JPH04190673A - Damper for superconducting rotor - Google Patents

Damper for superconducting rotor

Info

Publication number
JPH04190673A
JPH04190673A JP2316762A JP31676290A JPH04190673A JP H04190673 A JPH04190673 A JP H04190673A JP 2316762 A JP2316762 A JP 2316762A JP 31676290 A JP31676290 A JP 31676290A JP H04190673 A JPH04190673 A JP H04190673A
Authority
JP
Japan
Prior art keywords
damper
less
bonding
sus
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2316762A
Other languages
Japanese (ja)
Other versions
JP2628227B2 (en
Inventor
Hiroshi Sato
宏 佐藤
Shigenobu Mori
誉延 森
Yoshimi Yanai
吉美 矢内
Hiroshi Fukui
寛 福井
Tatsuo Yonezawa
米沢 立雄
Takashi Sugawara
孝志 菅原
Yoshinori Karatsu
唐津 義憲
Yasuomi Yagi
恭臣 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP2316762A priority Critical patent/JP2628227B2/en
Publication of JPH04190673A publication Critical patent/JPH04190673A/en
Application granted granted Critical
Publication of JP2628227B2 publication Critical patent/JP2628227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the joining area ratio and joining strength between joined members so as to improve the dimensional accuracy by joining a conductive member to a reinforcing member and reinforcing members to each other in solid-phase states and joining the reinforcing members to both end sections of the conductive member. CONSTITUTION:An intermediate Cu sleeve 11 is metallurgically joined to an outer SUS cylinder 12 and inner SUS cylinder 13 made of austenitic nonmagnetic steel by applying an isotropic pressure to the external surfaces of the cylinders 12 and 13 under a hightemperature condition. Then inner rings 14a and 14b made of austenitic nonmagnetic steel are joined to both ends of the sleeve 11 by applying an isotropic pressure under a high-temperature condition. Therefore, a low- and high-temperature damper which has a large joining area ratio, high joining strength, and high dimensional accuracy at its joined section is obtained and the vibration of the rotor of a superconducting generator can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導発電機および超電導電動機に用いられる
超電導回転子の低温ダンパおよび常温ダンパに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-temperature damper and a room-temperature damper for a superconducting rotor used in a superconducting generator and a superconducting motor.

〔従来の技術〕[Conventional technology]

第12図に超電導回転子の断面構造図を示す。 FIG. 12 shows a cross-sectional structural diagram of the superconducting rotor.

超電導回転子は、トルクチューブ1に接続された巻線軸
2と、その内部に収納された超電導界磁巻線3と、その
外部に設けられた低温ダンパ4と、さらにその外部に設
けられた常温ダンパ5と、その両端部のシャフト6.7
と、液体ヘリウム、液体窒素等の冷媒供給袋!8等から
構成される。低温ダンパ4は、運転時に常温ダンパ5側
から侵入してくる輻射熱をシールドし、また電力系統の
事故時に固定子側からも侵入してくる低周波の磁束をシ
ールドするためのものである。常温ダンパ5は高周波の
磁束をシールドするためのものである。
The superconducting rotor includes a winding shaft 2 connected to a torque tube 1, a superconducting field winding 3 housed inside the winding shaft 2, a low-temperature damper 4 provided outside the winding shaft 2, and a room-temperature damper provided outside the winding shaft 2. Damper 5 and shafts 6.7 at both ends thereof
And a refrigerant supply bag for liquid helium, liquid nitrogen, etc.! It consists of 8th grade. The low-temperature damper 4 is used to shield radiant heat that enters from the room-temperature damper 5 side during operation, and to shield low-frequency magnetic flux that also enters from the stator side in the event of an accident in the power system. The room temperature damper 5 is for shielding high frequency magnetic flux.

このため、低温ダンパ4および常温ダンパ5の導電部材
の材料として導電性の良い金属が用いられる。
Therefore, a metal with good conductivity is used as a material for the conductive members of the low-temperature damper 4 and the room-temperature damper 5.

また、磁束をシールドする際に導電性の良い金属は、電
磁力が発生し、導電部材を変形させるため、この変形防
止の補強部材として高強度非磁性金属を接合する必要が
ある。このため、低温ダンパ4および常温ダンパ5は通
常2層以上の多層円筒構造体が採用される。中間層に導
電性金属を配置し、その上下層に高強度非磁性鋼を配置
した構造を有する3層円筒構造体の製作方法として、従
来は特開昭55−8265号の如く、各円筒体を焼ばめ
して3層円筒構造体を製作する方法が知られている。あ
るいは火薬を用いた爆発圧接法によって各円筒体同志を
接合して3層円筒構造体を製作する方法が知られている
Further, when shielding magnetic flux, a highly conductive metal generates electromagnetic force and deforms the conductive member, so it is necessary to bond a high-strength nonmagnetic metal as a reinforcing member to prevent this deformation. For this reason, the low-temperature damper 4 and the room-temperature damper 5 usually have a multilayer cylindrical structure having two or more layers. As a manufacturing method for a three-layer cylindrical structure having a structure in which a conductive metal is arranged in the middle layer and high-strength non-magnetic steel is arranged in the upper and lower layers, a conventional method for manufacturing a three-layer cylindrical structure is as shown in Japanese Patent Application Laid-Open No. 55-8265. A method of manufacturing a three-layer cylindrical structure by shrink fitting is known. Alternatively, a method is known in which a three-layer cylindrical structure is manufactured by joining cylindrical bodies together by an explosive pressure welding method using explosives.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前者の焼ばめ方式では3層の各円筒体の接触面
が冶金的に接合されていないため、超電導回転子用低温
ダンパ4および常温ダンパ5のように遠心力と電磁力が
重畳して作用する場合には、非磁性高強度金属よりなる
内外層の円筒体と中間の導電性金属の円筒体との間にす
き間を生じる懸念があり、内外から補強することの効果
が弱いという欠点がある。また、後者の爆発圧接方式に
よって同じく3層の円筒体を製作する場合、各円筒体の
接触面がほぼ冶金的に接合されているので、使用時にお
いて遠心力及び電磁力が作用した時の機械的強度が強い
という利点はあるが、3層の円筒体を爆発圧接するとき
に圧力を均等に作用させることが困難なために、円筒体
の曲がり、座屈等の大きな変形を生じやすくなる。また
、爆圧分布が不均一なために、3層円筒体の接合界面の
真円度、真直度が悪くなり、補強部材用非磁性高強度金
属と導電部材用導電性金属の密度差により超電導回転子
の回転時にアンバランスを生じて振動の原因となる欠点
がある。さらに、爆発圧接の時に起爆点その他の箇所で
不着部を生じやすく、接合率が90%以下と低いという
欠点を有する。また爆発圧接法の場合、溶接部を含む素
材を爆発圧接すると溶接部で不着部を生じやすいという
問題がある。
However, in the former shrink-fit method, the contact surfaces of the three cylindrical layers are not metallurgically joined, so centrifugal force and electromagnetic force are superimposed, as in the low-temperature damper 4 and room-temperature damper 5 for superconducting rotors. However, there is a concern that a gap may be created between the inner and outer cylindrical bodies made of non-magnetic high-strength metal and the intermediate cylindrical body made of conductive metal, and the effect of reinforcement from the inside and outside is weak. There is. In addition, when producing the same three-layer cylindrical body using the latter explosive welding method, the contact surfaces of each cylindrical body are almost metallurgically joined, so that when centrifugal force and electromagnetic force are applied during use, the mechanical Although it has the advantage of high mechanical strength, it is difficult to apply pressure evenly when explosively welding the three-layer cylindrical body, so large deformations such as bending and buckling of the cylindrical body tend to occur. In addition, due to the uneven blast pressure distribution, the roundness and straightness of the joint interface of the three-layer cylinder deteriorate, and the density difference between the non-magnetic high-strength metal for the reinforcing member and the conductive metal for the conductive member causes superconductivity. This has the disadvantage that it causes imbalance when the rotor rotates, causing vibration. Furthermore, during explosive pressure welding, non-bonded areas tend to occur at the detonation point and other locations, resulting in a low bonding rate of 90% or less. Furthermore, in the case of the explosive welding method, there is a problem in that when materials including welded parts are explosively welded, non-bond parts are likely to occur in the welded parts.

本発明の目的は、2個以上の接合部材を含む複合構造の
超電導発電機回転子用低温ダンパおよび常温ダンパにお
いて接合部材の接合面積率および接合強度が高く、また
、寸法精度が良い製作方法を提供することにある。
An object of the present invention is to provide a manufacturing method for a low-temperature damper and a room-temperature damper for a rotor of a superconducting generator having a composite structure including two or more bonding members, which has a high bonding area ratio and bonding strength of the bonding members, and has good dimensional accuracy. It is about providing.

本発明の他の目的は超電導発電機回転子用低温ダンパお
よび常温ダンパの両端が回転子の別の部材と溶接される
必要がある構造において、異材溶接を避けることが可能
となる低温ダンパおよび常温ダンパの構造番提供するこ
とにある。
Another object of the present invention is to provide a low-temperature damper and a room-temperature damper for a rotor of a superconducting generator that can avoid dissimilar metal welding in a structure where both ends of the damper and the room-temperature damper need to be welded to another member of the rotor. The purpose is to provide the structure number of the damper.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため1本発明は、導電部材が3層円
筒構造の中間層を形成し、補強部材が3層円筒構造の上
層および下層を形成する複合構造体を有する超電導回転
子ダンパにおいて、導電部材と補強部材との接合および
、上記補強部材同士の接合が熱間等方圧加圧により固相
接合され、前記導電部材の両端部に前記補強部材が接合
されていることを特徴とする超電導回転子用ダンパであ
る。
In order to achieve the above object, the present invention provides a superconducting rotor damper having a composite structure in which a conductive member forms an intermediate layer of a three-layer cylindrical structure, and a reinforcing member forms an upper layer and a lower layer of a three-layer cylindrical structure. The conductive member and the reinforcing member are joined together, and the reinforcing members are joined together by solid phase welding by hot isostatic pressing, and the reinforcing member is joined to both ends of the conductive member. This is a damper for superconducting rotors.

前記ダンパにおいて、導電部材が銅または銅合金から成
り、補強部材がオーステナイト系非磁性鋼から成るもの
がよい。また、導電部材が銅を重量%で99.9%以上
を含み、残部がFe等の不純物から成るものがよい、ま
た、補強部材のオーステナイト系非磁性鋼が重量%で窒
素を0.01〜0.40%、Crを15〜28%、Ni
を8〜15%、Cを0.03%以下、Mnを2%以下。
In the damper, the conductive member is preferably made of copper or a copper alloy, and the reinforcing member is preferably made of austenitic nonmagnetic steel. In addition, it is preferable that the conductive member contains 99.9% or more of copper by weight, with the remainder consisting of impurities such as Fe, and the austenitic nonmagnetic steel of the reinforcing member contains 0.01 to 0.01% by weight of nitrogen. 0.40%, 15-28% Cr, Ni
8 to 15%, C 0.03% or less, and Mn 2% or less.

Siを2%以下、Moを0.5〜3.0%含み残部がF
e及び不可避不純物から成るものがよい。
Contains 2% or less of Si, 0.5 to 3.0% of Mo, and the balance is F.
Preferably, it consists of e and unavoidable impurities.

また、補強部材のオーステナイト系非磁性鋼が重量%で
窒素を0.01〜0.40%、Crを15〜28%、N
iを8〜15%、Cを0.03%以下、Mnを2%以下
、Siを2%以下含み、残部がFe及び不可避不純物か
ら成るものがよい、また、補強部材のオーステナイト系
非磁性鋼が重量%でCを0.08%以下、Siを1%以
下、Mnを2%以下、Niを24〜27%、Crを13
〜16%、Moを1.0〜1.5%、Tiを1.5〜2
.4%、■を0.1〜0.5%、AQを0゜1〜0.4
%含み、残部がFe及び不可避不純物から成るものがよ
い、また、導電部材の銅合金が重量%でCrを0.2〜
1.0%、Zrをo、 。
In addition, the austenitic nonmagnetic steel of the reinforcing member contains 0.01 to 0.40% nitrogen, 15 to 28% Cr, and N
The austenitic nonmagnetic steel of the reinforcing member should contain 8 to 15% of i, 0.03% or less of C, 2% or less of Mn, and 2% or less of Si, with the balance consisting of Fe and unavoidable impurities. In weight percent, C is 0.08% or less, Si is 1% or less, Mn is 2% or less, Ni is 24-27%, and Cr is 13%.
~16%, Mo 1.0-1.5%, Ti 1.5-2
.. 4%, ■0.1-0.5%, AQ 0°1-0.4
%, with the remainder consisting of Fe and unavoidable impurities. Also, the copper alloy of the conductive member should contain Cr from 0.2 to 0.2% by weight.
1.0%, Zr o.

05〜0.3%含み、残部がCu及び不可避不純物から
成るものがよい、また、導電部材の銅合金が重量%でN
iを1.2〜2.8%、Siを0゜3〜0.7%、Zr
ti−0,1〜1.0%含み、残部がCu及び不可避不
純物から成るものがよい。
It is preferable that the copper alloy of the conductive member contains 05 to 0.3% of N, with the remainder consisting of Cu and unavoidable impurities.
i 1.2~2.8%, Si 0°3~0.7%, Zr
It is preferable to contain Ti-0.1 to 1.0%, with the remainder consisting of Cu and unavoidable impurities.

また、複合構造体の各部材は熱間等方圧加圧によって固
相接合する際、導電部材と補強部材との接合面の表面粗
さは中心線平均粗さRa表示法で2μm以下に形成され
、補強部材同士の接合面の表面粗さは中心線平均粗さR
aで0.5μm以下に形成され、温度を750℃以上、
加圧力を10MPa以上、温度および加圧力の保持時間
を60sin以上の熱間等方圧加圧(HIP)により接
合されているものがよい。また、複合構造体の各部材を
熱間等方圧加圧によって接合する際、各部材間の接合強
度を高めるようFe、Ni又はNi合金等の厚さ30μ
m以下の中間材が1種以上介在されているものがよい。
In addition, when each member of the composite structure is solid-phase joined by hot isostatic pressing, the surface roughness of the joint surface between the conductive member and the reinforcing member is set to 2 μm or less in terms of center line average roughness Ra. The surface roughness of the joint surfaces between the reinforcing members is the center line average roughness R
Formed to a thickness of 0.5 μm or less at a temperature of 750°C or higher,
It is preferable that the bonding be performed by hot isostatic pressing (HIP) at a pressure of 10 MPa or more and a temperature and pressure holding time of 60 sin or more. In addition, when joining each member of the composite structure by hot isostatic pressing, a thickness of 30 μm of Fe, Ni or Ni alloy, etc. is used to increase the bonding strength between each member.
It is preferable that one or more types of intermediate materials of m or less are interposed.

また、複合構造体の導電部材の真円度が99.9%以上
、真直度が99゜95%以上、肉厚の均一度が99%以
上であるものがよい、また、複合構造体の各部材を熱間
等方圧加圧によって接合する際、不活性ガスあるいは還
元性ガスの静水圧下で接合されたものであるものがよい
In addition, it is preferable that the conductive member of the composite structure has a roundness of 99.9% or more, a straightness of 99°95% or more, and a wall thickness uniformity of 99% or more. When joining members by hot isostatic pressing, it is preferable to join them under the hydrostatic pressure of an inert gas or a reducing gas.

すなわち、上記目的を達成するためにオーステナイト系
非磁性鋼からなる内外の円筒体の外表面に熱間等方圧を
加圧し、中間の銅又は銅合金の円筒体とオーステナイト
系非磁性鋼の円筒体との接触面を冶金的に接合するもの
である。さらに、銅又は銅合金の円筒体の両端にオース
テナイト系非磁性鋼の円筒体を設けてこれらの接合を熱
間等方加圧で行なうことによりトルクチューブ、シャフ
ト等地の部品に低温ダンパおよび常温ダンパを溶接する
際の異材溶接を避は得るようにしたものである。したが
って本発明の低温ダンパおよび常温ダンパはオーステナ
イト系非磁性鋼と銅又は銅合金及びオーステナイト系非
磁性鋼同志を熱間等方圧加圧(HIP)により接合した
構造のものである。オーステナイト系非磁性鋼同志の接
合では、接合面の表面粗さが粗い場合、接合部の接合強
度が低くなる傾向にある。この場合接合面の接合力を高
めるためFe、Ni、Ni合金等の中間材を介在させて
接合する。この中間材の厚さは拡散の観点から最大厚さ
は30μm以下が望ましい、また、熱間等方圧加圧の加
圧方法は、加圧後の低温ダンパの変形を少なくするため
、不活性ガスああるいは還元性ガスの静水圧を用いた等
加圧が良い。
That is, in order to achieve the above objective, hot isostatic pressure is applied to the outer surfaces of the inner and outer cylinders made of austenitic non-magnetic steel, and the intermediate cylinder made of copper or copper alloy and the cylinder made of austenitic non-magnetic steel are The contact surface with the body is metallurgically bonded. Furthermore, by providing an austenitic non-magnetic steel cylinder at both ends of a copper or copper alloy cylinder and joining them using hot isostatic pressure, parts such as torque tubes and shafts can be attached to low-temperature dampers and room-temperature parts. This is to avoid welding different materials when welding the damper. Therefore, the low-temperature damper and room-temperature damper of the present invention have a structure in which austenitic nonmagnetic steel, copper or a copper alloy, and austenitic nonmagnetic steel are joined together by hot isostatic pressing (HIP). When joining austenitic nonmagnetic steels together, if the surface roughness of the joint surfaces is rough, the joint strength of the joint tends to be low. In this case, in order to increase the bonding force of the bonding surfaces, the bonding is performed with an intermediate material such as Fe, Ni, or Ni alloy interposed therebetween. The maximum thickness of this intermediate material is preferably 30 μm or less from the viewpoint of diffusion.In addition, hot isostatic pressing is used to reduce the deformation of the low-temperature damper after pressurization, so it is inert. Equivalent pressurization using gas or the hydrostatic pressure of a reducing gas is preferable.

以上の方法により、接合部の接合面積率および接合強度
が高く、寸法精度が良い低温ダンパおよび常温ダンパが
得られ、超電導発電機回転子の回転時の振動を防止でき
るものである。さらに、トルクチューブ、シャフト等の
他の部品との接合において、異材溶接を避は得るため溶
接割れ等の問題を防止できるものである。
By the above method, a low-temperature damper and a room-temperature damper with high bonding area ratio and bonding strength of the bonded portions and good dimensional accuracy can be obtained, and vibrations during rotation of the superconducting generator rotor can be prevented. Furthermore, when joining other parts such as the torque tube and shaft, problems such as weld cracks can be prevented since dissimilar metal welding is avoided.

〔作用〕[Effect]

本発明は、超電導回転子用低温ダンパおよび常温ダンパ
のように回転体に使用される複合構造円筒体を製作する
にあたって、接合部の接合面積率および接合強度と接合
部品の寸法精度が要求されることから、製作方法として
、接合部品を加圧しながら、高温に加熱することによっ
て接合箇所を密着させ、接合面における相対部材の金属
間距離を原子間引力の作用する距離にまで近接させると
同時に、相対金属間に熱拡散を生じさせる熱間等方圧加
圧方法(以下HIPと称す)を用いるようにしたもので
ある。HIPによって接合する面は表面粗さが小さく、
かつ酸化物及び不純物の少ないものが望ましい、従って
、接合を要する面は表面粗さを小さくし、かつ清浄な面
としておき、さらに3層内部体内部を真空引きして脱気
する必要がある。接合面は清浄化するほど接合面の結合
力を高めることが期待できる。
The present invention requires the joint area ratio and joint strength of the joint part and the dimensional accuracy of the joint parts when manufacturing a composite structure cylindrical body used for a rotating body such as a low-temperature damper for a superconducting rotor and a room-temperature damper. Therefore, as a manufacturing method, the joint parts are heated to a high temperature while applying pressure to bring the joint parts into close contact, and at the same time, the distance between the metals of the relative members at the joint surface is brought close to the distance where atomic attraction acts, This method uses a hot isostatic pressing method (hereinafter referred to as HIP) that causes thermal diffusion between relative metals. The surface to be joined by HIP has low surface roughness,
It is also desirable to have a material with less oxides and impurities.Therefore, it is necessary to reduce the surface roughness of the surface requiring bonding, keep it clean, and further evacuate the interior of the three-layer internal body to degas it. It is expected that the bonding strength of the bonding surfaces will increase as the bonding surfaces are cleaned.

HIPの接合条件は接合温度、接合時間、加圧力および
表面粗さ等の条件からなるものであり、接合される材料
に応じて適正な条件を選ぶ必要がある。
HIP bonding conditions include conditions such as bonding temperature, bonding time, pressing force, and surface roughness, and it is necessary to select appropriate conditions depending on the materials to be bonded.

このため以下に述べる拡散接合実験によりHIP接合に
適した条件の検討を行った。
For this reason, conditions suitable for HIP bonding were investigated through diffusion bonding experiments described below.

第1表はHIP接合条件を検討するために用いたオース
テナイト系非磁性鋼の5US316LN(以下SUSと
称す)及び無酸素銅(以下Cuと称す)の化学組成を示
す。なおCuの代りにCu合金を用いた場合および5U
S316LNの代りに5US304LN等他の非磁性鋼
を用いた場合にも同様の結果が期待できる。
Table 1 shows the chemical compositions of austenitic nonmagnetic steel 5US316LN (hereinafter referred to as SUS) and oxygen-free copper (hereinafter referred to as Cu) used to examine HIP bonding conditions. In addition, when Cu alloy is used instead of Cu and 5U
Similar results can be expected when other non-magnetic steels such as 5US304LN are used instead of S316LN.

拡散試験はSUSとSUS又はCuを上面側から加圧し
て実施した。拡散接合は一軸加圧であり試験体がつぶれ
て変形するおそれがあるので、外側に耐熱合金(All
oy  800)の外筒を設けた。接合時の真空度は1
0−”Paとした。試験片の形状は直径8mmで長さ1
0wnとした。接合温度は850〜1070度、加圧力
は10〜150M P a 、接合時間を60及び18
0+*inとした。
The diffusion test was conducted by applying pressure to SUS and SUS or Cu from the top side. Diffusion bonding uses uniaxial pressure, and there is a risk that the specimen will be crushed and deformed, so a heat-resistant alloy (All
oy 800) was provided. The degree of vacuum during bonding is 1
0-”Pa.The shape of the test piece was 8 mm in diameter and 1 in length.
It was set to 0wn. The bonding temperature was 850 to 1070 degrees, the pressure was 10 to 150 MPa, and the bonding time was 60 and 18
It was set to 0+*in.

接合面の表面粗さは中心線平均粗さPaで0.8μmま
で機械加工後耐水エメリーペーパー#800〜80を用
いて研磨し、Raで0.06〜1゜95μmの範囲とし
た。拡散接合後、採取した板引張試験片の形状は平行部
長さ5m、輻21111、厚さ3mである。試験片は接
合部の境界が平行部の中心となるように採取した。引張
試験はインストロン型の引張り試験機(容量5Ton)
を用い、引張強度をIIIIII/minで実施した。
The surface roughness of the bonded surface was machined to a center line average roughness Pa of 0.8 μm, and then polished using water-resistant emery paper #800-80, with Ra ranging from 0.06 to 1°95 μm. After diffusion bonding, the plate tensile test piece taken had a parallel length of 5 m, a radius of 21111, and a thickness of 3 m. The test piece was taken so that the boundary of the joint was at the center of the parallel part. The tensile test was performed using an Instron type tensile tester (5 ton capacity).
The tensile strength was measured at IIIIII/min.

試験温度は室温(10〜15℃)、標点間距離は4mm
とした。
The test temperature was room temperature (10-15℃), and the gauge distance was 4mm.
And so.

第6図は拡散接合によるS U S / Cuの接合強
度に及ぼす温度の影響を示す。接合条件はいずれも接合
時間が60minで、加圧力が10及び50MPaであ
る。接合強度850〜1030℃の範囲の接合強度は概
ね190MPaであるが、接合温度1030℃以上では
接合強度がやや低下する傾向にある。接合試験片の破断
位置は全てCu母材側であり、接合性は良好である。第
6図に示していないが接合温度を750℃としても同様
の結果を得られ、したがってS U S / CuのH
IP温度は750℃以上であれば接合強度を十分確保で
きる。
FIG. 6 shows the influence of temperature on the bonding strength of SUS/Cu by diffusion bonding. The bonding conditions were a bonding time of 60 min, and a pressure of 10 and 50 MPa. The bonding strength in the range of 850 to 1030°C is approximately 190 MPa, but the bonding strength tends to decrease slightly at a bonding temperature of 1030°C or higher. All of the fracture positions of the bonded test pieces were on the Cu base metal side, and the bondability was good. Although not shown in Fig. 6, similar results can be obtained even if the junction temperature is 750°C, and therefore the H of SUS/Cu
If the IP temperature is 750° C. or higher, sufficient bonding strength can be ensured.

S U S / Cu接合境界部におけるNi及びFe
の濃度変化を測定した。接合条件は接合温度が1030
℃で、接合時間が60minのものである。
Ni and Fe at SUS/Cu junction interface
The change in concentration was measured. The bonding conditions are a bonding temperature of 1030℃.
℃, and the bonding time was 60 min.

Ni及びFeはSUS側からCu側へ移るに従い接合部
で急激に低下するが、接合境界部近傍ではNi及びFe
の拡散が若干認められる。このNi及びFe等の拡散に
よって接合部近傍が固溶強化されるものと考えられる。
Ni and Fe rapidly decrease at the joint as they move from the SUS side to the Cu side, but Ni and Fe decrease near the joint boundary.
A slight diffusion of is observed. It is thought that the vicinity of the joint is strengthened by solid solution due to the diffusion of Ni, Fe, etc.

第7図(a) 〜(Q)はSUS側からCu側への原子
拡散状況を調べるため受は入れのままのCu(同図(a
)) 、接合温度1030℃(同図(b))及び107
0℃(同図(C))の接合試験片のCu部分のEDX測
定結果を示す。接合試験片の測定位置は接合境界からC
u側へ0.25閣の所である。受は入れのままのCu及
び接合温度1030℃の試験片ではCuのみ検出された
が。
Figures 7(a) to (Q) show Cu with the receiver in place to investigate the state of atomic diffusion from the SUS side to the Cu side.
)), junction temperature 1030°C ((b) in the same figure) and 107°C
The EDX measurement results of the Cu portion of the bonded test piece at 0° C. ((C) in the same figure) are shown. The measurement position of the bonded specimen is C from the bonding boundary.
It is 0.25 kaku to the u side. However, only Cu was detected in the test piece with the receiver in place and the bonding temperature of 1030°C.

接合温度1070℃の試験片でCr及びFeが検出され
た。Cr及びFeがCu側に拡散しCuが合金化される
とCuの電気抵抗が高くなるためS U S / Cu
のHIP温度は1070℃以下にするのが好ましい。
Cr and Fe were detected in the test piece with a bonding temperature of 1070°C. When Cr and Fe diffuse to the Cu side and Cu is alloyed, the electrical resistance of Cu increases, so SUS/Cu
The HIP temperature is preferably 1070°C or less.

第8図はSUS/SUSの接合特性に及ぼす接合温度の
影響を示す、接合条件は接合時間が60sinであり、
加圧力は50 M P aである。接合強度は接合温度
の上昇とともに高い値を示し、接合温度1000℃以上
の場合SO8母材と同等の強度が得られる。したがって
SUS/SUSのHIP温度は1000”C以上が好ま
しい、接合温度1050℃の場合接合試験片はSUS母
材側で破断をするが、接合温度1000℃〜1030℃
では母材破断するものと接合部破断するものとがあり、
破断位置にバラツキを生じる。この原因は以下で述べる
如く試験片の接合面における表面粗さが影響しているも
のと考えられる。
Figure 8 shows the effect of bonding temperature on SUS/SUS bonding characteristics.The bonding conditions are a bonding time of 60 sin;
The pressing force is 50 MPa. The bonding strength shows a higher value as the bonding temperature rises, and when the bonding temperature is 1000° C. or higher, a strength equivalent to that of the SO8 base material is obtained. Therefore, the HIP temperature of SUS/SUS is preferably 1000"C or higher. If the bonding temperature is 1050℃, the bonded test piece will break on the SUS base material side, but the bonding temperature will be 1000℃ to 1030℃.
There are cases where the base material breaks and cases where the joint breaks.
This causes variations in the fracture position. This is thought to be caused by the surface roughness of the joint surface of the test piece, as described below.

第9図はSUS/SUSの接合特性に及ぼす表面粗さの
影響を示す、接合条件は接合温度が1050℃、接合時
間が180minであり、加圧力が100 M P a
である。接合強度及び伸びは表面粗さが小さくするとと
もに上昇し0.5μm以下の表面粗さでは接合試験片の
破断位置は母材破断であり、表面粗さは接合強度を上昇
させる重要な因子であることが分かった。したがってS
USの表面粗さは0.5μm以下が好ましい。
Figure 9 shows the influence of surface roughness on SUS/SUS bonding characteristics. The bonding conditions were a bonding temperature of 1050°C, a bonding time of 180 min, and a pressure of 100 MPa.
It is. Bonding strength and elongation increase as the surface roughness decreases, and when the surface roughness is less than 0.5 μm, the fracture location of the bonded specimen is the base metal fracture, and surface roughness is an important factor in increasing bonding strength. That's what I found out. Therefore S
The US surface roughness is preferably 0.5 μm or less.

第10図は接合面の表面粗さが0.06μmの試験片を
用いたSUS/SUSの接合特性に及ぼす接合温度の影
響を示す。接合温度985℃〜1050℃の範囲の接合
強度はいずれもSUS母材と同等の強度であるが、接合
温度1030℃以上で破断位置が母材になることが分か
った。従って。
FIG. 10 shows the influence of bonding temperature on the SUS/SUS bonding characteristics using a test piece with a surface roughness of 0.06 μm on the bonding surface. It was found that the bonding strength in the bonding temperature range of 985°C to 1050°C is equivalent to that of the SUS base material, but when the bonding temperature is 1030°C or higher, the fracture position becomes the base metal. Therefore.

SUS/SUS材同志をHIP接合する時SUS材の表
面粗さを0.06μmとし、HIP温度を1030℃以
上とするとより好ましい接合性能が得られる。
When HIP-bonding SUS/SUS materials, more preferable joining performance can be obtained by setting the surface roughness of the SUS materials to 0.06 μm and setting the HIP temperature to 1030° C. or higher.

第11図は表面粗さ0.18μm以下におけるSUS/
SUSの接合特性に及ぼす加圧力の影響を示す。接合条
件は接合温度が1050℃で、接合時間は180min
である。加圧力50〜150MPaの範囲の接合強度は
SUS母材と同等の強度を示すが、加圧力50 M P
 aのものでは試験片の接合部で破断し、伸びが小さい
値を示す。一方加圧力100 M P a以上では母材
破断てあり、加圧力もSUS/SUSの接合特性に寄与
すること力\分った。したがってSUS/SUSをHI
P接合する場合、加圧力は50 M P a以上で母材
と同等の接合強度を得られるが、接合性をより強固とす
るため加圧力は100MPa以上が好ましい。
Figure 11 shows SUS/
The influence of pressurizing force on the bonding properties of SUS is shown. The bonding conditions are a bonding temperature of 1050°C and a bonding time of 180 min.
It is. The bonding strength in the range of 50 to 150 MPa is equivalent to that of the SUS base material, but when the pressure is 50 MPa,
In the case of a, the specimen broke at the joint, and the elongation showed a small value. On the other hand, when the applied force exceeds 100 MPa, the base material breaks, and it was found that the applied force also contributes to the bonding properties of SUS/SUS. Therefore, SUS/SUS is HI
In the case of P-joining, a pressure equal to or greater than 50 MPa can provide a bonding strength equivalent to that of the base metal, but in order to make the bonding properties stronger, the pressure is preferably greater than or equal to 100 MPa.

以上の拡散接合実験の結果をまとめるとHIPでSUS
/SUSとS U S / Cuを同時に接合するには
接合温度を1000℃以上、表面粗さをRaで0.5μ
m以下、加圧力を50MPa以上とする必要がある。接
合温度および加圧力を保持する時間は60min以上と
するのが好ましい。
To summarize the results of the above diffusion bonding experiments, HIP
/To bond SUS and SUS/Cu at the same time, the bonding temperature should be 1000℃ or higher and the surface roughness Ra should be 0.5μ.
m or less, and the pressing force needs to be 50 MPa or more. The time for maintaining the bonding temperature and pressure is preferably 60 min or more.

またHIPでS U S / Cu同志を接合するには
接合温度を750℃以上、接合時間を60min以上、
加圧力を10MPa以上、表面粗さRaを2μm以下と
するのが好ましい。
In addition, to bond SUS/Cu together using HIP, the bonding temperature must be 750°C or higher, the bonding time must be 60 min or more,
It is preferable that the pressing force be 10 MPa or more and the surface roughness Ra be 2 μm or less.

〔実施例〕〔Example〕

失胤叢よ 以下、本発明の実施例1について説明する。 A bunch of lost seeds Example 1 of the present invention will be described below.

第2表に示す供試材を用いて第3表に示す条件でHIP
接合を行った。HIP接合用試験片の寸法は直径32閣
、長さ22■とした。試験片を炭素鋼製のカプセルに封
入後400℃に加熱して脱気封止し、その後HIP接合
を実施した。HIP接合後、析出強化型の供試材(第2
表で翫2.&3および&7)には時効処理を施した。
HIP using the test materials shown in Table 2 under the conditions shown in Table 3.
Welded. The dimensions of the test piece for HIP bonding were 32 cm in diameter and 22 cm in length. The test piece was sealed in a carbon steel capsule, heated to 400°C, degassed and sealed, and then HIP bonded. After HIP bonding, precipitation strengthened specimen material (second
2. &3 and &7) were subjected to aging treatment.

つぎに、引張試験片を2X2X30mの寸法の比抵抗試
験片を採取し、特性を測定した。
Next, a resistivity test piece with dimensions of 2×2×30 m was taken as a tensile test piece, and its properties were measured.

第4表に各接合試験片の特性を示す、なお、比抵抗は導
電部材の特性である。引張試験片の破断位置は母材側で
あり、良好な接合特性が得られている。
Table 4 shows the characteristics of each bonded test piece. Note that the specific resistance is a characteristic of the conductive member. The fracture position of the tensile test piece was on the base metal side, and good bonding properties were obtained.

本実施例によれば導電部材が銅で、補強部材がオーステ
ナイト系非磁性鋼の場合、導電部材が銅合金で補強部材
がオーステナイト系非磁性鋼の場合、およびオーステナ
イト系非磁性鋼の補強部材同志を接合する場合等いずれ
の場合についても良好な接合強度と導電性が得られる。
According to this embodiment, when the conductive member is copper and the reinforcing member is austenitic nonmagnetic steel, when the conductive member is a copper alloy and the reinforcing member is austenitic nonmagnetic steel, and when the reinforcing member is made of austenitic nonmagnetic steel, Good bonding strength and conductivity can be obtained in any case, such as when bonding.

第  3  表 第  4  表 〔実施例2〕 本発明の実施例2として導電部材がCu純度99.9%
以上の無酸素銅であり、補強部材がN量0.12%以上
の5US316LNからなる低温ダンパについて説明す
る。なお補強部材は5US304LNでも同様の効果を
得られる。
Table 3 Table 4 [Example 2] As Example 2 of the present invention, the conductive member had Cu purity of 99.9%.
A low-temperature damper made of the above oxygen-free copper and whose reinforcing member is made of 5US316LN with an N content of 0.12% or more will be described. Note that the same effect can be obtained by using 5US304LN as the reinforcing member.

第1図は本実施例による低温ダンパの構成図を示す0本
実施例の低温ダンパの本体はCuスリーブ11、SUS
外筒12、SUS内筒13、SUS中リシリング14a
4bから構成される。Cuスリーブ11が低温ダンパの
導電部材であり、SUS外筒12、SUS内筒13、S
US中リシリング14a4bがその補強部材である。第
2図は低温ダンパのトルクチューブ1への取付構造を示
す部分断面図である。トルクチューブ1は低温ダンパの
取付部で突起15が設けられ、その部分で溶接16され
る。補強部材14a、14bは溶接、時による熱応力に
よって剥離しないようにする為。
FIG. 1 shows a configuration diagram of a low-temperature damper according to this embodiment. The main body of the low-temperature damper according to this embodiment is made of Cu sleeve 11 and SUS.
Outer cylinder 12, SUS inner cylinder 13, SUS inner cylinder 14a
Consists of 4b. The Cu sleeve 11 is a conductive member of the low-temperature damper, and the SUS outer cylinder 12, the SUS inner cylinder 13, and the SUS
The US middle ring 14a4b is the reinforcing member. FIG. 2 is a partial cross-sectional view showing the structure for attaching the low-temperature damper to the torque tube 1. The torque tube 1 is provided with a protrusion 15 at the attachment part of the low-temperature damper, and welded 16 at that part. The reinforcing members 14a and 14b are designed to prevent them from peeling off due to thermal stress during welding.

溶接によって溶接部に銅が混入しないように同種材で溶
接できるようにするものである。突起15はトルクチュ
ーブに接合するために設けられ、更に再接合できるよう
にする為に設けられる。
This makes it possible to weld similar materials so that copper does not get mixed into the welded area. The protrusion 15 is provided for joining to the torque tube and is also provided to enable rejoining.

第3図に本実施例の製作工程及び第4図に製作に用いた
HIP装置の概略図を示す。
FIG. 3 shows the manufacturing process of this example, and FIG. 4 shows a schematic diagram of the HIP apparatus used in the manufacturing.

HIP装置はCuスリーブ11をSUS外筒12、SU
S内筒3.およびSUS中リシリング14a4bに接合
するため、ならびにSUS中リシリング14a4bをS
US外筒12およびSUS内筒13に接合するために用
いた。
The HIP device connects the Cu sleeve 11 to the SUS outer cylinder 12 and SU
S inner cylinder 3. and SUS medium reshi ring 14a4b, and SUS medium reshi ring 14a4b to SUS medium reshi ring 14a4b.
It was used to join the US outer cylinder 12 and the SUS inner cylinder 13.

本実施例のSUS外筒12の外径は546m、Cuスリ
ーブ11の長さは860mmとし、SUS外筒12およ
びSUS内筒13の肉厚は7.5m、Cuスリーブ11
およびSUS中リシリング14a4bの肉厚は6mmと
した。これらの寸法は超電導回転子の容量に応じて適宜
決定される寸法であり、HIP接合の接合特性に影響を
及ぼすことはない、Cuスリーブ11の両端部にあるS
US中リシリング14a4bは、低温ダンパの両端がS
US製のトルクチューブと溶接される必要があり。
In this example, the outer diameter of the SUS outer cylinder 12 is 546 m, the length of the Cu sleeve 11 is 860 mm, the wall thickness of the SUS outer cylinder 12 and the SUS inner cylinder 13 is 7.5 m, and the Cu sleeve 11 is 7.5 m thick.
The wall thickness of the SUS medium reshi ring 14a4b was 6 mm. These dimensions are determined appropriately according to the capacity of the superconducting rotor, and the S at both ends of the Cu sleeve 11 does not affect the bonding characteristics of HIP bonding.
In the US Medium Reshiring 14a4b, both ends of the low temperature damper are S.
Must be welded with US torque tube.

その際のS U S / Cu異材溶接を避けるために
設置したものである。SUS外筒12.SUS内筒13
およびSUS中リシリング14a4bの表面粗さはSU
S中リシリング14a4bと接合される部分をパフ研磨
により0.05μm以下とし、Cuスリーブ11と接合
される部分は機械加工により1.6μm以下とした。S
US外筒12/Cuスリーブ11およびCuスリーブ1
1/SUS内筒13の内径と外径の間の空隙は概ね0.
6m−とした・ SUS中リシリング14a4bの隣りには端部リングを
溶接で取付けた。端部リングは低温ダンパ本体を構成す
るためには、不必要であるが、HIP接合接合具空容器
を形成するために必要な部品である。したがってHIP
接合後、端部リングは切除される。端部リングの材料は
SUS外筒12およびSUS内筒13との溶接において
溶接割れを生じない材料であれば良い、このため5US
304を用いた。端部リングには脱気管を溶接で取付け
た。脱気管は真空引きのための管である。
This was installed to avoid SUS/Cu dissimilar metal welding at that time. SUS outer cylinder 12. SUS inner cylinder 13
And the surface roughness of Reshiring 14a4b in SUS is SU
The part to be joined to the S medium reshiring 14a4b was made to be 0.05 μm or less by puff polishing, and the part to be joined to the Cu sleeve 11 was made to be 1.6 μm or less by machining. S
US outer cylinder 12/Cu sleeve 11 and Cu sleeve 1
1/The gap between the inner diameter and outer diameter of the SUS inner cylinder 13 is approximately 0.
6m - An end ring was attached by welding next to the SUS medium ring 14a4b. Although the end ring is not necessary to construct the cold damper body, it is a necessary component to form the HIP joint connector empty vessel. Therefore HIP
After bonding, the end ring is cut away. The material of the end ring may be any material that does not cause weld cracks when welding with the SUS outer cylinder 12 and the SUS inner cylinder 13. Therefore, 5US
304 was used. A degassing pipe was attached to the end ring by welding. A degassing tube is a tube for evacuation.

端部リング、SUS外筒12およびSUS内筒13の内
部にある空気等のガスはHIP接合を防げるため、HI
P加工の前に脱気管を通じて加熱脱気した。
Gas such as air inside the end ring, SUS outer cylinder 12, and SUS inner cylinder 13 can prevent HIP bonding.
Before P processing, it was heated and degassed through a degassing tube.

本実施例のHIP接合条件は拡散接合試験結果に基づき
、接合温度:1050℃±15℃、加圧カニ130MP
a、温度および圧力の保持時間=4hを採用した。
The HIP bonding conditions of this example are based on the diffusion bonding test results, bonding temperature: 1050℃±15℃, pressure crab 130MP.
a, temperature and pressure holding time = 4 h was adopted.

HIP加工後、SUS外筒側から超音波探傷法によりS
US中リシリング14a4bとSUS外筒12およびS
US内筒13との接合状況およびCuスリーブ11とS
US外筒12およびSUS内筒13との接合状況を検査
したが、不着部分は検呂されなかった。
After HIP processing, S is inspected by ultrasonic flaw detection from the SUS outer cylinder side.
US medium recyling 14a4b and SUS outer cylinder 12 and S
Connection status with US inner cylinder 13 and Cu sleeve 11 and S
Although the state of connection between the US outer cylinder 12 and the SUS inner cylinder 13 was inspected, no unattached portions were inspected.

第5表は本実施例のHIPによる低温ダンパの寸法変化
を示す。HIP接合は等方圧を利用するので接合体が不
均一な変形をするおそれの少ないことが特徴の一つであ
る。しかし円筒部同志の空隙、異種材料間の熱膨張差及
び接合時の不均一な温度分布などの影響による変形が生
じるため、低温ダンパのHIP前後における寸法をマイ
クロメータ及びノギスにより測定し寸法の変化量を求め
た。低温ダンパの寸法変化量はSUS外筒の外径が収縮
側()ico、5〜0.75mm、SUS内筒の内径が
膨張側(+)に0.7〜1.05m+■、及び長さ(Q
)方向が収縮側(−)にQ、66mmであるので等方圧
が加えられていることが分かる0円筒HIPによる変形
量と円筒爆接による変形量とを接合後における円筒中央
部と両端部の直径差で比較すると、円筒HIPでは0.
5mm以内と小さいのに対し、円筒爆接では約10++
++++と非常に太きな変形を生ずることが報告されて
いる。したがってS U S / Cu接合面の真円度
及び真直度等の寸法精度を要求される低温ダンパには円
筒爆接法よりもHIP法が適していることが明らかであ
る。
Table 5 shows the dimensional changes of the low temperature damper due to HIP of this example. Since HIP bonding uses isostatic pressure, one of its features is that there is little risk of uneven deformation of the bonded body. However, deformation occurs due to the effects of voids between the cylindrical parts, thermal expansion differences between different materials, and uneven temperature distribution during bonding, so we measured the dimensions of the low-temperature damper before and after HIP with a micrometer and calipers. I asked for the quantity. The amount of dimensional change of the low-temperature damper is that the outer diameter of the SUS outer cylinder is on the contraction side ()ico, 5 to 0.75 mm, the inner diameter of the SUS inner cylinder is 0.7 to 1.05 m + ■ on the expansion side (+), and the length (Q
) direction is on the contraction side (-), Q, 66 mm, so isostatic pressure is applied Comparing the difference in diameter, the cylindrical HIP has a diameter difference of 0.
While it is small at less than 5mm, in cylindrical explosion contact it is about 10++
It has been reported that a very thick deformation of +++++ occurs. Therefore, it is clear that the HIP method is more suitable than the cylindrical explosion welding method for low-temperature dampers that require dimensional accuracy such as roundness and straightness of the SUS/Cu joint surface.

第5図は低温ダンパのS U S / Cu及びSUS
/SUSの接合部における試験片採取位置を示す。
Figure 5 shows SUS/Cu and SUS of the low temperature damper.
/ Shows the test piece sampling position at the SUS joint.

また第6表に引張試験結果を示す、接合継手試番第5表 測定位1a、c:端部、b:中心部、 第6表 ■及び■はSUS/SUSであり■及び■はSUS /
 Cuである。SUS/SUSの接合強度は概ね685
〜705MPaであり、接合試験片の破断位置が母材側
である。また、S U S / Cuの室温及び−19
6℃の接合強度も概ね190〜255 M P aであ
り接合試験片の破断位置もCu母材側である。
In addition, Table 6 shows the tensile test results. Table 5 shows the joint joint trial number. Measurement position 1a, c: end, b: center, Table 6 ■ and ■ are SUS/SUS, and ■ and ■ are SUS/SUS.
It is Cu. The bonding strength of SUS/SUS is approximately 685
~705 MPa, and the fracture position of the bonded test piece is on the base metal side. In addition, the room temperature and −19
The bonding strength at 6° C. is approximately 190 to 255 MPa, and the fracture position of the bonded test piece is also on the Cu base material side.

本実施例の低温ダンパによれば従来の円筒爆接法よりも
接合面積率が高く、変形量の小さい低温ダンパを製作で
きるという効果がある。
The low-temperature damper of this embodiment has the effect of producing a low-temperature damper with a higher bonding area ratio and less deformation than the conventional cylindrical explosion welding method.

第7表は低温ダンパのS U S / Cu境界部及び
Cu母材部の疲労試験結果を示す、m定試験片の形状は
厚さ5箇厘の1/2CT試験片を用い、室温で実施した
。HIP接合のS U S / Cu境界部の亀裂進展
速度はCu母材と同等であり、良好な疲労特性であると
ともに爆接接よりも優れていることが分かる。
Table 7 shows the fatigue test results for the SUS/Cu boundary and Cu base material of the low-temperature damper. did. It can be seen that the crack propagation rate at the SUS/Cu interface in HIP bonding is equivalent to that in the Cu base metal, indicating that it has good fatigue properties and is superior to explosion welding.

第7表 第8表はSUS外筒2、SUS内筒3およびSUS中リ
シリング4abを円筒に製作するために用いてN量0.
25%以上のSUS溶接材料と、爆接材を接合するため
に用いるインコネル溶接材料の溶接部の引張試験結果を
示す、試験片は直径5璽璽、平行部長さ25BIIのも
のを用い、試験は一196℃の温度で実施した。HIP
用のSUS溶接材料の溶接継手の0.2%耐力は母材と
同等であり、低温において優れた強度である。また、爆
接材の接合に用いられるインコネル溶接材料よりも低温
においては優れた強度が得られることが明らかである。
Tables 7 and 8 show that the SUS outer cylinder 2, the SUS inner cylinder 3, and the SUS inner cylinder 4ab are used to manufacture cylinders with an N content of 0.
The results of a tensile test of a welded part of 25% or more SUS welding material and Inconel welding material used to join explosion welding material are shown.The test piece used was a diameter of 5 mm and a parallel length of 25 BII. It was carried out at a temperature of 196°C. HIP
The 0.2% yield strength of the welded joint of the SUS welding material for use is equivalent to that of the base metal, and has excellent strength at low temperatures. It is also clear that superior strength can be obtained at lower temperatures than Inconel welding materials used for joining blast welding materials.

第  8  表 第9表は低温ダンパの導電部材であるCuの部分から採
取した試料の電気比抵抗を示す、測定試料は2X2X6
0■腸の寸法のものを用いた。77にの比抵抗は室温の
約178に低下しており、低温で使用した場合はより良
好な導電性を得られることが明らかである。
Table 8 Table 9 shows the electrical resistivity of the sample taken from the Cu part which is the conductive member of the low temperature damper.The measurement sample was 2X2X6.
The size of the intestine was 0.0 cm. The specific resistance of 77 is reduced to about 178 at room temperature, clearly indicating that better conductivity can be obtained when used at lower temperatures.

第9表 本実施例の低温ダンパによれば従来の円筒爆接法よりも
接合率が高く、変形量の小さい低温ダンパを製作できる
という効果がある。また、低温での導電性が優れている
ため電磁シールドの性能に優れている。
Table 9 The low-temperature damper of this embodiment has the effect of producing a low-temperature damper with a higher bonding rate and less deformation than the conventional cylindrical explosion welding method. In addition, it has excellent electromagnetic shielding performance due to its excellent conductivity at low temperatures.

〔発明の効果〕〔Effect of the invention〕

本発明によれば導電部材と補強部材とから成る低温ダン
パおよび常温ダンパにおいて、各部材間の接合を熱間等
方圧加圧を用いた固相拡散接合によって行なうため、接
合後の寸法精度が高い。このため回転時のバランス特性
に優れている。また不着部がなく、接合部での強度も優
れているので機械的な信頼性に優れている。さらに導電
部材の両端部に補強部材を接合できるため、低温ダンパ
および常温ダンパを他の部品に溶接する際に異材溶接に
伴う溶接割れを防止できる。
According to the present invention, in a low-temperature damper and a room-temperature damper comprising a conductive member and a reinforcing member, each member is joined by solid-phase diffusion bonding using hot isostatic pressing, so that the dimensional accuracy after joining is improved. expensive. Therefore, it has excellent balance characteristics during rotation. Furthermore, there are no unbonded parts and the joints have excellent strength, so they have excellent mechanical reliability. Furthermore, since the reinforcing member can be joined to both ends of the conductive member, weld cracking caused by welding different materials can be prevented when welding the low-temperature damper and the room-temperature damper to other parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る低温ダンパの構成の断面図、第2
図は低温ダンパのトルクチューブへの取付構造を示す断
面図、第3図はHIPの製作工程図、第4図は同装置の
概略図、第5図は低温ダンパのS U S / Cuお
よび5tJS/SUSの接合部における試験片採取位置
の断面図、第6図はSUS / Cuの接合強度に及ぼ
す接合温度の影響を示す線図、第7図(a)〜(C)は
その成分の影響を示す線図、第8図〜第11図はS U
 S / Cuの接合強度に及ぼす接合温度9表面粗さ
、接合温度。 加圧力の影響を示す線図、第12図は超電導回転子の断
面構造図である。 1・・・トルクチューブ、4・・・保温ダンパ、5・・
・常温ダンパ、11・・・Cuスリーブ、12・・・S
US外筒、13・・・SUS内筒。
FIG. 1 is a cross-sectional view of the structure of a low-temperature damper according to the present invention, and FIG.
The figure is a cross-sectional view showing the mounting structure of the low-temperature damper on the torque tube, Figure 3 is a manufacturing process diagram of HIP, Figure 4 is a schematic diagram of the same device, and Figure 5 is the low-temperature damper SUS/Cu and 5tJS. Figure 6 is a diagram showing the effect of bonding temperature on the joint strength of SUS/Cu, and Figures 7 (a) to (C) are the effects of its components. Diagrams showing S U
Effect of bonding temperature on S/Cu bonding strength 9 Surface roughness, bonding temperature. A diagram showing the influence of pressurizing force, and FIG. 12 is a cross-sectional structural diagram of a superconducting rotor. 1...torque tube, 4...thermal damper, 5...
・Normal temperature damper, 11...Cu sleeve, 12...S
US outer cylinder, 13...SUS inner cylinder.

Claims (1)

【特許請求の範囲】 1、導電部材が3層円筒構造の中間層を形成し、補強部
材が3層円筒構造の上層および下層を形成する複合構造
体を有する超電導回転子ダンパにおいて、導電部材と補
強部材との接合および、上記補強部材同士の接合が熱間
等方圧加圧により固相接合され、前記導電部材の両端部
に前記補強部材が接合されていることを特徴とする超電
導回転子用ダンパ。 2、請求項1において、導電部材が銅または銅合金から
成り、補強部材がオーステナイト系非磁性鋼から成るこ
とを特徴とする超電導回転子用ダンパ。 3、請求項1において、導電部材が銅を重量%で99.
9%以上を含み、残部がFe等の不純物から成ることを
特徴とする超電導回転子用ダンパ。 4、請求項1において、補強部材のオーステナイト系非
磁性鋼が重量%で窒素を0.01〜 0.40%、Crを15〜28%、Niを8〜15%、
Cを0.03%以下、Mnを2%以下、Siを2%以下
、Moを0.5〜3.0%含み残部がFe及び不可避不
純物から成ることを特徴とする超電導回転子用ダンパ。 5、請求項1において、補強部材のオーステナイト系非
磁性鋼が重量%で窒素を0.01〜 0.40%、Crを15〜28%、Niを8〜15%、
Cを0.03%以下、Mnを2%以下、Siを2%以下
含み、残部がFe及び不可避不純物から成ることを特徴
とする超電導回転子用ダンパ。 6、請求項1において、補強部材のオーステナイト系非
磁性鋼が重量%でCを0.08%以下、Siを1%以下
、Mnを2%以下、Niを24〜27%、Crを13〜
16%、Moを1.0〜1.5%、Tiを1.5〜2.
4%、Vを0.1〜0.5%、Alを0.1〜0.4%
含み、残部がFe及び不可避不純物から成ることを特徴
とする超電導回転子用ダンパ。 7、請求項1において、導電部材の銅合金が重量%でC
rを0.2〜1.0%、Zrを0.005〜0.3%含
み、残部がCu及び不可避不純物から成ることを特徴と
する超電導回転子用ダンパ。 8、請求項1において、導電部材の銅合金が重量%でN
iを1.2〜2.8%、Siを0.3〜0.7%、Zr
を0.1〜1.0%含み、残部がCu及び不可避不純物
から成ることを特徴とする超電導回転子用ダンパ。 9、請求項1において、複合構造体の各部材は熱間等方
圧加圧によって固相接合する際、導電部材と補強部材と
の接合面の表面粗さは中心線平均粗さRa表示法で2μ
m以下に形成され、補強部材同士の接合面の表面粗さは
中心線平均粗さRaで0.5μm以下に形成され、温度
を750℃以上、加圧力を10MPa以上、温度および
加圧力の保持時間を60min以上の熱間等方圧加圧(
HIP)により接合されていることを特徴とする超電導
回転子用ダンパ。 10、請求項1において、複合構造体の各部材を熱間等
方圧加圧によって接合する際、各部材間の接合強度を高
めるようFe、Ni又はNi合金等の厚さ30μm以下
の中間材が1種以上介在されていることを特徴とする超
電導回転子用ダンパ。 11、請求項1において、複合構造体の導電部材の真円
度が99.9%以上、真直度が99.95%以上、肉厚
の均一度が99%以上であることを特徴とする超電導回
転子用ダンパ。 12、請求項1において、複合構造体の各部材を熱間等
方圧加圧によって接合する際、不活性ガスあるいは還元
性ガスの静水圧下で接合されたものであることを特徴と
する超電導回転子用ダンパ。
[Claims] 1. In a superconducting rotor damper having a composite structure in which the conductive member forms the middle layer of a three-layer cylindrical structure and the reinforcing member forms the upper and lower layers of the three-layer cylindrical structure, the conductive member and A superconducting rotor characterized in that the reinforcing members and the reinforcing members are solid-phase joined by hot isostatic pressing, and the reinforcing members are joined to both ends of the conductive member. Damper for use. 2. The damper for a superconducting rotor according to claim 1, wherein the conductive member is made of copper or a copper alloy, and the reinforcing member is made of austenitic nonmagnetic steel. 3. In claim 1, the conductive member contains 99.9% by weight of copper.
1. A damper for a superconducting rotor, characterized in that the damper contains 9% or more and the remainder consists of impurities such as Fe. 4. In claim 1, the austenitic nonmagnetic steel of the reinforcing member contains 0.01 to 0.40% nitrogen, 15 to 28% Cr, 8 to 15% Ni, by weight.
A damper for a superconducting rotor, comprising 0.03% or less of C, 2% or less of Mn, 2% or less of Si, 0.5 to 3.0% of Mo, and the balance consisting of Fe and inevitable impurities. 5. In claim 1, the austenitic nonmagnetic steel of the reinforcing member contains 0.01 to 0.40% nitrogen, 15 to 28% Cr, 8 to 15% Ni by weight,
A damper for a superconducting rotor, characterized in that it contains 0.03% or less of C, 2% or less of Mn, and 2% or less of Si, with the remainder consisting of Fe and unavoidable impurities. 6. In claim 1, the austenitic non-magnetic steel of the reinforcing member contains 0.08% or less of C, 1% or less of Si, 2% or less of Mn, 24 to 27% of Ni, and 13 to 13% of Cr by weight.
16%, Mo 1.0-1.5%, Ti 1.5-2.
4%, V 0.1-0.5%, Al 0.1-0.4%
A damper for a superconducting rotor, characterized in that the remainder consists of Fe and unavoidable impurities. 7. In claim 1, the copper alloy of the conductive member has C by weight%.
A damper for a superconducting rotor, characterized in that it contains 0.2 to 1.0% of r, 0.005 to 0.3% of Zr, and the remainder consists of Cu and inevitable impurities. 8. In claim 1, the copper alloy of the conductive member contains N by weight%.
i 1.2-2.8%, Si 0.3-0.7%, Zr
A damper for a superconducting rotor, characterized in that the damper contains 0.1 to 1.0% of Cu, and the remainder consists of Cu and unavoidable impurities. 9. In claim 1, when each member of the composite structure is solid-phase joined by hot isostatic pressing, the surface roughness of the joint surface between the conductive member and the reinforcing member is determined by the center line average roughness Ra representation method. So 2μ
m or less, and the surface roughness of the bonding surfaces between the reinforcing members is formed to a center line average roughness Ra of 0.5 μm or less, and the temperature and pressure are maintained at 750°C or higher and the pressing force is 10 MPa or higher. Hot isostatic pressurization for 60 min or more (
A damper for a superconducting rotor, characterized in that it is joined by HIP). 10. In claim 1, when joining each member of the composite structure by hot isostatic pressing, an intermediate material having a thickness of 30 μm or less such as Fe, Ni or Ni alloy is used to increase the bonding strength between each member. A damper for a superconducting rotor, characterized in that one or more types of are interposed therein. 11. The superconductor according to claim 1, wherein the conductive member of the composite structure has a roundness of 99.9% or more, a straightness of 99.95% or more, and a wall thickness uniformity of 99% or more. Damper for rotor. 12. The superconductor according to claim 1, wherein each member of the composite structure is bonded by hot isostatic pressing under hydrostatic pressure of an inert gas or a reducing gas. Damper for rotor.
JP2316762A 1990-11-21 1990-11-21 Damper for superconducting rotor Expired - Fee Related JP2628227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316762A JP2628227B2 (en) 1990-11-21 1990-11-21 Damper for superconducting rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316762A JP2628227B2 (en) 1990-11-21 1990-11-21 Damper for superconducting rotor

Publications (2)

Publication Number Publication Date
JPH04190673A true JPH04190673A (en) 1992-07-09
JP2628227B2 JP2628227B2 (en) 1997-07-09

Family

ID=18080643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316762A Expired - Fee Related JP2628227B2 (en) 1990-11-21 1990-11-21 Damper for superconducting rotor

Country Status (1)

Country Link
JP (1) JP2628227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111774A (en) * 1993-10-08 1995-04-25 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Low-temperature damper for superconducting rotor
JP2013539844A (en) * 2010-09-24 2013-10-28 シーメンス アクチエンゲゼルシヤフト Non-contact support device with damping function and support method for refrigerant introduction pipe of superconducting machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510855A (en) * 1978-07-10 1980-01-25 Hitachi Ltd Method of manufacturing composite rotor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510855A (en) * 1978-07-10 1980-01-25 Hitachi Ltd Method of manufacturing composite rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111774A (en) * 1993-10-08 1995-04-25 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Low-temperature damper for superconducting rotor
JP2013539844A (en) * 2010-09-24 2013-10-28 シーメンス アクチエンゲゼルシヤフト Non-contact support device with damping function and support method for refrigerant introduction pipe of superconducting machine
US9083206B2 (en) 2010-09-24 2015-07-14 Siemens Aktiengesellschaft Device and method for damped, non-contact support of a coolant feed line for superconducting machines

Also Published As

Publication number Publication date
JP2628227B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
Lee et al. Effect of friction welding parameters on mechanical and metallurgical properties of aluminium alloy 5052–A36 steel joint
Glatz et al. Diffusion bonding of intermetallic Ti-47Al-2Cr-0.2 Si sheet material and mechanical properties of joints at room temperature and elevated temperatures
WO2014178315A1 (en) Different-material joint
Pan et al. Inhomogeneity of microstructure and mechanical properties in radial direction of aluminum/copper friction welded joints
Sassani et al. Friction welding of incompatible materials
Kato et al. Diffusion welding of Ti/Ti and Ti/stainless steel rods under phase transformation in air
Vyas et al. Friction welding of dissimilar joints copper-stainless steel pipe consist of 0.06 wall thickness to pipe diameter ratio
Fuji et al. Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction joints
JPH04190673A (en) Damper for superconducting rotor
Shirzadi et al. Joining stainless steel metal foams
Zhou et al. The mechanical properties of friction welded aluminium-based metal–matrix composite materials
EP0661126B1 (en) Clad metal produced by explosive welding, and method for producing the same
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
Wang et al. Interface microstructure and mechanical properties of copper/304 stainless steel dissimilar joint assisted by Ni transition layer using ultrasonic additive manufacturing (UAM)
JP3245477B2 (en) Thick plate clad material
JP2841014B2 (en) Low temperature damper for superconducting rotor
JPH06328271A (en) Pipe joint for connecting aluminum pipe and copper pipe
JPS6135787B2 (en)
Rees et al. Diffusion bonding of ferritic oxide dispersion strengthened alloys to austenitic superalloys
Smith et al. Metallurgical bonding development of V–4Cr–4Ti alloy for the DIII-D radiative divertor program
EP0761374B1 (en) Methods for bonding titanium and titanium alloy members
JP4454124B2 (en) Airtight dissimilar joint
Albright The fracture toughness testing of steel aluminum deformation welds
JPH0474774A (en) Jointing of materials differing in nature from each other
Pan et al. Mechanical properties of diffusion bonding joint of SiC and Al-Sn alloys at elevated temperatures

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees