JPH04191200A - Device for cooling beam target for ion engine testing device - Google Patents

Device for cooling beam target for ion engine testing device

Info

Publication number
JPH04191200A
JPH04191200A JP2323854A JP32385490A JPH04191200A JP H04191200 A JPH04191200 A JP H04191200A JP 2323854 A JP2323854 A JP 2323854A JP 32385490 A JP32385490 A JP 32385490A JP H04191200 A JPH04191200 A JP H04191200A
Authority
JP
Japan
Prior art keywords
cooling
beam target
refrigerator
ion engine
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2323854A
Other languages
Japanese (ja)
Other versions
JP3030657B2 (en
Inventor
Minoru Katada
堅田 稔
Hiroshi Matsuda
洋 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
National Space Development Agency of Japan
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical National Space Development Agency of Japan
Priority to JP2323854A priority Critical patent/JP3030657B2/en
Publication of JPH04191200A publication Critical patent/JPH04191200A/en
Application granted granted Critical
Publication of JP3030657B2 publication Critical patent/JP3030657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G7/00Simulating cosmonautic conditions, e.g. for conditioning crews
    • B64G2007/005Space simulation vacuum chambers

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To efficiently cool a beam target which is arranged in opposite to an ion engine within a vacuum container, by dividing cooling pipe lines from a refrigerator for cooling the beam target down to a low temperature, into a several groups. CONSTITUTION:A high pressure coolant main pipe 12 for feeding high pressure coolant from the body section 11 of a refrigerator 10 is connected thereto with several high pressure branch pipes 13 which are divided into a plurality of groups, and are provided therein with expansion valves 14, respectively through which they are connected cooling pipes 15 for cooling a beam target 16 in which the cooling pipes 15 are incorporated. Further, the distal ends of the cooling pipes are bundled into one pipe which is then connected to a suction pipe 17 to the refrigerator 10. Four of the cooling pipers 15 are formed so as to have lengths measured from the expansion valve 14 to the part connected to the suction pipe 7, which are equal to each other, and are arranged to cool sector shape sections of the beam target, respectively, and substantially uniformly. With this arrangement, it is possible to efficiently cool the beam target 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、宇宙環境と路間等の高真空、極低温の環境を
形成し、宇宙空間で人工衛星等の姿勢制御用として使用
されるイオンエンジンの試験を行うイオンエンジン試験
装置用のビームターゲットを低温に冷却する装置に関す
る。
[Detailed description of the invention] [Industrial application field] The present invention creates a high vacuum, extremely low temperature environment between the space environment and the roadway, and is used for attitude control of artificial satellites, etc. in space. The present invention relates to a device that cools a beam target for an ion engine test device that tests an ion engine to a low temperature.

〔従来の技術〕[Conventional technology]

イオンエンジン試験装置は、一般に、真空容器の内部に
シュラウド又はシールドと呼ばれる熱吸収壁を設置して
宇宙の冷暗黒を模擬するとともに、真空容器の内部を真
空ポンプで真空排気して宇宙の高真空を模擬し、該装置
に装着したイオンエンジンの試験を行うものである。
Ion engine test equipment generally simulates the cold darkness of space by installing a heat-absorbing wall called a shroud or shield inside a vacuum container, and also evacuates the inside of the vacuum container with a vacuum pump to create the high vacuum of space. This test simulates the ion engine installed in the equipment.

宇宙の冷暗黒は、無限の熱吸収体の性質を持ち、その温
度は3にといわれている。地上で人工衛星等の発熱体の
試験を行う際には、該人工衛星等を前記シュラウド内に
収容して行っているか、試験を行う雰囲気を3Kにまで
冷却することは不可能に近い。このため、熱誤差の評価
から、ンユラウドを100に以下に冷却して、宇宙の冷
暗黒を模擬するのか一般的であり、その寒冷源としては
、主に液体窒素又はヘリウム冷凍機から供給されるヘリ
ウムガスが用いられてきている。
The cold darkness of the universe has the property of an infinite heat absorber, and its temperature is said to be 3. When testing a heating element such as an artificial satellite on the ground, the satellite is housed in the shroud, or it is almost impossible to cool the atmosphere in which the test is performed to 3K. For this reason, from the evaluation of thermal error, it is common to cool Nyuraud to below 100 ℃ to simulate the cold darkness of space, and the cooling source is mainly supplied from liquid nitrogen or helium refrigerators. Helium gas has been used.

さらに、前記真空容器内に放出ガスの多い試験体を収容
して高真空に排気するためには、非常に大きなポンプを
用いて排気する必要かあるが、このような場合には、真
空容器の内部、シュラウド内に極低温排気面、即ちクラ
イオパネルを組み込んで、該クライオパネルを20に以
下に冷却し、窒素、キセノン等のカスを凝結排気するク
ライオポンプとして機能させる必要かあった。このクラ
イオパネルの冷却源には、従来からヘリウム冷凍機から
供給されるヘリウムか用いられている。
Furthermore, in order to house a test specimen with a large amount of released gas in the vacuum container and evacuate it to a high vacuum, it is necessary to use a very large pump to evacuate it. It was necessary to incorporate a cryogenic pumping surface, that is, a cryopanel, inside the shroud, and to cool the cryopanel to below 20°C to function as a cryopump for condensing and exhausting nitrogen, xenon, etc. residues. Conventionally, helium supplied from a helium refrigerator has been used as a cooling source for this cryopanel.

また、試験完了後に真空容器内を児温まて加温する際に
は、一般に、窒素カス又はヘリウムカスをンユラウトに
導入する二とにより行われていた。
Furthermore, when the inside of the vacuum container is heated to infant temperature after the test is completed, this is generally done by introducing nitrogen scum or helium scum into the container.

二のようなイオンエンジン試験装置の真空容器内には、
前記イオンエンジンからイオンビームとして噴射される
キセノンカスを受は止めるためのビームターゲットか設
置されている。このビームターゲットは、低温冷凍機で
一50℃以下に冷却される。
Inside the vacuum chamber of the ion engine test equipment, such as
A beam target is installed to receive and stop the xenon scum that is injected as an ion beam from the ion engine. This beam target is cooled to below -50°C using a cryocooler.

上記ビームターゲットの冷却は、第2図に示すように、
通常、フロン冷凍機等の冷凍機1からの冷却配管2をビ
ームターゲット3に組み込んで、膨張弁4ての膨張後の
温度を約−70℃とし、前記ビームターゲット3を一5
0℃以下に冷却するようにしていた。
The beam target is cooled as shown in Figure 2.
Usually, a cooling pipe 2 from a refrigerator 1 such as a fluorocarbon refrigerator is incorporated into a beam target 3, and the temperature after expansion through an expansion valve 4 is set to about -70°C, and the beam target 3 is
It was designed to be cooled to below 0°C.

このビームターゲット3の冷却温度−50℃は、真空容
器の冷却のためのシュラウドの負荷を少なくするため、
さらに前記クライオパネルの冷却源であるヘリウム冷凍
機の負荷を減らすため、低温程良いか、通常のフロン冷
凍機を用いた系における紅済的な冷凍温度という選定条
件により設定したものである。
The cooling temperature of the beam target 3 is -50°C to reduce the load on the shroud for cooling the vacuum vessel.
Furthermore, in order to reduce the load on the helium refrigerator, which is the cooling source for the cryopanel, the lower the temperature, the better, or the selection conditions were set such that the freezing temperature is the same as in a system using a normal fluorocarbon refrigerator.

〔発明か角イ決しようとする課題〕[Problem to decide whether to invent or not]

しかしながら、従来のイオンエンジン試験装置において
は、通常1基のエンジンのみを試験するように形成され
ていたため、ビームターゲットも小型であり、ビームタ
ーゲットの冷却も通常の冷却方法で十分てあった。とこ
ろが、−度に複数基のエンジンを試験するような大型の
イオンエンジン試験装置では、ビームターゲットも大型
になり、冷却面積か広くなるため、通常の冷却方法を用
いたのでは十分にビームターゲットを冷却する二とがで
きなかった。
However, in conventional ion engine test equipment, the beam target is small because it is usually configured to test only one engine, and the beam target is sufficiently cooled by a normal cooling method. However, in large ion engine test equipment that tests multiple engines at a time, the beam target is also large and the cooling area is large, so using normal cooling methods cannot adequately cover the beam target. There was no way to cool it down.

即ち、配管か長くなると、配管による圧力損失が大きく
なるため、冷媒の蒸発温度か高くなり、十分に冷却でき
なくなる。このとき、冷媒の温度を下げるために、圧縮
機の吸入圧を大気圧以下にすることもてきるか、大気圧
以下にすると配管に大気からの空気が混入して冷凍能力
が低下することかある。また、配管か長いと、冷媒中に
混合した圧縮機用オイルか配管途中で11−まり、圧縮
機に戻りにくくなり圧縮機の故障を起こすことかある。
That is, as the piping becomes longer, the pressure loss due to the piping increases, and the evaporation temperature of the refrigerant increases, making it impossible to cool the refrigerant sufficiently. At this time, in order to lower the temperature of the refrigerant, it is possible to lower the suction pressure of the compressor to below atmospheric pressure, or if it is lowered to below atmospheric pressure, air from the atmosphere will get mixed into the piping and the refrigeration capacity will decrease. be. Furthermore, if the piping is long, the compressor oil mixed with the refrigerant may clog in the piping, making it difficult to return to the compressor and causing compressor failure.

さらに、上記のように複数のイオンエンジンを設けた試
験装置の場合に、例えば1台のイオンエンジンのみを噴
射させると、前記ビームターゲットに部分的熱負荷がか
かり、あるいは配管の途中に部分的な熱負荷か生しると
、冷媒か蒸発して圧力損失が大きくなり、冷媒の流れを
止めてしまうことがある。
Furthermore, in the case of a test device equipped with a plurality of ion engines as described above, if only one ion engine is used for injection, a partial heat load will be applied to the beam target, or a partial heat load will be applied to the beam target in the middle of the piping. If a heat load is generated, the refrigerant may evaporate, resulting in a large pressure loss and stopping the flow of refrigerant.

そこで本発明は、特に大型のイオンエンジン試験装置に
用いられるビームターゲットドを効率良く冷却すること
かできるイオンエンジン試験装置用ビームターゲットの
冷却装置を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a cooling device for a beam target for an ion engine test device, which can efficiently cool a beam target used in a particularly large-sized ion engine test device.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明のイオンエンジ
ン試験装置用ビームターケントの冷却装置は、真空容器
の内部に、イオンエンジンと対向して配置されるビーム
ターゲットを低温に冷却する冷凍機の冷却配管を複数の
系統に分割したことを特徴としている。
In order to achieve the above object, the beam target cooling device for ion engine test equipment of the present invention includes a refrigerator that cools the beam target placed opposite the ion engine to a low temperature inside the vacuum container. The feature is that the cooling piping is divided into multiple systems.

〔実施例〕〔Example〕

以下、本発明を図面に示す一実施例に基ついて、さらに
詳細に説明する。
Hereinafter, the present invention will be described in more detail based on an embodiment shown in the drawings.

まず、本発明が適用されるイオンエンジン試験装置は、
真空容器内に熱吸収壁(ンユラウド)と極低温排気面、
即ちクライオパネルとを組み込んで真空容器内を前述の
宇宙の冷暗黒を模擬する状態にするとともに、該真空容
器の一端に複数のイオンエンジンを装着し、該イオンエ
ンジンに対向させてビームターゲットを配置したもので
ある。
First, the ion engine test device to which the present invention is applied is
Heat absorption wall (Nyuroud) and cryogenic exhaust surface inside the vacuum container,
In other words, a cryopanel is installed to create a state in which the interior of the vacuum container simulates the cold darkness of space, as described above, and a plurality of ion engines are installed at one end of the vacuum container, and a beam target is placed opposite the ion engines. This is what I did.

このビームターゲット自体は、従来装置と略同様に、例
えばアルミニウム合金等で形成することが可能であり、
ビームターゲットのイオンエンジン側の面は、イオンエ
ンジンからイオンビームとして噴射されるキセノンガス
を受は止めるとともに、該イオンビームによりスパッタ
リングされたアルミニウム等かイオンエンジンに飛んで
いくこと(バックスパッタ)を防止するため、格子構造
に形成されている。
The beam target itself can be made of, for example, an aluminum alloy, in substantially the same way as in conventional devices.
The surface of the beam target facing the ion engine receives the xenon gas injected as an ion beam from the ion engine, and also prevents aluminum etc. sputtered by the ion beam from flying into the ion engine (back sputter). Therefore, it is formed into a lattice structure.

このようなビームターゲットを一50℃以下に冷却する
ための冷却装置は、第1図に示すように、冷凍機10の
本体部11から高圧冷媒を送り出す高圧冷媒本管12を
4系統の高圧分岐管13、]3に分離し、それぞれの高
圧分岐管13.13に膨張弁14.14を設けて4本の
ビームターゲット冷却用の冷却配管15.15に接続さ
せ、該冷却配管15,1.5をそれぞれビームターゲッ
ト16に組み込んでいる。また、冷却配管15.15の
末端は、1本にまとめられて前記冷凍機10の吸入管1
7に接続している。
As shown in FIG. 1, a cooling device for cooling such a beam target to below -50° C. is constructed by connecting a high-pressure refrigerant main pipe 12 that sends high-pressure refrigerant from a main body 11 of a refrigerator 10 to four high-pressure branches. Each high-pressure branch pipe 13.13 is provided with an expansion valve 14.14 and connected to four cooling pipes 15.15 for cooling the beam target. 5 are incorporated into the beam targets 16, respectively. Further, the ends of the cooling pipes 15.15 are combined into one suction pipe 1 of the refrigerator 10.
7 is connected.

そして、上記4本の冷却配管15.15は、膨張弁14
.14以降、吸入管17に接続する部分までを同一長さ
に形成されるとともに、それぞれがビームターゲット1
6を略均等に扇形に4分割した中の1区画の冷却を行う
ように配管されている。即ち、膨張弁14以降の各冷却
配管15における圧力損失や熱負荷か等しくなるように
設定されている。
The four cooling pipes 15.15 are connected to the expansion valve 14.
.. From 14 onwards, the length up to the part connected to the suction pipe 17 is formed to have the same length, and each of them is connected to the beam target 1.
6 is divided into four approximately equally fan-shaped sections, and the piping is designed to cool one section of the section. That is, the pressure loss and heat load in each cooling pipe 15 after the expansion valve 14 are set to be equal.

また、冷却配管の温度分布を均一にし、さらに圧縮機用
オイルか配管途中で止まることを防止するためには、冷
却配管]5の長さを20m以下にすることが望ましいた
め、前述のビームターゲット16の分割数は、該ビーム
ターゲット]6の大きさにより適宜選択することか好ま
しい。 このように、各冷却配管15の長さを20m以
下とし、かつ同一長さて、同一の圧力損失及び熱負荷と
なるように構成することにより、ビームターゲット16
の全体を十分に冷却することが可能となる。
In addition, in order to make the temperature distribution of the cooling pipe uniform and to prevent the compressor oil from stopping in the middle of the pipe, it is desirable that the length of the cooling pipe [5] be 20 m or less. It is preferable that the number of divisions, 16, be selected as appropriate depending on the size of the beam target]6. In this way, by setting the length of each cooling pipe 15 to 20 m or less and configuring it so that the same length causes the same pressure loss and heat load, the beam target 16
It becomes possible to sufficiently cool the entire area.

さらに、上記構成によれば、膨張弁14の代わりに所定
径の固定絞りを用いることもてきる。即ち、前記のよう
に、冷却配管の分割した複数の系統内における冷媒圧力
が同一になり、冷却温度か均一になるように、各系統の
配管の前記固定絞りにおける差圧(圧損)が得られるよ
うな絞りの口径を設定することにより、簡単な装置構成
とすることもてきる。
Furthermore, according to the above configuration, a fixed throttle having a predetermined diameter can be used instead of the expansion valve 14. That is, as mentioned above, the differential pressure (pressure loss) at the fixed orifice of the piping of each system can be obtained so that the refrigerant pressure in the plurality of divided systems of cooling piping becomes the same and the cooling temperature becomes uniform. By setting the diameter of the diaphragm as follows, it is possible to achieve a simple device configuration.

尚、冷凍機は通常の構成のものを使用することが可能で
あるか、−50℃以下に冷却することから、通常は2元
冷却方式のフロン冷凍機を採用することか好ましい。
Incidentally, it is possible to use a refrigerator having a normal configuration, or it is usually preferable to employ a fluorocarbon refrigerator of a two-way cooling type since the refrigerator is cooled to −50° C. or lower.

C発明の効果〕 以上説明したように、本発明のイオンエンジン試験装置
用ビームターゲットの冷却装置は、該ビームターゲット
を低温に冷却する冷凍機の冷却配管を複数の系統に分割
したから、ビームターケ・ソト全体を効率良く、均一に
所望の低温状態に冷却することができる。即ち、冷却面
積が広い場合でも冷媒の蒸発温度を低くすることができ
、また、冷媒中への空気の混入の防止、圧縮機用オイル
の冷媒配管中への滞留によるフロン圧縮機の故障防止、
配管途中での部分的熱負荷による冷媒の蒸発に起因する
圧力損失の増大防止等の効果を得ることができ、ビーム
ターゲット全体の経済的な均一冷却を達゛成し得る。
C Effects of the Invention] As explained above, the beam target cooling device for an ion engine test device of the present invention divides the cooling piping of the refrigerator that cools the beam target to a low temperature into a plurality of systems. The entire soto can be efficiently and uniformly cooled to a desired low temperature state. In other words, the evaporation temperature of the refrigerant can be lowered even when the cooling area is large, and it also prevents air from getting mixed into the refrigerant, and prevents damage to the Freon compressor due to compressor oil stagnation in the refrigerant piping.
It is possible to obtain effects such as preventing an increase in pressure loss caused by evaporation of the refrigerant due to a partial heat load in the middle of the piping, and achieve economical uniform cooling of the entire beam target.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷却装置の系統図、第
2図は従来の冷却装置の一例を示す系統図である。 10・・・冷凍機  12 高圧冷媒本管  〕3・、
高圧分岐管  ]4 膨張弁  ]5・・・冷却配管 
 16・・・ビームターゲット
FIG. 1 is a system diagram of a cooling device showing an embodiment of the present invention, and FIG. 2 is a system diagram showing an example of a conventional cooling device. 10... Refrigerator 12 High pressure refrigerant main pipe] 3.
High pressure branch pipe ] 4 Expansion valve ] 5... Cooling pipe
16...beam target

Claims (1)

【特許請求の範囲】[Claims] 1、真空容器の内部に、イオンエンジンと対向して配置
されるビームターゲットを低温に冷却する冷凍機の冷却
配管を複数の系統に分割したことを特徴とするイオンエ
ンジン試験装置用ビームターゲットの冷却装置。
1. Cooling of a beam target for an ion engine test device, characterized in that the cooling piping of a refrigerator that cools the beam target to a low temperature, which is placed inside a vacuum container facing the ion engine, is divided into a plurality of systems. Device.
JP2323854A 1990-11-27 1990-11-27 Beam target cooling system for ion engine test equipment Expired - Fee Related JP3030657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323854A JP3030657B2 (en) 1990-11-27 1990-11-27 Beam target cooling system for ion engine test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323854A JP3030657B2 (en) 1990-11-27 1990-11-27 Beam target cooling system for ion engine test equipment

Publications (2)

Publication Number Publication Date
JPH04191200A true JPH04191200A (en) 1992-07-09
JP3030657B2 JP3030657B2 (en) 2000-04-10

Family

ID=18159326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323854A Expired - Fee Related JP3030657B2 (en) 1990-11-27 1990-11-27 Beam target cooling system for ion engine test equipment

Country Status (1)

Country Link
JP (1) JP3030657B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839598A (en) * 2010-05-21 2010-09-22 北京航空航天大学 Design form of hexa-gyrate type plate structure heat sink
CN109781425A (en) * 2018-12-12 2019-05-21 西安航天动力试验技术研究所 Attitude control engine low-temperature test system under vacuum environment
CN111272433A (en) * 2019-11-28 2020-06-12 西安航天动力试验技术研究所 Low-temperature test system and test method for attitude and orbit control engine in vacuum environment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839598A (en) * 2010-05-21 2010-09-22 北京航空航天大学 Design form of hexa-gyrate type plate structure heat sink
CN109781425A (en) * 2018-12-12 2019-05-21 西安航天动力试验技术研究所 Attitude control engine low-temperature test system under vacuum environment
CN109781425B (en) * 2018-12-12 2020-11-10 西安航天动力试验技术研究所 Low-temperature test system for attitude control engine in vacuum environment
CN111272433A (en) * 2019-11-28 2020-06-12 西安航天动力试验技术研究所 Low-temperature test system and test method for attitude and orbit control engine in vacuum environment

Also Published As

Publication number Publication date
JP3030657B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
EP0523871B1 (en) Vacuum vessel having a cooled member
JPH08222429A (en) Device for cooling to extremely low temperature
JPH04191200A (en) Device for cooling beam target for ion engine testing device
Hollister et al. A large millikelvin platform at Fermilab for quantum computing applications
US2389452A (en) Drying
JPH09113052A (en) Freezer
JP3069910B2 (en) Space environment test equipment
JPS6138363A (en) Helium refrigerator
KR20200063574A (en) Conduction cooling system space environment simulator using cryocooler
Nakanishi et al. KEKB/SuperKEKB Cryogenics Operation
Schoeffler et al. Design of electric propulsion testing facility with custom cryopumping system
Benda et al. First operational experience of the upgraded cryogenic infrastructure of the vertical magnet test facility in the SM18 hall, including HFM and cluster D test stations.
Theilacker et al. Commissioning of the Tevatron satellite refrigeration system
Notardonato et al. Large scale production of densified hydrogen to the triple point and below
Chronis et al. Operation of the cryogenic system for the Mirror Fusion Test Facility
Aberle et al. Liquid helium and nitrogen supply systems for space simulators
Bradshaw et al. Mechanical cooling systems for use in space
Cui et al. Conceptual Design of the Helium Guard System for the Shenzhen Superconducting Soft X-ray Free Electron Laser Test Facility Cryoplant
Kashani et al. Performance of a new regenerator material in a pulse tube cooler
Dean et al. Space Station thermal storage/refrigeration system research and development
Borisov et al. Powerful 3He/4He dilution refrigerator for frozen spin target
Minemura et al. Ferm ii ab
Mirk Super-Hilac Vacuum System
Koveshnikov et al. Vertical test cryostat for SCRF cavities testing below 2.17 K with closed loop helium circulation

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees