JPH0419174B2 - - Google Patents

Info

Publication number
JPH0419174B2
JPH0419174B2 JP10959484A JP10959484A JPH0419174B2 JP H0419174 B2 JPH0419174 B2 JP H0419174B2 JP 10959484 A JP10959484 A JP 10959484A JP 10959484 A JP10959484 A JP 10959484A JP H0419174 B2 JPH0419174 B2 JP H0419174B2
Authority
JP
Japan
Prior art keywords
glass
pipe
soot
heating
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10959484A
Other languages
Japanese (ja)
Other versions
JPS60255639A (en
Inventor
Gotaro Tanaka
Naoki Yoshioka
Tsunehisa Kyodo
Futoshi Mizutani
Hiroo Kanamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10959484A priority Critical patent/JPS60255639A/en
Publication of JPS60255639A publication Critical patent/JPS60255639A/en
Publication of JPH0419174B2 publication Critical patent/JPH0419174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0148Means for heating preforms during or immediately prior to deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は光フアイバ用ガラス母材の製造方法に
関し、特に純シリカをコアとし、弗素をドープし
たシリカをクラツドとする光伝送損失の少い、特
性の優れたシングルモードフアイバの製造方法に
適する。 (従来の技術) 純シリカコア型シングルモードフアイバの屈折
率分布例を第1図イおよびロに示す。第1図の純
シリカコア型シングルモードフアイバは、原理的
には、コアが純シリカであるためドープ剤に基く
レイリー散乱損失がないので、極めて低損失な特
性が期待されるが、製法としては難かしい。 例えば、本発明者らはすでに特願昭58−194104
号明細書にて、コアガラスとして純シリカロツド
を準備し、該ロツドの外周部にシリカスートを火
炎加水分解反応で堆積させ、該堆積体を弗素化合
物ガスを含有する雰囲気で脱水・焼結することに
より、弗素をシリカガラス中にドープし、これに
より純シリカコアおよび弗素ドープしたクラツド
層を形成する方法を提案している。 (発明が解決しようとする問題点) 上記の製法における欠点は工程が長いことであ
り、またコア用ガラスの外周部に水分が残存し易
く、この水分が脱水・焼結工程で十分に除去しき
れない場合が生じることにある。このために上記
製法により得られたフアイバは、OH基による光
吸収(波長1.39μm)の影響が残る。 本発明はこの問題を解決して、工程が極めて簡
単であり、かつOH基による吸収影響が安定して
少ないシングルモードフアイバ、特に純シリカコ
ア型シングルモードフアイバの製造方法を提供す
るものである。 (問題点を解決する手段) 本発明は、微粒子状SiO2ガラスの半焼結体か
らなる円筒体中空部にヒータを挿入し加熱するこ
とにより、該円筒体内壁近傍部をさらに焼結せし
めた後、該円筒体を少なくとも弗素化合物ガスを
含有する雰囲気にて加熱し、溶融透明ガラス化す
ることを特徴とする光フアイバ用ガラス母材の製
造方法に関するものである。 本発明方法による光フアイバの製造工程は概略
次のように行う。 微粒子状ガラスの半焼結体からなる円筒体
(スートパイプ)を作成する。 該スートパイプ内にヒータを挿入して、スー
トパイプ内壁部を加熱し、これによりスートパ
イプを完全に脱水しながら、パイプ内壁部の焼
結部を進行させる。 フツ素ドープ焼結。 コラツプス(パイプの中実化)。 ジヤケツテイング。 線引きしてフアイバとする。 第1図イの構造のフアイバを製造するには、上
記〜の工程により、また第1図ロの構造のフ
アイバを製造するにはを除いた〜と工程
によればよい。 スートパイプの作製法としては、いわゆる火炎
加水分解外付法(例えば特開昭48−73522号公報
に記載される方法)が適している。すなわち、
SiCl4をガラス形成用気相原料とし、H2−O2炎に
よりSiO2ガラス微粒子(スート)を発生させる。
このスートを、石英棒、アルミナ棒、金属棒等の
耐火性材料よりなる回転し移動する出発棒の外周
部に、半焼結状態で堆積させてゆき、所定量堆積
させた後に上記出発棒を引き抜き、スートパイプ
を得る。 上記の如く作製したスートパイプ内にヒーター
を挿入し、塩素系ガスを外部から導入しながら加
熱することにより、スートパイプを脱水し、かつ
パイプ内壁部の焼結度を上げる。第2図はスート
パイプ内壁の加熱法の1例を図示したものであ
る。図中4はスートパイプ、5は石英ガラスある
いは高純度アルミナ等からなるスペーサ、6はヒ
ータからの不純物混入を防止するため設けた石英
ガラスあるいは高純度アルミナ等からなる保護管
であり、スートパイプ4との間隙にはスペーサ5
が挿入されている。7はカーボン、SiC、ジルコ
ニア等の材料からなる発熱体であり、高周波誘導
により発熱する。8は石英ガラスからなるマツフ
ルであり、9は高周波を印加させるためのワーク
コイルである。 スートパイプ4の加熱条件としては、まず塩素
系ガスおよびヘリウムガスをマツフル8内に導入
しながら、発熱体7の温度を上昇させてゆき、発
熱体7を所定の温度T1まで上昇させた後に、マ
ツフル8内にCF4、CCl2F2またはSF6等の弗化物
ガスを導入する。この後、発熱体7の温度をさら
に上昇させてゆき、スートパイプを透明ガラス化
する。 以上の工程は、基本的にはまずスートパイプを
塩素系ガスにより無水させながら、スートパイプ
内壁部の焼結度を進行させ、その後に弗化物ガス
の導入によりスートパイプに弗素をドープするこ
とからなる。上記の過程をとることにより、弗素
添加量がスートパイプ内壁部では少なく、外層部
では多い、ガラスパイプが得られる。 上記工程での加熱条件例を第3図に模式図とし
て示す。図中横軸には経過時間(t)と、その時
のガス雰囲気を示し、縦軸には発熱体温度(T)
を示しており、τは昇温速度、△tは発熱体温度
がT1に達したときの保持時間を示す。塩素ガス
を含むHe雰囲気気で発熱体温度をT0からT1に昇
温速度τにて上昇させ、温度T1にて時間t1からt2
まで△tの間、保持することでガラスパイプを完
全に脱水処理し、かつパイプ内壁近傍の焼結度を
上げ、次いで塩素ガスの供給を止め弗化物ガスを
含むHe雰囲気で温度T2まで昇温し、時間t3から
t4の間温度T2に保持することにより、弗素添加と
透明ガラス化を行う。 また得られたガラスパイプの径方向に関する屈
折率分布を第4図に示す。第4図においてガラス
パイプの内壁部近傍の屈折率は純シリカのそれと
等しい。 以上の説明では、透明ガラス化するまでを1つ
の炉内で行う方式を述べたが、スートパイプ内壁
部の焼結度を進行させた後は、別の炉を用いて弗
素ドープおよび透明ガラス化を行つてもよい。 ガラスパイプの径方向における弗素濃度分布
は、上述の昇温速度τ、T1、△tにより制御す
ることができる。 以上の工程で得られたガラスパイプは、よく知
られているMCVD法の最終工程に準じて、その
パイプの穴をつぶしてロツド状となし、光フアイ
バ用ガラス母材とする。 (発明の効果) 以上詳述の如く、本発明の光フアイバー用ガラ
ス母材製造方法は、スート体(スートパイプ)を
脱水しながらコアおよびグラツドを形成できるた
め、工程が簡素であり、また残留水分の極めて少
ないコアを形成できる。さらに、コアにはドーパ
ントを含有しない、純シリカコアのフアイバを容
易に作製することができる。 (実施例) 外径15mmのアルミ製金属棒を出発棒として、該
出発棒上にSiCl4の火炎加水分解法によりSiO2
粒子(スート)を堆積させ、外径150mmのスート
体を合成した。その後出発アルミ棒を引き抜いて
スートパイプとし、該スートパイプ内部に、アル
ミナ製保護管をもつ発熱体をセツトし、下記第1
表に示す条件にて、スートパイプを加熱処理し
た。なお、表中のτ、△t、T1、T2の意味する
ところおよび雰囲気ガスの流し方は第3図に示し
たと同じである。
(Industrial Application Field) The present invention relates to a method of manufacturing a glass base material for optical fibers, and in particular to a method for manufacturing a glass base material for optical fibers, in particular a single mode fiber with excellent characteristics and low optical transmission loss, using pure silica as the core and fluorine-doped silica as the cladding. Suitable for fiber manufacturing methods. (Prior Art) Examples of the refractive index distribution of a pure silica core type single mode fiber are shown in FIGS. 1A and 1B. In principle, the pure silica core type single mode fiber shown in Figure 1 is expected to have extremely low loss characteristics because the core is pure silica and there is no Rayleigh scattering loss due to dopants, but it is difficult to manufacture. That's funny. For example, the present inventors have already applied for patent application No. 58-194104.
In the specification, pure silica rod is prepared as the core glass, silica soot is deposited on the outer periphery of the rod by flame hydrolysis reaction, and the deposit is dehydrated and sintered in an atmosphere containing fluorine compound gas. proposed a method of doping fluorine into silica glass to form a pure silica core and a fluorine-doped cladding layer. (Problems to be Solved by the Invention) The disadvantages of the above manufacturing method are that the process is long, and moisture tends to remain on the outer periphery of the core glass, and this moisture cannot be sufficiently removed during the dehydration and sintering process. There will be cases where it is not possible to do so. For this reason, the fiber obtained by the above manufacturing method remains affected by light absorption (wavelength: 1.39 μm) due to OH groups. The present invention solves this problem and provides a method for producing a single mode fiber, particularly a pure silica core type single mode fiber, which has an extremely simple process and is stably affected by less absorption by OH groups. (Means for Solving the Problems) The present invention further sinters the inner wall of the cylinder by inserting a heater into the hollow part of the cylinder made of a semi-sintered body of particulate SiO 2 glass and heating it. The present invention relates to a method for manufacturing a glass preform for optical fibers, which comprises heating the cylindrical body in an atmosphere containing at least a fluorine compound gas to melt and convert it into transparent glass. The process of manufacturing an optical fiber according to the method of the present invention is generally carried out as follows. A cylindrical body (soot pipe) made of a semi-sintered body of particulate glass is created. A heater is inserted into the soot pipe to heat the inner wall of the soot pipe, thereby progressing the sintering of the inner wall of the pipe while completely dewatering the soot pipe. Fluorine doped sintering. Collapse (solidification of pipe). Jacketing. Draw a line to make fiber. In order to manufacture the fiber having the structure shown in FIG. 1A, the above-mentioned steps 1 to 3 may be used, and to manufacture the fiber having the structure shown in FIG. As a method for producing the soot pipe, the so-called flame hydrolysis external attachment method (for example, the method described in JP-A-48-73522) is suitable. That is,
SiCl 4 is used as a gas phase raw material for forming glass, and SiO 2 glass particles (soot) are generated by H 2 −O 2 flame.
This soot is deposited in a semi-sintered state on the outer periphery of a rotating and moving starting rod made of a refractory material such as a quartz rod, an alumina rod, or a metal rod, and after a predetermined amount has been deposited, the starting rod is pulled out. , get a soot pipe. A heater is inserted into the soot pipe produced as described above, and chlorine-based gas is introduced from the outside while heating the soot pipe, thereby dehydrating the soot pipe and increasing the degree of sintering of the inner wall of the pipe. FIG. 2 illustrates an example of a method of heating the inner wall of a soot pipe. In the figure, 4 is a soot pipe, 5 is a spacer made of quartz glass or high-purity alumina, etc., and 6 is a protection tube made of quartz glass or high-purity alumina, etc. provided to prevent impurities from entering the heater. spacer 5 in the gap between
is inserted. 7 is a heating element made of a material such as carbon, SiC, zirconia, etc., and generates heat by high frequency induction. 8 is a matsufuru made of quartz glass, and 9 is a work coil for applying high frequency. The heating conditions for the soot pipe 4 are as follows: First, while introducing chlorine gas and helium gas into the Matsufuru 8, the temperature of the heating element 7 is increased, and after the heating element 7 is raised to a predetermined temperature T1 , , a fluoride gas such as CF 4 , CCl 2 F 2 or SF 6 is introduced into the Matsufuru 8. Thereafter, the temperature of the heating element 7 is further increased to turn the soot pipe into transparent glass. The above process basically involves first dehydrating the soot pipe with chlorine-based gas to increase the degree of sintering of the inner wall of the soot pipe, and then doping the soot pipe with fluorine by introducing fluoride gas. Become. By taking the above process, a glass pipe can be obtained in which the amount of fluorine added is small in the inner wall portion of the soot pipe and large in the outer layer portion. An example of the heating conditions in the above step is shown schematically in FIG. In the figure, the horizontal axis shows the elapsed time (t) and the gas atmosphere at that time, and the vertical axis shows the heating element temperature (T).
, where τ is the temperature increase rate and Δt is the holding time when the temperature of the heating element reaches T1 . The temperature of the heating element is increased from T 0 to T 1 at a heating rate τ in a He atmosphere containing chlorine gas, and the heating element temperature is increased from T 1 to t 2 at a temperature of T 1 .
The glass pipe is completely dehydrated by holding it for a period of △t, and the degree of sintering near the inner wall of the pipe is increased. Then, the supply of chlorine gas is stopped and the temperature is raised to T 2 in a He atmosphere containing fluoride gas. Warm from time t 3
Fluorine addition and transparent vitrification are performed by maintaining the temperature at T 2 for t 4 . Moreover, the refractive index distribution in the radial direction of the obtained glass pipe is shown in FIG. In FIG. 4, the refractive index near the inner wall of the glass pipe is equal to that of pure silica. In the above explanation, we have described a method in which the process up to transparent vitrification is carried out in one furnace, but after the sintering of the inner wall of the soot pipe has progressed, another furnace is used to dope the fluorine dope and convert it into transparent vitrification. You may do so. The fluorine concentration distribution in the radial direction of the glass pipe can be controlled by the above-mentioned temperature increase rate τ, T 1 and Δt. The glass pipe obtained through the above steps is made into a rod shape by crushing the holes in the pipe according to the final step of the well-known MCVD method, and is used as a glass base material for optical fiber. (Effects of the Invention) As described in detail above, the method for producing a glass base material for optical fibers of the present invention can form a core and a glade while dehydrating a soot body (soot pipe), so the process is simple and no residue remains. A core with extremely low moisture content can be formed. Furthermore, a fiber with a pure silica core that does not contain a dopant in the core can be easily produced. (Example) Using an aluminum metal rod with an outer diameter of 15 mm as a starting rod, SiO 2 fine particles (soot) were deposited on the starting rod by flame hydrolysis of SiCl 4 to synthesize a soot body with an outer diameter of 150 mm. After that, the starting aluminum rod was pulled out to make a soot pipe, and a heating element with an alumina protection tube was set inside the soot pipe.
The soot pipe was heat-treated under the conditions shown in the table. Note that the meanings of τ, Δt, T 1 , and T 2 in the table and the method of flowing the atmospheric gas are the same as shown in FIG. 3.

【表】 得られた溶融ガラス管(ガラスパイプ)を、そ
の管内に塩素ガスを導入しながら、約2000℃の抵
抗炉中にて加熱することにより、管をつぶした
(中実化)。得られたロツド断面の屈折率分布を測
定したところ、中央に屈折率差で0.3%を有する
純シリカのコアが形成されていた。 該ロツドの外層に、さらにシリカ管を被せ、溶
融一体化し、これを線引することにより、シング
ルモードフアイバを作製した。得られたフアイバ
の伝送損失は、波長1.39μmにおけるOHピークが
10dB/Km以下と残留OH基が少なく、また波長
1.3μmにおける伝送損失は1dB/Km以下と小さ
く、特性の優れたシングルモードフアイバであつ
た。
[Table] The obtained molten glass tube (glass pipe) was crushed (solidification) by heating it in a resistance furnace at approximately 2000°C while introducing chlorine gas into the tube. When the refractive index distribution of the obtained rod cross section was measured, it was found that a pure silica core with a refractive index difference of 0.3% was formed in the center. A single mode fiber was produced by covering the outer layer of the rod with a silica tube, melting it and drawing it. The transmission loss of the obtained fiber is that the OH peak at a wavelength of 1.39 μm is
Less than 10dB/Km, residual OH groups are low, and the wavelength is
The transmission loss at 1.3 μm was small, less than 1 dB/Km, making it a single mode fiber with excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イおよびロはシングルモードフアイバの
屈折率分布を示す図、第2図は本発明のスートパ
イプ加熱法の1実施態様を説明する図、第3図は
本発明におけるスートパイプの加熱条件を経時的
に説明する模式図、第4図は本発明で得られたガ
ラスパイプの屈折率分布を示す図。
Figures 1A and 2B are diagrams showing the refractive index distribution of a single mode fiber, Figure 2 is a diagram explaining one embodiment of the soot pipe heating method of the present invention, and Figure 3 is a diagram showing the heating conditions of the soot pipe in the present invention. FIG. 4 is a diagram showing the refractive index distribution of the glass pipe obtained by the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 微粒子状SiO2ガラスの半焼結体からなる円
筒体中空部にヒータを挿入し加熱することによ
り、該円筒体内壁近傍部をさらに焼結せしめた
後、該円筒体を少なくとも弗素化合物ガスを含有
する雰囲気にて加熱し、溶融透明ガラス化するこ
とを特徴とする光フアイバ用ガラス母材の製造方
法。
1. A heater is inserted into the hollow part of a cylindrical body made of a semi-sintered body of particulate SiO 2 glass, and the area near the wall of the cylindrical body is further sintered by heating, and then the cylindrical body is heated to contain at least a fluorine compound gas. 1. A method for producing a glass base material for optical fibers, which comprises heating in an atmosphere to melt and transform into transparent glass.
JP10959484A 1984-05-31 1984-05-31 Production of glass parent material for optical fiber Granted JPS60255639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10959484A JPS60255639A (en) 1984-05-31 1984-05-31 Production of glass parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10959484A JPS60255639A (en) 1984-05-31 1984-05-31 Production of glass parent material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60255639A JPS60255639A (en) 1985-12-17
JPH0419174B2 true JPH0419174B2 (en) 1992-03-30

Family

ID=14514222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10959484A Granted JPS60255639A (en) 1984-05-31 1984-05-31 Production of glass parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60255639A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209603A (en) * 2007-02-26 2008-09-11 Mitsubishi Cable Ind Ltd Optical fiber

Also Published As

Publication number Publication date
JPS60255639A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
KR830002158B1 (en) Method for forming optical waveguide preform having continuously removable starting member
CA1251044A (en) Fluorine doped optical waveguide
US4772302A (en) Optical waveguide manufacture
Schultz Fabrication of optical waveguides by the outside vapor deposition process
US4082420A (en) An optical transmission fiber containing fluorine
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
CA1260684A (en) Optical waveguide manufacture
MacChesney et al. Materials development of optical fiber
US4648891A (en) Optical fiber
JPH044986B2 (en)
US4734117A (en) Optical waveguide manufacture
JPS58145634A (en) Manufacture of doped glassy silica
US4165152A (en) Process for producing optical transmission fiber
CA1187291A (en) Method of making glass optical fiber
CA1266403A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
US20020197005A1 (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
JPH0419174B2 (en)
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
US20040099013A1 (en) Optical fibers and methods of fabrication
CA1261127A (en) Optical waveguide manufacture
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
JPS6137212B2 (en)
JPH0426523A (en) Production of optical fiber
JPH0463365B2 (en)
JP3439258B2 (en) Method for producing glass preform for optical fiber