JPH04190583A - Cylindrical heating element and heating method by use thereof - Google Patents

Cylindrical heating element and heating method by use thereof

Info

Publication number
JPH04190583A
JPH04190583A JP31794990A JP31794990A JPH04190583A JP H04190583 A JPH04190583 A JP H04190583A JP 31794990 A JP31794990 A JP 31794990A JP 31794990 A JP31794990 A JP 31794990A JP H04190583 A JPH04190583 A JP H04190583A
Authority
JP
Japan
Prior art keywords
heating element
cylindrical heating
bobbin
supplied
watt density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31794990A
Other languages
Japanese (ja)
Inventor
Kunio Tanaka
田中 邦雄
Katsuisa Kitakata
北形 勝勇
Kozo Takashima
高島 公三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAISEI TSUSHO KK
Teijin Ltd
Fuji Chemical Co Ltd
Original Assignee
KAISEI TSUSHO KK
Teijin Ltd
Fuji Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAISEI TSUSHO KK, Teijin Ltd, Fuji Chemical Co Ltd filed Critical KAISEI TSUSHO KK
Priority to JP31794990A priority Critical patent/JPH04190583A/en
Publication of JPH04190583A publication Critical patent/JPH04190583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)

Abstract

PURPOSE:To secure flexibility, uniformity of heating and a set watt density for a cylindrical heating element by using flexible heating thread which contains discontinuous fiber of stainless steel at one portion of thread to be supplied to a bobbin and making adjustment of the watt density within the range of 0.01-2.0w/cm<2>. CONSTITUTION:A cylindrical heating element is braided by use of a flexible heating thread 23 in a part of a thread 21 supplied to a right-turning bobbin and in a part of a thread 22 supplied to a left turning bobbin. Moreover, the cylindrical heating element is provided as one whose watt density is 0.01-2.0w/cm<2>. It is therefore unnecessary to wind a resistance wire around a pipe when it is heated and kept warm, and the cylindrical heating element is operative when a watt density is within the range of 0.01-2.0w/cm<2>, so that it is possible to generate heat within the range from 25 to 300 deg.C under the atmosphere of ordinary temperature. It is thereby possible to secure flexibility and keep heating and warmness at a fixed watt density and at such a temperature as desired.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、筒状発熱体による加熱方法に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a heating method using a cylindrical heating element.

[従来技術] 従来から発熱体として使用するために電気抵抗値の大き
いニクロム線のような抵抗体に電流を流して発熱させる
ものが知られている。しかしながら、これらの抵抗体に
使用される金属は延性に欠けるので細い繊維状にするこ
とが出来ない欠点かあり、このため可撓性のある線状発
熱糸としての用途も限られていた。すなわち、従来のニ
クロム線のような抵抗体を用いてパイプなどの被加熱体
を加熱するには、該抵抗体をラセン状に巻きイ・jけ該
抵抗体に通電して加熱する必要かあった。しかしながら
、該抵抗体をパイプなとの被加熱体にラセン状に巻き(
=1ける作業は時間と高度なテクニックが必要である。
[Prior Art] Conventionally, it has been known to generate heat by passing a current through a resistor such as a nichrome wire having a large electrical resistance value, which is used as a heat generating element. However, since the metals used in these resistors lack ductility, they cannot be made into thin fibers, which limits their use as flexible linear heating threads. In other words, in order to heat an object to be heated such as a pipe using a resistor such as a conventional nichrome wire, it is necessary to wind the resistor in a spiral shape and then heat it by applying current to the resistor. Ta. However, the resistor is wound spirally around a heated object such as a pipe (
The work of counting =1 requires time and advanced technique.

すなわち、該被加熱体にラセン状に巻き(1ける作業で
は、パイプの長さがながいこと、パイプか曲げて使用さ
れている場合かあること、パイプの直径か細いこと等の
状況に応じて均一に抵抗体を巻きイ」けることは困難で
あり、さらに、最初の巻き(;Jけ部分が緩んでくるの
で一気に作業をしなければならない等の制約があり、非
常な困難を伴っていた。
In other words, it is wrapped around the object to be heated in a helical shape (in the case of 1) winding is done uniformly depending on the situation, such as the long length of the pipe, the fact that the pipe may be bent or used, the diameter of the pipe or the small diameter of the pipe, etc. It was difficult to wind the resistor around the wire, and in addition, there were restrictions such as having to work all at once because the first winding part would become loose, making it extremely difficult.

[発明の目的] 本発明の目的は、従来のかかる問題点を解決し、従来に
ない可撓性があり、発熱が均一に得られる筒状発熱体を
用いて設定のワット密度が得られる筒状発熱体及びその
筒状発熱体を用いた加熱方法を提案することにある。
[Object of the Invention] The object of the present invention is to solve the problems of the conventional art and to provide a cylinder that can obtain a predetermined watt density by using a cylindrical heating element that has unprecedented flexibility and can generate heat uniformly. The purpose of the present invention is to propose a cylindrical heating element and a heating method using the cylindrical heating element.

[発明の構成] 右同りホビン及び左回りボビンに供給する糸の1部、又
はそのいずれか一方のボビンに供給する糸の1部にステ
ンレススチールの不連続繊維を含む可撓性発熱糸を用い
てなる丸打組物であって、ワット密度が0.01〜2.
Ow/clの範囲て調節可能な筒状発熱体であり、該筒
状発熱体を用いて被加熱体を覆い、該筒状発熱体と所定
の抵抗器、又は定電流発生装置とを連結して一定電流を
通電し該筒状発熱体に前記ワット密度の範囲内で設定ワ
ット密度の発熱をさせて該被加熱体を加熱することを特
徴とする筒状発熱体を用いた加熱方法に応用用 来る。
[Structure of the invention] A portion of the yarn supplied to the right-handed hobbin and the left-handed bobbin, or a portion of the yarn supplied to either one of the bobbins, is a flexible heat-generating yarn containing discontinuous stainless steel fibers. This is a round braid made using a wattage density of 0.01 to 2.
It is a cylindrical heating element that can be adjusted in a range of Ow/cl, and the cylindrical heating element is used to cover an object to be heated, and the cylindrical heating element is connected to a predetermined resistor or a constant current generator. applied to a heating method using a cylindrical heating element characterized in that a constant current is applied to the cylindrical heating element to generate heat at a set watt density within the range of the watt density to heat the object to be heated. I'm coming.

本発明に使用する可撓性発熱糸は、ステンレススチール
からなる不連続繊維と非導電性繊維からなる不連続繊維
とを混用した糸が使用される。
The flexible heating yarn used in the present invention is a yarn that is a mixture of discontinuous fibers made of stainless steel and discontinuous fibers made of non-conductive fibers.

さらに詳しくは、本発明に使用する発熱糸の好ましいも
のとしては、直径か4〜30μm、繊維長100〜80
0mmの範囲にあるステンレススチールからなる不連続
繊維が使用される。該ステンレススチールからなる不連
続繊維は該発熱糸の全重量に対して20〜60重量%が
含有され、非導電性繊維からなる不連続繊維が発熱糸の
全重量に対して80〜40重量%とを用いて形成した混
紡糸である。該混紡糸の断面における該ステンレススチ
ールからなる不連続繊維の本数が20本以上あることが
好ましく、かつ該混紡糸の下撚係数が6 、500〜1
3,500の範囲にあるものか使用される。該混紡糸の
複数本を用いて合糸し、これに上撚を付与してコード糸
を形成し、該上撚が該下撚の撚方向と反対方向の撚を有
し、該上撚係数と下撚係数の比が0.5〜1.50の範
囲にあり、該コード糸の電気抵抗値が0.05〜10Ω
/ c mの範囲にあり、該抵抗値変動係数C■%がC
■≦10を満足することを特徴とする発熱性コード糸に
したものが最適に用いられる。
More specifically, the heat generating yarn used in the present invention is preferably 4 to 30 μm in diameter and 100 to 80 μm in fiber length.
Discontinuous fibers of stainless steel in the range 0 mm are used. The discontinuous fibers made of stainless steel are contained in an amount of 20 to 60% by weight based on the total weight of the heating yarn, and the discontinuous fibers made of non-conductive fibers are contained in an amount of 80 to 40% by weight based on the total weight of the heating yarn. It is a blended yarn formed using It is preferable that the number of discontinuous fibers made of stainless steel in the cross section of the blended yarn is 20 or more, and the twist coefficient of the blended yarn is 6,500 to 1.
3,500 is used. A cord yarn is formed by plying a plurality of the blended yarns and giving them a ply twist, the ply twist having a twist in the direction opposite to the twisting direction of the ply twist, and the ply twist coefficient and the ply twist coefficient is in the range of 0.5 to 1.50, and the electrical resistance value of the cord yarn is 0.05 to 10Ω.
/ cm, and the resistance value variation coefficient C% is C
■ A heat-generating cord yarn characterized by satisfying ≦10 is optimally used.

該ステンレススチールからなる不連続繊維と混紡する非
導電性繊維からなる不連続繊維は、具体的には通常の合
成繊維、再生繊維、天然繊維が使用されるが、なかでも
全芳香族ポリアミドを用いればその耐熱性が高いのでス
テンレススチールの不連続繊維が発熱して温度が上がっ
ても劣化したり発火したりすることがないので好ましい
。この外耐熱性の繊維としてはポリベンズイミダゾール
、ポリイミド、ポリエーテルエーテルヶドンなどの耐熱
性高分子からなるものが使用可能である。これらの非導
電性繊維からなる不連続繊維と該ステンレススチールの
不連続繊維とを混紡するに際しては、その混紡率として
該ステンレススチールの不連続繊維が糸全重量の20〜
60重量%含まれるものが使用されるが、ステンレスス
チールの不連続繊維の本数が20本以上であることが好
ましい。
Specifically, ordinary synthetic fibers, recycled fibers, and natural fibers are used as the discontinuous fibers made of non-conductive fibers to be mixed with the discontinuous fibers made of stainless steel, but among them, fully aromatic polyamide is used. Bass is preferred because it has high heat resistance and will not deteriorate or catch fire even if the stainless steel discontinuous fibers generate heat and the temperature rises. As the externally heat-resistant fibers, those made of heat-resistant polymers such as polybenzimidazole, polyimide, and polyetherethergadon can be used. When blending the discontinuous fibers made of these non-conductive fibers with the discontinuous fibers of the stainless steel, the blending ratio is such that the discontinuous fibers of the stainless steel account for 20 to 20% of the total weight of the yarn.
A stainless steel discontinuous fiber containing 60% by weight is used, and it is preferable that the number of stainless steel discontinuous fibers is 20 or more.

かかる混紡糸は第1図に示すような工程により製造する
ことができる。第1図は、本発明に使用する可撓性発熱
糸に使用する混紡糸を製造する工程を説明する図である
。第1図において、連続しているステンレススチール1
1と非導電性の連続繊維15とを重ね合わせるようにし
てローラー12に供給し、ローラー13との間で牽切し
て不連続な繊維とする。このとき連続しているステンレ
ススチール11と非導電性の連続繊維15とはある幅に
広げられて重ね合わされることか好ましい。該ローラー
I2とローラー13との間隔が不連続繊維の平均の繊維
長を決定し、平均繊維長か800 mmのステンレスス
チール繊維では該ローラー間隔を]、、、000 mm
とすることにより得られる。また、該混紡糸の番手は該
ローラー12とローラー13との速度比を調節して決定
することかできる。該不連続繊維は第1図の14に示ず
圧空ノスルにより集束性をイ・jIj、するものか好ま
しい。該圧空ノスルとしては、旋回流を発生させるもの
や、繊維同士を相互に交絡させるものか例示される。
Such a blended yarn can be manufactured by the process shown in FIG. FIG. 1 is a diagram illustrating the process of manufacturing a blended yarn used as a flexible heat generating yarn used in the present invention. In Figure 1, continuous stainless steel 1
1 and non-conductive continuous fibers 15 are fed to the roller 12 in a superimposed manner, and are cut between the rollers 13 and the fibers to form discontinuous fibers. At this time, it is preferable that the continuous stainless steel 11 and the non-conductive continuous fibers 15 are spread to a certain width and overlapped. The spacing between roller I2 and roller 13 determines the average fiber length of the discontinuous fibers, and for stainless steel fibers with an average fiber length of 800 mm, the roller spacing is ], 000 mm.
It can be obtained by Moreover, the count of the blended yarn can be determined by adjusting the speed ratio of the rollers 12 and 13. Preferably, the discontinuous fibers are those not shown in 14 of FIG. 1, but whose convergence is achieved by a compressed air nostle. Examples of the compressed air nostle include one that generates a swirling flow and one that entangles fibers with each other.

本発明の筒状発熱体は、丸打組物により形成されており
、かかる丸打組物は右回りボビンと左回りボビンとに供
給する糸により構成され、第2図に示す形態のものであ
る。第2図は、本発明の筒状発熱体の実施態様を示す斜
視図であって、筒状発熱体は、右回りボビンに供給する
糸2Iと左回りボビンに供給する糸22の一部に可撓性
発熱糸23を用いて編組される。該右回りボビン及び左
まわりボビンに供給される糸の本数は2〜72本の範囲
のものが用いられる。かかる本数範囲で組織された組物
体は、換算した内径が0.1〜7.0amの中空部を有
する筒状、又は袋状をなしている。このような筒状体に
前記の発熱糸を配置させることにより筒状発熱体となる
が、該発熱糸は右回りボビンに供給する糸に対しての使
用割合か、該発熱糸か10〜100%の割合で使用され
る。左回りボビンに供給する糸に対しての使用割合も同
様であるが、右回りボビンに供給する発熱糸と左回りボ
ビンに供給する発熱糸の本数は同じであってもよく、あ
るいは異なっていてもよい。勿論、該発熱糸は右回りボ
ビン及び左回りボビンの両方に供給することができるし
、又は、そのいずれか一方に供給するものであってよい
。かかる筒状発熱体は、ワット密度0.01〜2.Ow
/c♂を有するものとして得られる。
The cylindrical heating element of the present invention is formed of a circular braid, and the circular braid is composed of threads supplied to a clockwise bobbin and a counterclockwise bobbin, and has the form shown in FIG. be. FIG. 2 is a perspective view showing an embodiment of the cylindrical heating element of the present invention. It is braided using flexible heat generating yarn 23. The number of yarns supplied to the right-handed bobbin and the left-handed bobbin ranges from 2 to 72. A braided body organized with such a number range has a cylindrical or bag-like shape having a hollow portion with a converted inner diameter of 0.1 to 7.0 am. A cylindrical heating element is obtained by arranging the above-mentioned heating yarn in such a cylindrical body, but the heating yarn is used at a ratio of 10 to 100 with respect to the yarn supplied to the clockwise bobbin. used at a rate of %. The usage ratio for the yarn supplied to the counterclockwise bobbin is also the same, but the number of heat generating yarns supplied to the clockwise bobbin and the number of heat generating yarns supplied to the counterclockwise bobbin may be the same or different. Good too. Of course, the heating yarn can be supplied to both the right-handed bobbin and the left-handed bobbin, or it may be supplied to either one of them. Such a cylindrical heating element has a watt density of 0.01 to 2. Ow
/c♂.

なお、該右回りボビン及び左回りホビンに供給される非
導電性の糸は、特に制限されないか通常使用される合成
繊維、再生繊維、天然繊維か使用される。なかでも全芳
香族ポリアミドを用いれはその耐熱性が高いので該可撓
性発熱糸により温度が上がっても劣化したり発火したり
することがないので好ましい。この外耐熱性の繊維とし
てはポリベンスイミダゾール、ポリイミド、ポリエーテ
ルエーテルケドンなどの耐熱性高分子からなるものが使
用可能である。
The non-conductive yarn supplied to the right-handed bobbin and the left-handed hobbin is not particularly limited, and may be commonly used synthetic fibers, recycled fibers, or natural fibers. Among these, it is preferable to use wholly aromatic polyamide because it has high heat resistance and will not deteriorate or catch fire even if the temperature rises due to the flexible heating yarn. As the externally heat-resistant fibers, those made of heat-resistant polymers such as polybenzimidazole, polyimide, polyether ether kedone, etc. can be used.

かくして得られる筒状発熱体を使用して被加熱体を覆い
、該筒状発熱体と抵抗器とを連結して一定電流を通電し
該筒状発熱体に前記ワット密度の範囲内で設定ワット密
度の発熱をさせるものである。
The thus obtained cylindrical heating element is used to cover the object to be heated, the cylindrical heating element is connected to a resistor, and a constant current is applied to the cylindrical heating element to set the wattage within the range of the watt density. It is something that causes density heat generation.

該抵抗器には、電流制御器型(電流制限器)のもの、電
圧制御型(電圧調整器)のもの、ICを利用した抵抗器
等か例示されるが、中でも定電流発生装置を使用するも
のが温度制御の点で便利である。第3図に、本発明の方
法を実施する例を示す斜視図である。第3図において、
保温を必要とするパイプ31は筒状発熱体32で覆い該
筒状発熱体32から引出されたリード線に電源34、及
び定電流発生装置35を連結する。該被加熱体は種々の
長さのものかあるが、該筒状発熱体を適当な長さにカッ
1− して使用することかてきる。また、被加熱体のパ
イプが長い場合には直列状に複数の発熱体を配列させ、
それぞれに一定の電流を流して設定の温度を得ることが
できる。
Examples of the resistor include a current controller type (current limiter), a voltage control type (voltage regulator), a resistor using an IC, etc. Among them, a constant current generator is used. Things are convenient in terms of temperature control. FIG. 3 is a perspective view showing an example of implementing the method of the present invention. In Figure 3,
A pipe 31 that requires heat retention is covered with a cylindrical heating element 32, and a power source 34 and a constant current generator 35 are connected to a lead wire drawn out from the cylindrical heating element 32. The heated body has various lengths, and the cylindrical heating element can be cut to an appropriate length. In addition, when the pipe of the heated object is long, multiple heating elements are arranged in series,
A set temperature can be obtained by passing a constant current through each.

[発明の作用] 本発明の筒状発熱体は、以」二のような構成からなるた
めパイプなどを加熱、保温する場合に従来のように抵抗
線を巻き(=1ける必要がない。しかも該筒状発熱体は
、ワラI・密度か0.01〜2.Ow/c♂の範囲で可
能であるから、常温の環境ドにおいて25〜300°C
の範囲で熱を発生させることができる。
[Function of the Invention] The cylindrical heating element of the present invention has the following two configurations, so there is no need to wrap a resistance wire as in the conventional method when heating and keeping pipes warm. The cylindrical heating element can have a straw I/density in the range of 0.01 to 2.Ow/c♂, so it can be heated at 25 to 300°C in an environment at room temperature.
It is possible to generate heat in the range of

また、該筒状発熱体を用いた方法によれば、該筒状発熱
体の長さかパイプ形状によって種々変化するか、抵抗器
と連結することにより該筒状発熱体に流れる電流を設定
電流にすることができるので一定のワット密度を得るこ
とができ、また、定電流発生装置と連結すれば該設定電
流を適宜変化させることかできるので所望の温度で加熱
、保温することが出来る。
In addition, according to the method using the cylindrical heating element, the current flowing through the cylindrical heating element can be adjusted to a set current by varying the length of the cylindrical heating element or the shape of the pipe, or by connecting it with a resistor. This makes it possible to obtain a constant watt density, and when connected to a constant current generator, the set current can be changed as appropriate, allowing heating and keeping at a desired temperature.

本発明によれは、従来の方法と異なりパイプが複雑な形
状をしていても該パイプを取(=I’ +する際に筒状
発熱体で該パイプを被覆しておけはよいので従来のよう
に、抵抗線をパイプに沿って巻き(′NJける作業をす
る必要がなく大幅な作業改善をすることができる。また
、該パイプの径が細くなっても、また、逆に太くなって
も該筒状発熱体を構成する糸本数を変えることにより該
筒状発熱体の径を変えることができるので、熟練作業者
の必要がない。
According to the present invention, unlike the conventional method, even if the pipe has a complicated shape, it is good to cover the pipe with a cylindrical heating element when removing the pipe (=I' +). In this way, there is no need to wrap the resistance wire along the pipe, which greatly improves the work.Also, even if the diameter of the pipe becomes thinner, or conversely if it becomes thicker. Also, the diameter of the cylindrical heating element can be changed by changing the number of threads constituting the cylindrical heating element, so there is no need for skilled workers.

しかもこれらの作業は、パイプの長さに応じて該筒状発
熱体の長さを調節するのみて(該筒状発熱体の長さをカ
ットする)可能であるため大幅な作業改善ができる。
Furthermore, these operations can be performed by simply adjusting the length of the cylindrical heating element (cutting the length of the cylindrical heating element) according to the length of the pipe, resulting in a significant improvement in operations.

[実施例]] 体積固有抵抗が10−5Ω−cmオーダーを有し、直径
12ミクロンの太さを有するステンレススチールの連続
長繊維を1500本束ねたものにポリメタフェニレンイ
ソフタ−ルアミド長繊維(単位デニール2 de)を約
2700本束ねたものを重ね合わせて第1図に示す装置
に供給して、ローラー2とローラー3とからなる牽切域
で該ローラー間の距離を1、、QOOn+mに設定して
、さらに両ローラー間で20倍に引千切り、平均繊維長
か約310…m1ポリメタフェニレンイソフタルアミド
繊維の混率が50%、ステンレススチールの不連続繊維
の本数が約75木の混紡糸(1・−タルデニール+ 5
00 dQ)を得た。該混紡糸に下撚として、Z 50
0 T/Hの撚を付与し、該混紡糸を2本合糸した後、
上撚として5355T/Mの上撚を例与して可撓性発熱
糸を得た。該可撓性発熱糸と別に作成したポリメタフェ
ニレンイソフタ−ルアミドからなる短繊維を用いたアラ
ミド紡績糸(1・−タルデニール: 1.000 dO
)とを右回りボビンに1:5の割合で24本供給し、左
回りボビンには該アラミド紡績糸を24本供給して内径
が約0.8cmの筒状発熱体(電気抵抗値40Ω/ m
 )を得た。
[Example] Polymetaphenylene isophthalamide long fibers ( Approximately 2,700 bundles of denier 2 de) are piled up and fed to the device shown in Fig. 1, and the distance between the rollers is set to 1, QOOn+m in the tension cutting area consisting of rollers 2 and 3. After setting, the yarn was further shredded 20 times between both rollers, and the average fiber length was approximately 310 m1.The blend ratio of polymetaphenylene isophthalamide fiber was 50%, and the number of discontinuous stainless steel fibers was approximately 75 wood. (1・−taldenir+5
00 dQ) was obtained. As a first twist to the blended yarn, Z 50
After applying a twist of 0 T/H and doubling the two blended yarns,
A flexible heating yarn was obtained by using a ply twist of 5355 T/M as the ply twist. Aramid spun yarn (1-tal denier: 1.000 dO) using short fibers made of polymetaphenylene isophthalamide prepared separately from the flexible heat generating yarn
) are supplied to a clockwise bobbin at a ratio of 1:5, and 24 aramid spun yarns are supplied to a counterclockwise bobbin to form a cylindrical heating element with an inner diameter of approximately 0.8 cm (electrical resistance value 40Ω/ m
) was obtained.

[実施例2] 実施例1で得た筒状発熱体を使用して2字形のパイプを
被覆して電流制限器を用いて0.8Aの電流を通電させ
て0.115 v/clllのワット密度の発熱させて
該パイプを加熱した。
[Example 2] The cylindrical heating element obtained in Example 1 was used to cover a two-shaped pipe, and a current of 0.8 A was applied using a current limiter to produce a wattage of 0.115 v/cll. The pipe was heated with an exotherm of density.

[実施例3] 実施例1−で作成した可撓性発熱糸とアラミド紡績糸を
用いて、右回りボビンに]:5の割合で24木供給し、
左回りボビンににも1.5の割合で24本供給して内径
が約0.8cmの筒状発熱体(電気抵抗値20Ω/m)
を得た。
[Example 3] Using the flexible heat-generating yarn and the aramid spun yarn prepared in Example 1-, a clockwise bobbin was supplied with 24 pieces at a ratio of 5:5.
24 cylindrical heating elements with an inner diameter of approximately 0.8 cm (electrical resistance value 20 Ω/m) are supplied to the counterclockwise bobbin at a ratio of 1.5.
I got it.

[実施例4コ 実施例3て得た筒状発熱体を使用して2字形のパイプを
被覆して電圧調整器を用いて]6Aの電流を通電させて
0.22 w/ atのワット密度の発熱させて該パイ
プを加熱した。
[Example 4] Using the cylindrical heating element obtained in Example 3 to cover a two-shaped pipe and using a voltage regulator] 6A of current was applied to give a watt density of 0.22 w/at. The pipe was heated by generating an exotherm.

[実施例5] 実施例]で得た筒状発熱体を使用して第3図に示すよう
な2字形のパイプを被覆して定電流発生装置を連結して
0,8Aの電流を通電させて0115w/clのワット
密度の発熱させ、1時間後に該定電流発生装置を操作し
て0.4Aの電流を通電させて0.029 w/c♂の
ワット密度の発熱させて該パイプを異なる温度で加熱し
た。
[Example 5] The cylindrical heating element obtained in Example] was used to cover a double-shaped pipe as shown in Figure 3, and a constant current generator was connected to the pipe to supply a current of 0.8 A. to generate heat with a watt density of 0.115 w/cl, and after 1 hour operate the constant current generator to apply a current of 0.4 A to generate heat with a watt density of 0.029 w/c♂ to change the pipe to a different type. Heated at temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の可撓性発熱糸に使用する混紡糸を製
造する工程を説明する図、第2図は、本発明の筒状発熱
体の実施態様を示す斜視図、第3図は、本発明の方法を
実施する例を示す斜視図である。 23  ・・・ 可撓性発熱糸 31  ・・・ 被加熱体 32  ・・ 筒状発熱体 35  ・・ 定電流発生装置 第2図 第3図
FIG. 1 is a diagram illustrating the process of manufacturing a blended yarn used in the flexible heating yarn of the present invention, FIG. 2 is a perspective view showing an embodiment of the cylindrical heating element of the present invention, and FIG. 3 1 is a perspective view showing an example of implementing the method of the present invention; FIG. 23... Flexible heating thread 31... Heated body 32... Cylindrical heating element 35... Constant current generator Fig. 2 Fig. 3

Claims (3)

【特許請求の範囲】[Claims] (1)右回りボビンに供給する糸、及び左回りボビンに
供給する糸により構成される丸打組物において、該右回
りボビン及び左回りボビンに供給する糸の一部、又はそ
のいずれか一方のボビンに供給する糸の1部にステンレ
ススチールの不連続繊維を含む可撓性発熱糸を用い、ワ
ット密度が0.01〜2.0w/cm^2の範囲で調節
可能であることを特徴とする筒状発熱体。
(1) In a circular braid composed of a thread supplied to a clockwise bobbin and a thread supplied to a counterclockwise bobbin, a part of the thread supplied to the clockwise bobbin and the counterclockwise bobbin, or either one of them A flexible heating yarn containing discontinuous stainless steel fibers is used as part of the yarn supplied to the bobbin, and the watt density is adjustable in the range of 0.01 to 2.0 w/cm^2. A cylindrical heating element.
(2)右回りボビン及び左回りボビンに供給する糸の1
部、又はそのいずれか一方のボビンに供給する糸の1部
にステンレススチールの不連続繊維を含む可撓性発熱糸
を用いてなる丸打組物であって、ワット密度が0.01
〜2.0w/cm^2の範囲で調節可能な筒状発熱体と
なし、該筒状発熱体により被加熱体を覆い、該筒状発熱
体と抵抗器とを連結して一定電流を通電し該筒状発熱体
に前記ワット密度の範囲内で設定ワット密度の発熱をさ
せて該被加熱体を加熱することを特徴とする筒状発熱体
を用いた加熱方法。
(2) One of the threads supplied to the clockwise bobbin and counterclockwise bobbin
A circular knitted fabric using a flexible heat-generating yarn containing discontinuous stainless steel fibers as part of the yarn supplied to the bobbin, or one of the bobbins, and having a watt density of 0.01.
A cylindrical heating element that can be adjusted in the range of ~2.0w/cm^2 is used, the heated object is covered with the cylindrical heating element, and a constant current is applied by connecting the cylindrical heating element and a resistor. A heating method using a cylindrical heating element, characterized in that the cylindrical heating element generates heat at a set watt density within the range of the watt density to heat the object to be heated.
(3)右回りボビン及び左回りボビンに供給する糸の1
部、又はそのいずれか一方のボビンに供給する糸の1部
にステンレススチールの不連続繊維を含む可撓性発熱糸
を用いてなる丸打組物であって、ワット密度が0.01
〜2.0w/cm^2の範囲で調節可能な筒状発熱体と
なし、該筒状発熱体により被加熱体を覆い、該筒状発熱
体と定電流発生装置とを連結して一定電流を通電し該筒
状発熱体に前記ワット密度の範囲内で設定ワット密度を
変化させて発熱させ該被加熱体を加熱することを特徴と
する筒状発熱体を用いた加熱方法。
(3) One of the threads supplied to the clockwise bobbin and counterclockwise bobbin
A circular knitted fabric using a flexible heat-generating yarn containing discontinuous stainless steel fibers as part of the yarn supplied to the bobbin, or one of the bobbins, and having a watt density of 0.01.
A cylindrical heating element that can be adjusted in the range of ~2.0w/cm^2 is used, the heated object is covered with the cylindrical heating element, and a constant current generator is connected to the cylindrical heating element to generate a constant current. A heating method using a cylindrical heating element, characterized in that the cylindrical heating element is heated by applying electricity to the cylindrical heating element to generate heat by changing a set watt density within the range of the watt density.
JP31794990A 1990-11-26 1990-11-26 Cylindrical heating element and heating method by use thereof Pending JPH04190583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31794990A JPH04190583A (en) 1990-11-26 1990-11-26 Cylindrical heating element and heating method by use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31794990A JPH04190583A (en) 1990-11-26 1990-11-26 Cylindrical heating element and heating method by use thereof

Publications (1)

Publication Number Publication Date
JPH04190583A true JPH04190583A (en) 1992-07-08

Family

ID=18093814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31794990A Pending JPH04190583A (en) 1990-11-26 1990-11-26 Cylindrical heating element and heating method by use thereof

Country Status (1)

Country Link
JP (1) JPH04190583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395723A (en) * 2002-11-27 2004-06-02 Ta Lai Sporting Goods Entpr Co Fabric containing electrically conductive and heating wire
JP2007255819A (en) * 2006-03-24 2007-10-04 Tokyo Gijutsu Kenkyusho:Kk Heater designing/manufacturing/constructing method and heater used in the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395723A (en) * 2002-11-27 2004-06-02 Ta Lai Sporting Goods Entpr Co Fabric containing electrically conductive and heating wire
GB2395723B (en) * 2002-11-27 2005-05-04 Ta Lai Sporting Goods Entpr Co Fabric containing electrically conductive and heating wire
JP2007255819A (en) * 2006-03-24 2007-10-04 Tokyo Gijutsu Kenkyusho:Kk Heater designing/manufacturing/constructing method and heater used in the same

Similar Documents

Publication Publication Date Title
RU2278190C2 (en) Thermal fabric
US3910291A (en) Artificial hair and method for manufacturing the same
CN111050585B (en) Continuous strand for wigs having gradient length characteristics and method of making same
JPH02145828A (en) Loop sewing thread with two ingregient and production thereof
WO2011131011A1 (en) Polar fleece and manufacturing method thereof
JPH04190583A (en) Cylindrical heating element and heating method by use thereof
JP2644369B2 (en) Exothermic cord yarn
US6854167B2 (en) Treatment of filament yarns to provide spun-like characteristics and yarns and fabrics produced thereby
JPH0359134A (en) Core-sheath type composite yarn
US3308615A (en) Stretch novelty yarn and method of making same
JP2022149438A (en) wrapping net
JPS6152251B2 (en)
JP2877817B2 (en) Method for producing bulky franc yarn
JPH02234941A (en) Production of blended filaments
JPS5911690B2 (en) Manufacturing method of stretchable composite yarn
JP2756966B2 (en) 3D curl filament
US2356887A (en) Process for the manufacture of strongly curled, woollike twisted yarns of endless threads
CN213232620U (en) Graphene blended yarn
KR20130064640A (en) Preparation method for a melted partially yarn allowing to control the degree of fusion
JP2008071714A (en) Substrate for planar heating element, and its manufacturing method
JPS5898444A (en) Yarn comprising staple carbon fiber
JPS5858448B2 (en) Manufacturing method of slab-like bulky yarn
JPS6175834A (en) False twisted composite loop yarn and its production
JPH0660969A (en) Heater material
JPH0578157B2 (en)