、第3図及び第4図は従来の自冷式
ガス絶縁変圧器の配置構成を示す側面図及び平面図、第
5図及び第6図は冷却器上部壁面及び上部ガス配管を介
した、内部絶縁ガス側と外部空気側の温度分布図である
。 1・・・変圧器タンク、2・・・鉄心、3・・・巻線、
4・・・絶縁ガス、5・・・冷却器、6・・・上部ガス
配管、7・・・下部ガス配管、8・・・共通ガス配管、
9・・・放熱板、工0・・・冷却器上部壁面、11・・
・上部ガス配管壁面。 出願人代理人 弁理士 鈴 江 武 彦第1図 112図 第3図 5a 第5図
1 and 2 are a side view and a plan view of a self-cooled gas insulated transformer according to the present invention, and FIGS. 3 and 4 are side views and plan views showing the arrangement of a conventional self-cooled gas insulated transformer. The plan view, FIGS. 5 and 6 are temperature distribution diagrams on the internal insulating gas side and the external air side via the cooler upper wall surface and the upper gas pipe. 1...Transformer tank, 2...Iron core, 3...Winding wire,
4... Insulating gas, 5... Cooler, 6... Upper gas piping, 7... Lower gas piping, 8... Common gas piping,
9... Heat sink, work 0... Cooler upper wall surface, 11...
・Upper gas piping wall. Applicant's representative Patent attorney Takehiko Suzue Figure 1 112 Figure 3 Figure 5a Figure 5

Claims (1)

【特許請求の範囲】[Claims] 変圧器タンク内に鉄心と、この鉄心に巻回された巻線か
らなる変圧器中身を所定圧力の絶縁ガスと共に収納し、
変圧器タンク外に冷却器を設けて、これら変圧器タンク
と冷却器間を上部ガス配管及び下部ガス配管により接続
した自冷式ガス絶縁変圧器において、前部上部ガス配管
の周囲に適当な間隔で複数枚の金属製の放熱板を少くと
も大地に対して垂直に取り付けたことを特徴とする自冷
式ガス絶縁変圧器。
The transformer contents, which consist of an iron core and the windings wound around the iron core, are stored in a transformer tank along with insulating gas at a predetermined pressure.
In self-cooled gas insulated transformers that have a cooler installed outside the transformer tank and connect the transformer tank and cooler with upper gas piping and lower gas piping, an appropriate space is provided around the front upper gas piping. A self-cooling gas insulated transformer characterized by having a plurality of metal heat sinks attached at least perpendicularly to the ground.
JP32431390A 1990-11-27 1990-11-27 Self-cooling type gas-insulated transformer Pending JPH04192508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32431390A JPH04192508A (en) 1990-11-27 1990-11-27 Self-cooling type gas-insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32431390A JPH04192508A (en) 1990-11-27 1990-11-27 Self-cooling type gas-insulated transformer

Publications (1)

Publication Number Publication Date
JPH04192508A true JPH04192508A (en) 1992-07-10

Family

ID=18164406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32431390A Pending JPH04192508A (en) 1990-11-27 1990-11-27 Self-cooling type gas-insulated transformer

Country Status (1)

Country Link
JP (1) JPH04192508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003988U (en) * 2012-12-20 2014-06-30 엘에스산전 주식회사 Cooling device for mold transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003988U (en) * 2012-12-20 2014-06-30 엘에스산전 주식회사 Cooling device for mold transformer

Similar Documents

Publication Publication Date Title
CN103337339A (en) Heat dissipating method for oil-immersed transformer and radiator thereof
WO2006106406A1 (en) An arrangement and a method for heat transport and use in connection with subsea equipment
US4798238A (en) Shelter for thermally conditioning electronic appliances
JPH09120917A (en) Transformer device
JPH04192508A (en) Self-cooling type gas-insulated transformer
JPH08162333A (en) Panel type radiator
KR101474205B1 (en) Gas-insulated delta transformer
CN211858314U (en) Dry-type transformer circulating cooling pipeline system and dry-type transformer using same
JPH05166639A (en) External cooler of gas-insulated transformer
JP2539534B2 (en) Cooling device for electromagnetic induction equipment
JPH1116742A (en) Static induction equipment
JP3148044B2 (en) Gas cooled stationary electrical equipment
JP2002353035A (en) Electric apparatus
JPH05283243A (en) Gas-insulated electric apparatus
JPS586336A (en) Enclosed switchboard
JPS61109405A (en) Cooling device for gas insulated transmission apparatus
JPH10116737A (en) Gas insulated transformer
JP3321588B2 (en) Gas insulated transformer
JPS63213331A (en) Gas-insulated electric apparatus
JPH04124804A (en) Self-cooled gas-insulated induction electric apparatus
JPH08111321A (en) Forced convection cooling transformer
JPH06204046A (en) Cooler for gas-insulated transformer
JP2000252133A (en) Cooling apparatus for gas-filled electrical equipment
JPH02144904A (en) Heat sink device
JPH09246055A (en) Stationary electromagnetic induction apparatus