JPH0419175B2 - - Google Patents

Info

Publication number
JPH0419175B2
JPH0419175B2 JP61128942A JP12894286A JPH0419175B2 JP H0419175 B2 JPH0419175 B2 JP H0419175B2 JP 61128942 A JP61128942 A JP 61128942A JP 12894286 A JP12894286 A JP 12894286A JP H0419175 B2 JPH0419175 B2 JP H0419175B2
Authority
JP
Japan
Prior art keywords
fibers
slag
rock wool
wool
coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61128942A
Other languages
Japanese (ja)
Other versions
JPS62288138A (en
Inventor
Osamu Yamamoto
Tetsuji Kondo
Yasuo Ogura
Hideaki Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP61128942A priority Critical patent/JPS62288138A/en
Publication of JPS62288138A publication Critical patent/JPS62288138A/en
Publication of JPH0419175B2 publication Critical patent/JPH0419175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<利用分野> 本発明は有色性(意匠性)を有し、かつ、耐熱
性、機械的特性(繊維の引張強度と柔軟性)、水
に対する耐侵食性に優れたロツクウールに関し、
更に詳しくは、フエロクロムスラグ、珪石、鉄鉱
スラグを原料とし、通常のロツクウールとほぼ同
様な繊維化温度を有し、かつ、有色性(意匠性)、
耐熱性、機械的特性、水に対する耐侵食性に優れ
たロツクウールに関するものである。このロツク
ウールにより意匠性を有する鉱物質繊維板(天井
板)、アスベスト代替、セラミツクウール代替用
無機繊維、農業分野(農業用マツト)等の従来の
用途拡大、あるいは新規用途開拓を可能にした。 <従来技術> 従来、鉄鉱スラグを利用したスラグ系ロツクウ
ールは、鉄鉱スラグに成分調整材としての珪石等
の天然石を加え、キユポラ炉、あるいは電気炉等
で熔融させ、該熔融物を遠心力を利用した高速回
転体、又は圧縮空気によるブローイング、更に
は、遠心力と圧縮空気を併用した方式で繊維化製
造されている。係るスラグウール系ロツクウール
は外観、灰白色で意匠性に欠け、ガラスウールよ
り耐熱性は高いもののセラミツクウールより低
く、かつ、ガラスウールより繊維引張強度は劣
り、ガラスウール、セラミツクウールより柔軟性
がなく、更に無機繊維に一般的に共通する水に対
する侵食が進行しやすい等の性能上の問題点を有
している。この様なスラグウール系ロツクウール
の性能と安価に製造出来る利点を反映して、現在
不燃性の吸音鉱物質繊維板(天井板)、主として
中〜高温(500〜600℃)の工業用断熱材、耐火被
覆材として多量に使用されているものの、従来商
品分野の用途拡大、ならびに新規用途開拓が成し
得ないのが現状である。 <本発明の解決しようとする問題点> 本発明は、従来のスラグウール系ロツクウール
と同様の繊維化温度で、しかも、同様の繊維化方
式、即ち、遠心力又は圧縮空気、更には両者併用
による繊維化方式が可能で、これにより安価な原
料及び安価な熔融エネルギーの結果、安価に製造
でき、かつ、有色性(意匠性)、耐熱性、機械的
特性、水に対する耐侵食性に優れたロツクウール
を得ることを目的になされたものである。種々、
検討した結果、 フエロクロムスラグ 5〜90wt% 珪 石 5〜30wt% 鉄鉱スラグ 0〜90wt% を配合したものであつて、SiO235〜50wt%、
Al2O310〜25wt%、CaO2〜20wt%、MgO5〜
30wt%、Cr2O30.2〜10wt%を主成分としたロツ
クウールが、有色性(意匠性)、耐熱性、機械的
特性、水に対する耐侵食性に優れた性質を有し、
これにより、従来のスラグウール系ロツクウール
関連商品(鉱物質天井板、断熱材、耐火被覆材)
の用途拡大、更に、アスベスト繊維、セラミツク
ウール代替用無機繊維、農業分野(農業用マツ
ト)等の新規用途開拓を可能にしたことにある。 <問題点解決の手法> 本発明の第一の目的である有色性(意匠性)を
付与する方法として、有色イオン物質の添加によ
る繊維の着色方法を取ることができる。しかし有
色イオン物質による繊維の着色には限界があり、
かつ、原料組成物の熔融時の雰囲気が酸化性か還
元性であるか、組成による(着色度合に対する)
影響を受けやすく、これにより添加した有色イオ
ン物質の原子価が変化すると、所望の繊維の着色
を得ることができないばかりか、又着色された原
料組成物でも、最終的な繊維になると、繊維形状
を反映して、着色度合に差が現われるため注意し
なければならない。一般に、SiO2−Al2O3−CaO
−MgO系ロツクウール組成物において、有色イ
オン物質添加による繊維着色の一方法として、
Fe++…暗緑色系、Mn++…赤紫色系、Cu++…緑黄
色系、Cr+++…暗青色系が利用できるが、1〜
10μの繊維径を有する繊維に対し有色意匠性のあ
る効果的な着色剤として、Cr+++イオン物質が優
れ、その他のイオン物質は鮮明な着色が出来ない
ため、実際に利用しても着色メリツトが期待でき
ない。本発明によるCr+++イオン物質による着色
は、最終的に得られる1〜10μ径の繊維がライト
ブルー色として着色し、この繊維を利用した鉱物
質繊維板(天井板)は未塗装状態でも意匠性の優
れたものとなる。具体的な着色方法としてCr+++
イオン物質の添加はCr2O3添加の形で行われる
が、繊維の着色度合から見て0.2wt%以上、上限
は他の成分配合割合、及び繊維の耐熱性から見
て、10wt%以下の範囲が適性である。 本発明の第二、第三の目的である耐熱性及び機
械的特性の向上に関しては、SiO237〜42wt%、
Al2O310〜15wt%、CaO35〜40wt%、MgO5〜
10wt%、FeO+MnO+TiO2+S等の微量成分
5wt%以下の組成から成るスラグ系ロツクウール
において、アルカリ土類金属のうち主としてCaO
を低減し、SiO2、Al2O3、FeO、Cr2O3等を増量
することが、安価に達成できる方法であるが、有
色性の点からFeOの増量をさけ、繊維化温度の点
から、MgOの増量を行うことが重要である。
SiO2は良質の繊維を得るために、35〜50wt%必
要で、SiO235wt%以下では2〜10μ径を有する良
質な繊維を得ることがむつかしく、又、50wt%
を超えると熔融物の粘度が高くなり、従来と同様
の繊維化温度での繊維化が困難となるためであ
る。 Al2O3はSiO2と複合し、繊維の耐熱性を向上さ
せるが、配合量が増大すると、粘度上昇と失透温
度の上昇により適性繊維化温度が高くなるため
25wt%以下としなければならない。又、10wt%
以下では耐熱性と良質な繊維を得ることが困難と
なるため、Al2O3として10〜25wt%、特に15〜
20wt%の範囲の配合が好ましい。アルカリ土類
金属のCaOは、繊維の耐熱性を向上させる目的に
対し、できる限り減量することが好ましいが、熔
融物の粘度上昇を防止する点から、主として
MgO(CaOと同様、粘度低下の働きがあるが、繊
維の耐熱性、特に、繊維の高温時の寸法安定性に
ネガテイブな因子とならない)を増量し、MgO
+CaOの合計配合量として30wt%以上とするこ
とが重要である。又、CaO成分は、水に対する耐
侵食性、得られる繊維の柔軟性に対し、プラスの
働きがないことから、CaO配合量は20wt%以下
とする必要がある。一方、MgOはCaOとは逆に、
水に対する耐侵食性向上並びに得られる繊維の柔
軟性を改良するため、10wt%以上配合すること
が必要で、積極的に配合量を増すことは得策であ
るが、SiO2、Al2O3の必要量を確保するために、
上限値として30wt%以下に限定される。 Cr2O3は、前記の繊維の着色以外に、繊維の耐
熱性を向上させる働きを有する。着色としての
Cr2O3配合量は0.2wt%〜5wt%で充分であるが、
SiO2、Al2O3との複合の形で、繊維の耐熱性を向
上させるため、1wt%以上配合することが好まし
い。上限値の10wt%は、使用する原料に起因す
る制限、他の必要成分の配合量を維持することに
よる。以上、本発明の目的とする有色性(意匠
性)、耐熱性、機械的特性、水に対する耐侵食性
の優れたロツクウールの主要構成成分について述
べたが、不可避成分としてのFeO、S、Na2O、
K2O等は、本発明の目的とする特性を損なわない
ために、合計5wt%以下にとどめることが好まし
い。更に、不可避微量成分としてのTiO2、MnO
は、上記目的とする特性に対し、若干プラスの働
きを有するので、適量添加することは差しつかえ
ない。前記、本発明の目的とする繊維を得る組成
範囲で、かつ安価に組成調整できる原料として、
フエロクロムスラグ、珪石、鉄鉱スラグを利用す
ることが得策である。次に原料及び配合量につい
て詳述する。フエロアロイを生産する際に副生す
るフエロクロムスラグの主要成分はSiO230〜
35wt%、Al2O320〜25wt%、MgO30〜35wt%、
CaO0〜5wt%、Cr2O34〜9wt%、微量成分
(FeO、MnO等)3wt%以下で暗青色の砕石塊状
物として入手することができる。珪石はSiO298
%以上含有の天然砕石物として入手できる。又、
従来のスラグ系ロツクウールの主原料である鉄鉱
スラグは銑鉄を生産する際に副生するもので、そ
の主要成分はSiO230〜35wt%、Al2O310〜15wt
%、MgO5〜10wt%、CaO35〜40wt%、微量成
分(TiO2、MnO、FeO、S等)5wt%以下、灰
黒色の砕石塊状物として入手することができる。
上記原料鉱石を、クロムスラグ5〜90wt%、珪
石5〜30wt%、鉄鉱スラグ0〜90wt%の配合範
囲とすることにより、本発明の繊維組成物を得る
ことができる。 なお、本発明の目的の特性を損なわない範囲
で、シリコンマンガンスラグ、玄武岩、輝緑岩、
カンラン岩、ろう石、ピル石、珪石レンガ、珪酸
マンガン鉱、酸化マンガン鉱を少量配合すること
は可能である。 上記原料組成物はキユポラ炉で熔融する場合、
サイズとして10〜100mm、電気炉で熔融する場合、
サイズ1〜5mmが適正で、コークス燃料、カーボ
ンあるいはモリブデン電極で、1400〜1600℃に熔
融することができる。 以下、本発明の実施例について述べる。 実施例 1 表1に実施例として示した本発明の粒径1〜3
mmの原料配合物(wt%)をカーボン電極を用い
た電気炉で加熱熔融し、表2に示す繊維化温度
で、熔融物を複数の内部冷却型高速回転体(φ=
10インチ、φ=14インチ、回転数約4000rpm)と
圧縮空気流中(約100m/sec)で繊維化、集綿し
た。 なお、比較例(比較例1.従来のスラグ系ロツク
ウール、比較例2天然石系ロツクウール)も表1
に示す原料配合物を、表2に示す繊維化温度で熔
融した以外は実施例と同様にして繊維化、集綿し
た。 表2は上記によつて得れられた本発明のロツク
ウールの成分組成と特性を示したものである。
<Field of Application> The present invention relates to rock wool that is colored (designable) and has excellent heat resistance, mechanical properties (fiber tensile strength and flexibility), and water erosion resistance.
More specifically, it is made from ferrochrome slag, silica stone, and iron ore slag, has a fiberization temperature similar to that of ordinary rock wool, is colored (designable),
It relates to rock wool that has excellent heat resistance, mechanical properties, and water erosion resistance. This rock wool has made it possible to expand conventional uses, such as mineral fiber boards with design features (ceiling boards), asbestos substitutes, inorganic fibers to replace ceramic wool, and the agricultural field (agricultural pine), as well as to develop new uses. <Prior art> Conventionally, slag-based rock wool using iron ore slag was produced by adding natural stone such as silica stone as a component adjustment material to iron ore slag, melting it in a cupola furnace or electric furnace, and using the centrifugal force of the molten product. Fibers are produced using a high-speed rotating body, by blowing with compressed air, or by using a combination of centrifugal force and compressed air. Such slag wool-based rock wool has a grayish-white appearance and lacks design, has higher heat resistance than glass wool but lower than ceramic wool, and has lower fiber tensile strength than glass wool, and is less flexible than glass wool or ceramic wool. Furthermore, it has performance problems that are common to inorganic fibers, such as a tendency to be easily eroded by water. Reflecting the performance of slag wool-based rock wool and the advantage that it can be manufactured at low cost, it is currently being used as a non-combustible sound-absorbing mineral fiber board (ceiling board), mainly as an industrial insulation material for medium to high temperatures (500 to 600 degrees Celsius), Although it is used in large quantities as a fireproof coating material, the current situation is that it has not been possible to expand its use in conventional product fields or develop new uses. <Problems to be Solved by the Present Invention> The present invention is capable of producing fibers using the same fiberizing temperature as conventional slag wool-based rock wool, and using the same fiberizing method, that is, centrifugal force or compressed air, or a combination of both. Rock wool can be manufactured using a fiberization method, and as a result of inexpensive raw materials and low melting energy, it can be produced at low cost, and has excellent coloring (design), heat resistance, mechanical properties, and water erosion resistance. It was done for the purpose of obtaining. many kinds,
As a result of investigation, it was found that it was a mixture of ferrochrome slag 5-90wt%, silica stone 5-30wt%, iron ore slag 0-90wt%, SiO 2 35-50wt%,
Al2O3 10 ~25wt%, CaO2~20wt%, MgO5~
Rock wool whose main components are 30 wt% and 0.2 to 10 wt% Cr 2 O 3 has excellent properties such as coloring (design), heat resistance, mechanical properties, and water erosion resistance.
As a result, conventional slag wool-based rock wool related products (mineral ceiling panels, insulation materials, fireproof coating materials)
In addition, it has enabled the development of new uses such as asbestos fibers, inorganic fibers to replace ceramic wool, and the agricultural field (agricultural pine). <Method for Solving Problems> As a method of imparting color (design), which is the first objective of the present invention, a method of coloring fibers by adding a colored ionic substance can be used. However, there are limits to the coloring of fibers with colored ionic substances.
Also, it depends on the composition (relative to the degree of coloring), whether the atmosphere at the time of melting the raw material composition is oxidizing or reducing.
If the valence of the added colored ionic substance changes, not only will it be impossible to obtain the desired coloring of the fiber, but even if the colored raw material composition is made into a final fiber, the fiber shape will change. Please note that there will be differences in the degree of coloring, reflecting this. Generally, SiO 2 −Al 2 O 3 −CaO
- In MgO-based rock wool compositions, as a method for coloring fibers by adding colored ionic substances,
Fe ++ ...dark green, Mn ++ ...reddish-purple, Cu ++ ...green-yellow, Cr +++ ...dark blue are available, but 1~
Cr +++ ionic substances are excellent as effective coloring agents that give a colored design to fibers with a fiber diameter of 10μ, and other ionic substances cannot produce clear coloring, so they are difficult to color even when actually used. No benefits can be expected. Coloring with the Cr +++ ion substance according to the present invention colors the finally obtained fibers with a diameter of 1 to 10μ as light blue, and mineral fiber boards (ceiling boards) using these fibers can be produced even in an unpainted state. It has an excellent design. Cr +++ as a specific coloring method
Ionic substances are added in the form of Cr 2 O 3 , but from the perspective of the degree of coloration of the fibers, the upper limit is 0.2wt% or more, and the upper limit is 10wt% or less from the perspective of the blending ratio of other components and the heat resistance of the fibers. The range is appropriate. Regarding the improvement of heat resistance and mechanical properties, which is the second and third objective of the present invention, SiO 2 37 to 42 wt%,
Al2O3 10 ~15wt%, CaO35~40wt%, MgO5~
10wt%, trace components such as FeO + MnO + TiO 2 + S
In slag-based rock wool with a composition of 5wt% or less, CaO is the main component of alkaline earth metals.
An inexpensive method is to reduce the amount of FeO and increase the amount of SiO 2 , Al 2 O 3 , FeO, Cr 2 O 3 , etc.; Therefore, it is important to increase the amount of MgO.
SiO 2 is required in an amount of 35 to 50 wt% to obtain high-quality fibers, and if SiO 2 is less than 35 wt%, it is difficult to obtain high-quality fibers with a diameter of 2 to 10 μm.
This is because if the temperature exceeds 100%, the viscosity of the melt increases, making it difficult to form fibers at the same fiberizing temperature as in the past. Al 2 O 3 combines with SiO 2 and improves the heat resistance of fibers, but as the amount added increases, the appropriate fiberization temperature increases due to increased viscosity and devitrification temperature.
Must be 25wt% or less. Also, 10wt%
If it is less than 10~ 25wt %, especially 15~25wt% as Al2O3 , it will be difficult to obtain heat resistance and high quality fiber.
A blending range of 20 wt% is preferred. It is preferable to reduce the amount of alkaline earth metal CaO as much as possible for the purpose of improving the heat resistance of the fiber, but from the viewpoint of preventing an increase in the viscosity of the melt, it is mainly
By increasing the amount of MgO (which, like CaO, has the effect of reducing viscosity, it does not become a negative factor for the heat resistance of the fibers, especially the dimensional stability of the fibers at high temperatures).
It is important that the total content of +CaO is 30wt% or more. In addition, since the CaO component does not have a positive effect on water erosion resistance and flexibility of the obtained fiber, the amount of CaO added must be 20 wt% or less. On the other hand, MgO is the opposite of CaO,
In order to improve the erosion resistance against water and the flexibility of the obtained fibers, it is necessary to incorporate 10 wt% or more, and it is a good idea to actively increase the amount of SiO 2 and Al 2 O 3 . To ensure the required amount,
The upper limit is limited to 30wt% or less. In addition to coloring the fibers, Cr 2 O 3 has the function of improving the heat resistance of the fibers. as coloring
The amount of Cr 2 O 3 blended is 0.2wt% to 5wt%, but
In order to improve the heat resistance of the fiber in the form of a composite with SiO 2 and Al 2 O 3 , it is preferable to mix it in an amount of 1 wt % or more. The upper limit of 10wt% is due to limitations caused by the raw materials used and by maintaining the blending amount of other necessary ingredients. The main components of rock wool, which is the object of the present invention and is excellent in color (design), heat resistance, mechanical properties, and water erosion resistance, have been described above, but FeO, S, and Na 2 are unavoidable components. O,
The total content of K 2 O and the like is preferably kept at 5 wt% or less in order not to impair the properties aimed at by the present invention. Furthermore, TiO 2 and MnO as unavoidable trace components
has a slightly positive effect on the above-mentioned desired properties, so there is no problem in adding an appropriate amount. As the raw material whose composition can be adjusted at low cost within the composition range to obtain the target fiber of the present invention,
It is advisable to use ferrochrome slag, silica, and iron ore slag. Next, the raw materials and blending amounts will be explained in detail. The main component of ferrochrome slag, which is produced as a by-product when producing ferroalloy, is SiO 2 30~
35wt%, Al2O3 20 ~25wt%, MgO30~35wt%,
It can be obtained as a dark blue crushed stone block containing 0 to 5 wt% CaO, 4 to 9 wt% Cr2O3 , and 3 wt% or less of trace components (FeO, MnO, etc.). Silica is SiO 2 98
It is available as a natural crushed stone containing % or more. or,
Iron ore slag, which is the main raw material for conventional slag-based rock wool, is a by-product when producing pig iron, and its main components are SiO 2 30-35wt% and Al 2 O 3 10-15wt%.
%, MgO 5-10 wt%, CaO 35-40 wt%, trace components (TiO 2 , MnO, FeO, S, etc.) 5 wt% or less, and can be obtained as gray-black crushed stone blocks.
The fiber composition of the present invention can be obtained by mixing the raw material ore in a range of 5 to 90 wt% of chromium slag, 5 to 30 wt% of silica stone, and 0 to 90 wt% of iron ore slag. In addition, silicon manganese slag, basalt, diabase,
It is possible to incorporate small amounts of peridotite, dolomite, pyrite, silica brick, manganese silicate, and manganese oxide. When the above raw material composition is melted in a cupora furnace,
The size is 10 to 100 mm, when melted in an electric furnace,
A suitable size is 1-5 mm, and it can be melted at 1400-1600°C using coke fuel, carbon or molybdenum electrodes. Examples of the present invention will be described below. Example 1 Particle sizes 1 to 3 of the present invention shown as examples in Table 1
A raw material mixture (wt%) of mm is heated and melted in an electric furnace using a carbon electrode, and the melt is transferred to a plurality of internally cooled high-speed rotating bodies (φ=
10 inches, φ = 14 inches, rotation speed approximately 4000 rpm) and in a compressed air flow (approximately 100 m/sec), the fibers were collected. In addition, comparative examples (Comparative Example 1: Conventional slag-based rock wool, Comparative Example 2: Natural stone-based rock wool) are also shown in Table 1.
The raw material compositions shown in Table 2 were fiberized and collected in the same manner as in the example except that they were melted at the fiberization temperatures shown in Table 2. Table 2 shows the composition and properties of the rock wool of the present invention obtained as described above.

【表】【table】

【表】【table】

【表】 実施例 2 表3に記載した各組成成分からなる固形成分
1000gの4重量%水分散液による水性スラリーを
作製し、得られた水性スラリーを実験室のラスト
抄造機で抄造、脱水、得られた抄造ボードを、次
いでプレス成形機で脱水プレス成形する。得られ
たプレス成形物を熱風乾燥機を使用し230℃で1
時間、続いて150℃で2時間乾燥し、比重約0.4、
厚み12mmの鉱物質繊維板を得た。得られた比重、
曲げ強度、燃焼性、外観を表4に示す。
[Table] Example 2 Solid component consisting of each composition listed in Table 3
An aqueous slurry is prepared using 1000 g of a 4% by weight aqueous dispersion, the resulting aqueous slurry is made into paper using a last paper making machine in a laboratory, and dehydrated.The obtained paper board is then dehydrated and press-molded using a press forming machine. The obtained press molded product was dried at 230℃ using a hot air dryer.
time, followed by 2 hours drying at 150℃, specific gravity approximately 0.4,
A mineral fiberboard with a thickness of 12 mm was obtained. The obtained specific gravity,
Table 4 shows the bending strength, combustibility, and appearance.

【表】【table】

【表】【table】

【表】 実施例 3 酸素吹込式キユポラ炉で、比較例1及び実施例
1−1のサイズ10〜100mmの原料組成物を溶融し、
複数の内部冷却型高速回転体(φ=10インチ、φ
=14インチ、約4000rpm)と圧縮空気流中(約
100m/sec)で繊維化を行なつた。この時、高速
回転体の周囲より、20wt%濃度の水溶性フエノ
ール樹脂バインダーを繊維に吹き付けながら、得
られる未硬化のフエノール樹脂バインダー(固形
分で約1.5wt%付着)付着の繊維を集綿し、予備
圧縮をしてから、キヤタピラ式ダブルコンベヤー
型の熱硬化炉(温度250℃、10分)で、バインダ
ーを硬化させ、かさ密度約40Kg/m3、厚み100mm
のロツクウール軽量品を得た。 上記軽量品を縦×横=10×10(cm)のサイズに
切り、テンシロンを用いて、クロスヘツドのスピ
ード50mm/分で、50mmまで圧縮し50mm圧縮の状態
で10分間放置し、次いで除重し、厚み復元率=
h/h0×100(%)を求めた(h:試験後の厚み、
h0:試験前の厚み)、得られた結果を表5に示す。
[Table] Example 3 In an oxygen-blown Cupora furnace, the raw material compositions of Comparative Example 1 and Example 1-1 with a size of 10 to 100 mm were melted,
Multiple internally cooled high-speed rotating bodies (φ = 10 inches, φ
= 14 inches, approx. 4000 rpm) and in compressed air flow (approx.
Fiberization was performed at a speed of 100 m/sec). At this time, while spraying a water-soluble phenolic resin binder at a concentration of 20 wt% onto the fibers from around the high-speed rotating body, the resulting uncured phenolic resin binder (approximately 1.5 wt% attached in solid content) was collected. After pre-compression, the binder is cured in a caterpillar double conveyor thermosetting furnace (temperature 250℃, 10 minutes) to a bulk density of approximately 40Kg/m 3 and a thickness of 100mm.
We obtained lightweight rock wool products. Cut the above lightweight product into a size of length x width = 10 x 10 (cm), compress it to 50 mm using a Tensilon at a crosshead speed of 50 mm/min, leave it at 50 mm compression for 10 minutes, and then remove the weight. , thickness restoration rate=
h/h 0 ×100 (%) was calculated (h: thickness after test,
h 0 : Thickness before test), the obtained results are shown in Table 5.

【表】 以上の結果より本発明による軽量品は従来品と
比較し、復元率が優れる。 <効果> 以上、実施例1〜4に述べたように、本発明の
ロツクウールは有色性(意匠性)、耐熱性、機械
的特性、水に対する耐侵食性に優れた性能を有す
ることが理解される。 かつ、安価なフエロクロムスラグを使用できる
ため、工業的に安価に製造でき、これにより従来
のロツクウール関連製品(天井板、断熱材、耐火
被覆材)分野の用途拡大、ならびに新規用途(ア
スベスト代替、セラミツクウール代替、農業分野
等)が可能となつた。
[Table] From the above results, the lightweight product according to the present invention has a better recovery rate than the conventional product. <Effects> As described above in Examples 1 to 4, it is understood that the rock wool of the present invention has excellent performance in coloration (design), heat resistance, mechanical properties, and water erosion resistance. Ru. In addition, since inexpensive ferrochrome slag can be used, it can be produced industrially at low cost, which will expand the use of conventional rock wool-related products (ceiling panels, insulation materials, fireproof coatings), and new applications (asbestos substitutes). , ceramic wool substitute, agricultural field, etc.).

Claims (1)

【特許請求の範囲】[Claims] 1 フエロクロムスラグ5〜90wt%、珪石5〜
30wt%、鉄鉱スラグ0〜90wt%を配合したもの
であつて、SiO235〜50wt%、Al2O310〜25wt%、
CaO2〜20wt%、MgO5〜30wt%、Cr2O30.2〜
10wt%を主成分とし、微量成分としてのTiO2
K2O、Na2O、MnO、FeOおよびSは合計最大
5wt%までであることを特徴とするロツクウー
ル。
1 Ferrochrome slag 5~90wt%, silica stone 5~
30wt%, iron ore slag 0-90wt%, SiO 2 35-50wt%, Al 2 O 3 10-25wt%,
CaO2~20wt%, MgO5~30wt%, Cr2O30.2 ~
10wt% as the main component and TiO 2 as a trace component,
K 2 O, Na 2 O, MnO, FeO and S have a total maximum
Rock wool characterized by up to 5wt%.
JP61128942A 1986-06-03 1986-06-03 Rock wool Granted JPS62288138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128942A JPS62288138A (en) 1986-06-03 1986-06-03 Rock wool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128942A JPS62288138A (en) 1986-06-03 1986-06-03 Rock wool

Publications (2)

Publication Number Publication Date
JPS62288138A JPS62288138A (en) 1987-12-15
JPH0419175B2 true JPH0419175B2 (en) 1992-03-30

Family

ID=14997216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128942A Granted JPS62288138A (en) 1986-06-03 1986-06-03 Rock wool

Country Status (1)

Country Link
JP (1) JPS62288138A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777480B (en) * 2019-10-23 2023-05-05 青岛青力环保设备有限公司 Silicomanganese slag rock/mineral wool product and preparation method thereof
CN110818244B (en) * 2019-10-29 2020-12-22 北京大学 Rock wool directly prepared by melting sponge iron slag in electric furnace and preparation method thereof

Also Published As

Publication number Publication date
JPS62288138A (en) 1987-12-15

Similar Documents

Publication Publication Date Title
US4153439A (en) Method for the production of mineral wool, especially for use in basic milieu
KR20000029668A (en) Biosoluble, high temperature mineral wools
JPS6218497B2 (en)
US4087285A (en) Method for strengthening vitreous products and composition boards
EP0076677B1 (en) Glass fibre reinforced cementitious products
JPH0419175B2 (en)
GB2150553A (en) Composition for making glass fibres
JPS61137948A (en) Sagging resistant ceiling panel
CN103288394A (en) Self-insulation mortar
KR20220098468A (en) Composite glass composition and method of manufactruing the same and cooking appliance including the same
JPS5828210B2 (en) Kobutsu Sen Imataha Beads Seibutsu
DE1471032A1 (en) Ceramic fiber products and processes for their manufacture
JPH06340470A (en) Ceramic sintered compact
JP2875589B2 (en) Spraying material for rock wool composition
JPH0251443A (en) Rock wool
KR100231506B1 (en) Producing method of the sleeve for the thermoelectric couple
JPS5857385B2 (en) Alkali-resistant inorganic fiber reinforced cement products
CN114561112B (en) Moisture-proof refractory fiber spray coating and spray coating method thereof
GB2234754A (en) Fire-retardant additives and their uses
KR900005181B1 (en) Composition of rock wool improved heat-resitance and preparation method thereof
DE2804069A1 (en) Non-flammable sheet or felt of mineral fibre - impregnated with alkali silicate and dried without dust formation
JP2001139347A (en) Rock wool and rock wool board
JPS6096546A (en) Mineral fiber composition
JPS6114096B2 (en)
KR100449239B1 (en) Insulation sleeve and its producing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees