JPH04191191A - Liquid hydrogen tanker - Google Patents

Liquid hydrogen tanker

Info

Publication number
JPH04191191A
JPH04191191A JP2321915A JP32191590A JPH04191191A JP H04191191 A JPH04191191 A JP H04191191A JP 2321915 A JP2321915 A JP 2321915A JP 32191590 A JP32191590 A JP 32191590A JP H04191191 A JPH04191191 A JP H04191191A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel
tanker
power
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2321915A
Other languages
Japanese (ja)
Inventor
Osamu Hamamoto
修 浜本
Katsumi Murata
村田 勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2321915A priority Critical patent/JPH04191191A/en
Publication of JPH04191191A publication Critical patent/JPH04191191A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To self-supply the electric power demand in the ship by providing a fuel battery which uses boiled-off hydrogen as a fuel. CONSTITUTION:Hydrogen which is boiled-off gas generated from a hydrogen storage container 2 is fed to a solid organic electrolytic(SPE) type fuel battery 2 by way of a hydrogen supply pipe 9. Meanwhile, air 7 is separately fed to the SPE type fuel battery 3 by way of an air supply pump 8. Thus, electrode reaction occurs between electrodes in the SPE type battery which is fed with hydrogen and oxygen so that electric energy is produced. Thus produced electric power is fed to respective facilities which consume power in a liquid hydrogen tanker, and surplus power is stored in a nickel-hydrogen battery 4 from which power is taken out and is consumed when the power demand is high. Accordingly, the boiled-off gas is effectively used to be converted into electric power so that the electric power demand in the ship can be self-supplied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体水素タンカーに係り、特に被運搬物のボ
イルオフガスを有効利用する液体水素タンカーに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid hydrogen tanker, and more particularly to a liquid hydrogen tanker that effectively utilizes boil-off gas from a transported object.

〔従来の技術〕[Conventional technology]

資源の乏しい我が国は、燃料の大部分を輸入に頼ってお
り、原油、液化天然ガス等の輸送手段としてタンカーが
使用されている。
Japan, which is poor in resources, relies on imports for most of its fuel, and tankers are used as a means of transporting crude oil, liquefied natural gas, etc.

液化天然ガス(以下、LNGという)を輸送するLNG
タンカーにおいて、輸送中に発生するボイルオフガス(
以下、BOGということがある)は船体の推進用または
ボイラ燃料用として使用されている。一方、LNGを燃
料とする複合発電プラントにおけるBOGを燃料電池の
燃料として用いることが提案されている(特開平1−8
6926号)。
LNG for transporting liquefied natural gas (hereinafter referred to as LNG)
In tankers, boil-off gas (
BOG (hereinafter sometimes referred to as BOG) is used for propulsion of ship hulls or as boiler fuel. On the other hand, it has been proposed to use BOG as fuel for fuel cells in a combined cycle power plant that uses LNG as fuel (Japanese Unexamined Patent Publication No. 1-8
No. 6926).

ところで、前記LNGと異なり、燃焼時に二酸化炭素(
CO2)を発生しない、いわゆるカーボンフリー燃料で
ある水素は、環境対策上(地球温暖化防止対策上)好ま
しい燃料として注目されており、今後、一般産業界での
使用が見込まれている。水素を運搬、貯蔵する際には液
体として取り扱うのが一般的であり、液体水素の貯蔵技
術はすでに航空宇宙産業において実用化されている。
By the way, unlike the LNG mentioned above, carbon dioxide (
Hydrogen, which is a so-called carbon-free fuel that does not emit CO2, is attracting attention as a preferable fuel from an environmental standpoint (to prevent global warming), and is expected to be used in general industry in the future. When transporting and storing hydrogen, it is common to treat it as a liquid, and liquid hydrogen storage technology has already been put into practical use in the aerospace industry.

しかしながら、液体水素または水素化物を貯蔵、運搬す
る技術は極一部での利用に限られており、これらの技術
の一般産業での実用化、すなわち、水素燃料の貯蔵およ
び運搬技術、なかでも液体水素を輸送する液体水素タン
カーの開発が望まれている。
However, the use of technologies for storing and transporting liquid hydrogen or hydrides is limited to a limited number of applications. The development of liquid hydrogen tankers for transporting hydrogen is desired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記従来技術の課題を解決し、ボイル
オフガスを有効利用する液体水素タンカーを提供するこ
とにある。
An object of the present invention is to provide a liquid hydrogen tanker that solves the problems of the prior art described above and effectively utilizes boil-off gas.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、液体水素タンカーにおけるボイルオフガス
量はLNGタンカーにおけるボイルオフガス量よりも多
くなること、ボイルオフガスである水素は吸蔵して保存
できるので、定量供給する燃料として使用できること、
および水素はLNGと異なり、改質することなく、高温
型から低温型まで幅広い反応温度の燃料電池の燃料とし
て使用できること等に着目し、液体水素を運搬する液体
水素タンカーに、水素を燃料とする燃料電池を設けるこ
とにより、ボイルオフ水素を利用して船内で発電するこ
とができ、この電力で船内の電力需要を自給できること
を見出し、本発明に到達した。
The present inventor believes that the amount of boil-off gas in a liquid hydrogen tanker is greater than the amount of boil-off gas in an LNG tanker, and that hydrogen, which is boil-off gas, can be stored and stored, so it can be used as a fuel to be supplied in a fixed quantity.
Focusing on the fact that, unlike LNG, hydrogen can be used as fuel for fuel cells with a wide range of reaction temperatures, from high-temperature to low-temperature types, without reforming, hydrogen is used as fuel for liquid hydrogen tankers that transport liquid hydrogen. We have discovered that by providing a fuel cell, it is possible to generate electricity onboard the ship using boil-off hydrogen, and that this electricity can be self-sufficient for the electricity demand on the ship, and we have arrived at the present invention.

すなわち、本発明は、水素または水素化物を輸送する液
体水素タンカーにおいて、ボイルオフした水素を燃料と
する燃料電池を設けたことを特徴とする。
That is, the present invention is characterized in that a liquid hydrogen tanker for transporting hydrogen or hydrides is provided with a fuel cell that uses boiled-off hydrogen as fuel.

〔作用〕[Effect]

液体水素タンカーに、水素を燃料とする燃料電池を設け
たことにより、ボイルオフする水素を利用して電力を発
生することができ、この電力で船内の電力需要を賄うこ
とができる。しかもこの燃料電池による発電は、従来の
発電機と較べて、例えば発電効率が約20%向上する。
By installing a fuel cell that uses hydrogen as fuel in a liquid hydrogen tanker, it is possible to generate electricity using boiled-off hydrogen, and this electricity can cover the electricity demand on board the ship. Furthermore, power generation efficiency using this fuel cell is improved by, for example, about 20% compared to a conventional power generator.

本発明に用いる燃料電池としては、水素および空気中の
酸素を燃料とするので、リン酸電解質型燃料電池(反応
温度180〜210℃)、固体有機電解質(SPE)型
燃料電池(反応温度130〜150℃)、燃料溶解型燃
料電池(反応温度5〜80℃)など多くのタイプの燃料
電池が使用できる。ただし、燃料熔解型のアルカリ燃料
電池を使用する際は空気中のco2を除去してから使用
することが好ましい。
The fuel cells used in the present invention use hydrogen and oxygen in the air as fuel, so phosphoric acid electrolyte fuel cells (reaction temperature 180 to 210°C), solid organic electrolyte (SPE) fuel cells (reaction temperature 130 to 210°C), Many types of fuel cells can be used, such as fuel cells (reaction temperature: 5-80°C) and fuel-dissolving fuel cells (reaction temperature: 5-80°C). However, when using a fuel-melting alkaline fuel cell, it is preferable to remove CO2 from the air before use.

本発明において、前記燃料電池に二次電池を併設するこ
とが好ましい。これにより、船内電力需要が少ないとき
の余剰電力を貯蔵しておくことができ、電力需要の多い
ときに必要に応して消費できるようになる。二次電池と
しては、システム構成上、液体水素タンカーにおいて負
極活物質を容易に供給し得るニッケルー水素電池等の水
素を負極活物質とするものが好ましい。ニッケルー水素
電池は過充電、過放電に耐え、充放電のサイクル寿命が
長いという特長がある。
In the present invention, it is preferable that the fuel cell is provided with a secondary battery. This allows surplus power to be stored when demand for onboard power is low, and can be consumed as needed when demand for power is high. As the secondary battery, it is preferable to use hydrogen as the negative electrode active material, such as a nickel-hydrogen battery, which can easily supply the negative electrode active material in a liquid hydrogen tanker due to the system configuration. Nickel-metal hydride batteries have the advantage of being resistant to overcharging and overdischarging, and have a long charge/discharge cycle life.

二次電池の出力は前記燃料電池の定格出力の30%程度
であることが好ましい。積載能力が125.000m規
模の液体燃料タンカーの電力需要量は、通常用:2.7
MW、補助用:2.7MW、非常用:0.56MWの合
計5.96MW程度とされており、LNGタンカーにお
いては、例えば石油燃料等を用いた発電機によって賄っ
ていた。液体水素タンカーにおいて、ボイルオフ水素で
上記5.96MWの電力を賄おうとすると、例えばボイ
ルオフ水素量は積載能力125,000mの約1%、す
なわち、1.250mであり、この水素を燃料電池に供
給して利用率95%で発電すると、単セルの出力電圧を
0.5■として4.6MWの出力が得られる。これは前
記電力需要量の77%に当り、残り23%(燃料電池の
出力である4、6MWの約30%)は別途調達する必要
がある。したがって、この不足分を前記燃料電池の出力
(4,6MW)と、通常時の電力需要量(2,7MW)
との差(1,9MW)を二次電池に充電しておき、需要
量の多いときに取り出して消費するようにする。
The output of the secondary battery is preferably about 30% of the rated output of the fuel cell. The power demand for a liquid fuel tanker with a loading capacity of 125,000 m is normally 2.7
MW, auxiliary use: 2.7 MW, emergency use: 0.56 MW, totaling about 5.96 MW, and in LNG tankers, it was provided by a generator using, for example, petroleum fuel. In a liquid hydrogen tanker, if you try to cover the above 5.96 MW of electricity with boil-off hydrogen, for example, the amount of boil-off hydrogen is about 1% of the loading capacity of 125,000 m, or 1.250 m, and this hydrogen is supplied to the fuel cell. When generating electricity at a utilization rate of 95%, an output of 4.6 MW can be obtained with the output voltage of a single cell being 0.5 . This corresponds to 77% of the above-mentioned power demand, and the remaining 23% (approximately 30% of the 4.6 MW output of the fuel cell) needs to be separately procured. Therefore, this shortfall is calculated by adding the fuel cell output (4.6 MW) and the normal power demand (2.7 MW).
A secondary battery is charged with the difference (1.9 MW) between the two, and it is taken out and consumed when demand is high.

本発明において、ボイルオフ水素を燃料電池へ供給する
際の水素供給量の調整手段として、水素吸蔵物質を設け
ることが好ましい。これにより、水素の必要量だけを燃
料電池に供給して発電に供し、余剰の水素を保存してお
くことができ、ホイルオフ水素量が少ないとき、または
電力需要が多いときに利用できるようになる。
In the present invention, it is preferable to provide a hydrogen storage material as a means for adjusting the amount of hydrogen supplied when boil-off hydrogen is supplied to the fuel cell. This makes it possible to supply only the required amount of hydrogen to the fuel cell for power generation, and store excess hydrogen so that it can be used when the amount of foil-off hydrogen is low or when the demand for electricity is high. .

本発明において、前記二次電池は電力貯蔵機器として、
また水素吸蔵物質として機能する。すなわち、二次電池
は、余剰電力を貯蔵することにより、燃料電池の負荷を
平均化することができるうえ、充電時に発生する水素を
ボイルオフ水素の供給管に導入して燃料電池の燃料とし
て用いることができる。
In the present invention, the secondary battery serves as a power storage device,
It also functions as a hydrogen storage material. In other words, secondary batteries can average the load on fuel cells by storing surplus electricity, and hydrogen generated during charging can be introduced into the boil-off hydrogen supply pipe to be used as fuel for fuel cells. I can do it.

なお、本発明の液体水素タンカーの船体は、低吃水に通
した船型であることが好ましい。液体水素の密度は、L
NGの約1/6であり、LNGタンカーに較べて液体水
素タンカーの吃水量は極めて浅くなるからである。した
がって、液体水素タンカーの、往復航時の吃水関節用の
バラスト量は、LNGタンカーのバラスト量に較べて少
量でよいことになる。
Note that the hull of the liquid hydrogen tanker of the present invention is preferably of a low stasis hull shape. The density of liquid hydrogen is L
This is because the amount of water in a liquid hydrogen tanker is approximately 1/6 that of NG, and the amount of water in a liquid hydrogen tanker is extremely shallow compared to that of an LNG tanker. Therefore, the amount of ballast for the stowage joints of the liquid hydrogen tanker during round trip voyage may be smaller than the amount of ballast of the LNG tanker.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

第1図は、本発明の一実施例を示す液体水素タンカーの
説明図である。この液体水素タンカーは、タンカー本体
1と、該タンカー本体1に搭載された水素貯蔵容器2と
、該水素貯蔵容器2に連結された固体有機電解質型燃料
電池(以下、SPE型燃料電池という)3およびニッケ
ルー水素電池4とから主として構成されている。5はニ
ッケルー水素電池の正極、6は該ニッケルー水素電池の
充電時に発生する水素の吸蔵部である。ニッケルー水素
電池4は、充電時に発生する水素を蓄えるために耐圧容
器に収められている。
FIG. 1 is an explanatory diagram of a liquid hydrogen tanker showing one embodiment of the present invention. This liquid hydrogen tanker includes a tanker body 1, a hydrogen storage container 2 mounted on the tanker body 1, and a solid organic electrolyte fuel cell (hereinafter referred to as an SPE fuel cell) 3 connected to the hydrogen storage container 2. and a nickel-metal hydride battery 4. 5 is a positive electrode of the nickel-metal hydride battery, and 6 is a storage portion for hydrogen generated during charging of the nickel-metal hydride battery. The nickel-metal hydride battery 4 is housed in a pressure-resistant container to store hydrogen generated during charging.

このような構成の液体水素タンカーにおいて、水素貯蔵
容器2で発生するボイルオフガスである水素は水素供給
管9を経てSPE型燃料電池3に供給される。他方、当
該SPE型燃料電池3には、空気供給ポンプ8を経て、
別途空気7が供給される。このようにして水素と酸素が
供給されたSPE型燃料電池3の電極間では電極反応が
生じて電気エネルギーが発生する。発生した電力は、当
該液体水素タンカーの各電力消費設備に供給して消費さ
れ、余剰電力がニッケルー水素電池4に貯蔵される。貯
蔵した電力は電力需要量が多いときに取り出して消費さ
れる。
In the liquid hydrogen tanker having such a configuration, hydrogen as boil-off gas generated in the hydrogen storage container 2 is supplied to the SPE type fuel cell 3 via the hydrogen supply pipe 9. On the other hand, the SPE fuel cell 3 is supplied with air via an air supply pump 8.
Air 7 is supplied separately. An electrode reaction occurs between the electrodes of the SPE fuel cell 3 to which hydrogen and oxygen are supplied in this manner, and electrical energy is generated. The generated power is supplied to each power consumption equipment of the liquid hydrogen tanker and consumed, and surplus power is stored in the nickel-metal hydride battery 4. The stored electricity is extracted and consumed when there is a high demand for electricity.

本実施例によれば、液体水素タンカーに水素を燃料とす
る燃料電池を設けたことにより、ボイルオフガスを有効
利用して電力に変換することができ、船内の電力需要を
賄うことができる。また、水素を負極活物質とする二次
電池を組み合わせたことにより、燃料電池の負荷を平均
化することができるとともに、燃料電池に供給する水素
量を調節することができ、ボイルオフガス(積載能力の
約1%)だけで船内の電力需要を効果的に賄うことがで
きる。
According to this embodiment, by providing a liquid hydrogen tanker with a fuel cell that uses hydrogen as fuel, boil-off gas can be effectively used and converted into electricity, and the demand for electricity on board can be met. In addition, by combining a secondary battery that uses hydrogen as the negative electrode active material, it is possible to equalize the load on the fuel cell, and also to adjust the amount of hydrogen supplied to the fuel cell. (approximately 1% of the amount of electricity) can effectively cover the electricity demand on board.

本実施例において、ニッケルー水素電池4の水素吸蔵部
6に、チタン・鉄合金(FeTi)、ランタン・ニッケ
ル(LaNih)の粉末等を充填して水素を金属水素化
物として吸蔵することもできる。また、ボイルオフガス
の一部を前記二次電池とは別に設けた水素吸蔵合金に吸
蔵させて燃料電池に供給する水素量を調整することもで
きる。
In this embodiment, the hydrogen storage section 6 of the nickel-metal hydride battery 4 may be filled with titanium/iron alloy (FeTi), lanthanum/nickel (LaNih) powder, or the like to store hydrogen as a metal hydride. Further, it is also possible to adjust the amount of hydrogen supplied to the fuel cell by storing a portion of the boil-off gas in a hydrogen storage alloy provided separately from the secondary battery.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液体水素タンカーに被運搬物である水
素を燃料とした燃料電池を搭載したことにより、ボイル
オフする水素を有効に利用して発電し、船内の電力需要
を賄うことができる。
According to the present invention, by equipping a liquid hydrogen tanker with a fuel cell that uses hydrogen, which is a cargo to be transported, as fuel, it is possible to effectively utilize boil-off hydrogen to generate electricity and cover the demand for electricity on board.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す液体水素タンカーの
説明図である。 1・・・タンカー本体、2・・・水素貯蔵容器、3・・
・固体有機電解質(S P E)型燃料電池、4・・・
二・ノケルー水素電池。
FIG. 1 is an explanatory diagram of a liquid hydrogen tanker showing one embodiment of the present invention. 1... Tanker body, 2... Hydrogen storage container, 3...
・Solid organic electrolyte (SPE) type fuel cell, 4...
2. Nokeru hydrogen battery.

Claims (1)

【特許請求の範囲】[Claims] (1)水素または水素化物を輸送する液体水素タンカー
であって、ボイルオフした水素を燃料とする燃料電池を
設けたことを特徴とする液体水素タンカー。
(1) A liquid hydrogen tanker for transporting hydrogen or hydrides, characterized in that it is equipped with a fuel cell that uses boiled-off hydrogen as fuel.
JP2321915A 1990-11-26 1990-11-26 Liquid hydrogen tanker Pending JPH04191191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321915A JPH04191191A (en) 1990-11-26 1990-11-26 Liquid hydrogen tanker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321915A JPH04191191A (en) 1990-11-26 1990-11-26 Liquid hydrogen tanker

Publications (1)

Publication Number Publication Date
JPH04191191A true JPH04191191A (en) 1992-07-09

Family

ID=18137829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321915A Pending JPH04191191A (en) 1990-11-26 1990-11-26 Liquid hydrogen tanker

Country Status (1)

Country Link
JP (1) JPH04191191A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038832A (en) * 2003-07-01 2005-02-10 Sumitomo Electric Ind Ltd Boil-off gas treatment system
JP2009533800A (en) * 2006-04-07 2009-09-17 ユーティーシー パワー コーポレイション Fuel cell operation with low temperature hydrogen boil-off during downtime
US8349506B2 (en) 2005-05-25 2013-01-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2014080445A1 (en) * 2012-11-26 2014-05-30 中国電力株式会社 Bog processing apparatus and bog processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038832A (en) * 2003-07-01 2005-02-10 Sumitomo Electric Ind Ltd Boil-off gas treatment system
US8349506B2 (en) 2005-05-25 2013-01-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2009533800A (en) * 2006-04-07 2009-09-17 ユーティーシー パワー コーポレイション Fuel cell operation with low temperature hydrogen boil-off during downtime
WO2014080445A1 (en) * 2012-11-26 2014-05-30 中国電力株式会社 Bog processing apparatus and bog processing method

Similar Documents

Publication Publication Date Title
De-Troya et al. Analysing the possibilities of using fuel cells in ships
Bagotsky et al. Electrochemical power sources: batteries, fuel cells, and supercapacitors
Cai et al. A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle
Bennabi et al. Hybrid propulsion systems for small ships: Context and challenges
KR102147544B1 (en) Fuel Storage System for Hydrogen Propulsion Conrainer Ship
Narayan et al. High-energy portable fuel cell power sources
Sezgin et al. Hydrogen energy systems for underwater applications
Lee et al. Analysis of fuel cell applied for submarine air independent propulsion (AIP) system
Raugel et al. Sea experiment of a survey AUV powered by a fuel cell system
Voss et al. Portable fuel cell power generator
Isadare Dayo et al. The Re-Imagination of Electrochemical Power: A Global Awak-ening and Thoughts from Obafemi Awolowo University, Ile-Ife.
KR101291115B1 (en) Fuel cell generating system and ship having the same
JPH04191191A (en) Liquid hydrogen tanker
Swider-Lyons et al. Technical issues and opportunities for fuel cell development for autonomous underwater vehicles
KR102578402B1 (en) Boil-Off Gas Proceeding System for Liquefied Hydrogen Carrier
Cherchi et al. Electrification of commercial vessels: Pilot projects and open issues
Hyakudome et al. Development of fuel cell system for underwater power source
Brighton et al. The use of fuel cells to enhance the underwater performance of conventional diesel electric submarines
TW202245375A (en) System and method for transporting energy by ship
KR102605386B1 (en) Ship
JP6516061B1 (en) Fast charging station
Jansen et al. Design of a fuel cell powered radio, a feasibility study into alternative power sources for portable products
Prins et al. AIP for Ocean Going Submarines: off-the-shelf or promise
T-Raissi et al. Metal hydride storage requirements for transportation applications
KR102517199B1 (en) Maritime floating platform for production, storage and offloading of marine green hydrogen