JPH04190131A - Method for measuring mtf - Google Patents

Method for measuring mtf

Info

Publication number
JPH04190131A
JPH04190131A JP31797290A JP31797290A JPH04190131A JP H04190131 A JPH04190131 A JP H04190131A JP 31797290 A JP31797290 A JP 31797290A JP 31797290 A JP31797290 A JP 31797290A JP H04190131 A JPH04190131 A JP H04190131A
Authority
JP
Japan
Prior art keywords
light
rod
lens array
mtf
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31797290A
Other languages
Japanese (ja)
Inventor
Akira Ishida
晃 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Casio Electronics Manufacturing Co Ltd
Original Assignee
Casio Computer Co Ltd
Casio Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Casio Electronics Manufacturing Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP31797290A priority Critical patent/JPH04190131A/en
Publication of JPH04190131A publication Critical patent/JPH04190131A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To certainly detect the inferiority of a refractive index distribution type rod-shape lens array (SLA) by measuring the quantity of detected light with respect to predetermined width and operating an MTF value on the basis of the max. and min. quantities of light. CONSTITUTION:At first, a moving mechanism is driven to move an SLA 3 to the position where the lights emitted from rod shape lenses 3a-3d are detected by a CCD sensor 6. Next, a light source 5 is allowed to light to emit light to a slitted test chart 4 and the incident light becomes longitudinal slit like light to be allowed to be incident to the SLA 3. Next, the sensor 6 is moved from the initial position P1 to a position P2 and light is emitted to the sensor 6 from the light source 5 and the quantity of light is detected by the sensor 6. The sensor 6 is moved in the same way and the detection processing of light is repeated up to the final position Pn. By this method, the detection processing of the lights emitted from the lenses 3a-3d over predetermined with L is completed. The detection processing of light is executed with respect to all of the lenses 3a-3c... arranged in the SLA 3 and an MTF value is operated using a predetermined formula.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は微小発光素子等の光を例えば感光体に結像する
屈折率分布型棒状レンズアレーに係り、特にこの屈折率
分布型棒状レンズアレーのMTF測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a gradient index rod-shaped lens array that images light emitted from minute light-emitting elements onto, for example, a photoreceptor. This invention relates to an MTF measurement method.

〔従来の技術〕[Conventional technology]

LED素子等の微小発光素子からの発光や、液晶シャッ
タを介した光源からの光を感光体に結像する為のレンズ
として、屈折率分布型棒状レンズアレー(以下5LA(
セルフォックレンズアレー・日本板ガラス■製)で示す
)があり、LEDプリンタ、LCSプリンタ等のアレー
状ベンドを用いたプリンタに広(使用されている。
A gradient index rod lens array (hereinafter referred to as 5LA) is used as a lens to image light emitted from minute light emitting elements such as LED elements or light from a light source via a liquid crystal shutter onto a photoreceptor.
SELFOC lens array (made by Nippon Sheet Glass)) is widely used in printers using array-shaped bends such as LED printers and LCS printers.

このSLAは複数の棒状レンズをアレー状に配設して構
成され、各棒状レンズは微小発光素子等の1個、又は複
数個の光を感光体に結像できる程度の微小なレンズであ
る。この為、このSLAを構成する各棒状レンズの配設
不良や、各棒状レンズの部分欠損等により結像面にフレ
アが発生し、充分な解像力の結像を感光体に形成するこ
とができないことがある。
This SLA is constructed by arranging a plurality of rod-shaped lenses in an array, and each rod-shaped lens is a minute lens such as a minute light emitting element or the like that can image one or more light beams on a photoreceptor. For this reason, flare occurs on the imaging surface due to improper placement of each rod-shaped lens that makes up this SLA, partial loss of each rod-shaped lens, etc., and it is not possible to form an image with sufficient resolution on the photoreceptor. There is.

そこで、従来上記SLAの解像力を測定しSLAの不良
を発見する方法として、第5図(a)に示すように光を
スリット状テストチャート8へ照射し、スリット状の光
に変換された光を5LA9へ照射することにより、5L
A9からの出射光をCCD等のライン状センサ10で検
知し5LA9の解像力の測定を行っている。第5図(b
)に示す斜線部11a、llb、llc、・・・はライ
ン状センサ10に照射されるスリット状の光を第5図(
a)の矢印C方向から見た時の光像を示す。従って、矢
印イが主走査方向、矢印口が副走査方向である。尚、ラ
イン状センサ10の光量検出位置10′は斜線部(光像
)lla、llb、llc、・・・のほぼ真ん中に設定
されている。したがって、斜線部(光像)lla、ll
b、llc、・・・をライン状センサ10で検出した時
の受光光量特性は同図(C)となる。
Therefore, as a conventional method for measuring the resolving power of the SLA and discovering defects in the SLA, light is irradiated onto the slit-shaped test chart 8 as shown in FIG. By irradiating 5LA9, 5L
The light emitted from A9 is detected by a line sensor 10 such as a CCD, and the resolving power of 5LA9 is measured. Figure 5 (b
The hatched areas 11a, llb, llc, . . . shown in FIG.
A light image when viewed from the direction of arrow C in a) is shown. Therefore, arrow A is the main scanning direction, and arrow opening is the sub-scanning direction. The light amount detection position 10' of the linear sensor 10 is set approximately at the center of the shaded areas (light images) lla, llb, llc, . . . . Therefore, the shaded area (light image) lla, ll
The received light amount characteristics when the linear sensor 10 detects the signals b, llc, . . . are shown in FIG.

そして、従来ライン状センサIOが測定したこの受光光
量の最大値1 mmKと最小値1st、から計算式 %式%) を使用し、5LA9の解像力を測定し、5LA9の良否
の判断を行っている。尚、このようにして5LA9の解
像力の測定を行う方法はMTF(m。
Then, from the maximum value 1 mmK and the minimum value 1st of the amount of received light measured by the conventional line sensor IO, the resolving power of the 5LA9 is measured using the calculation formula %, and the quality of the 5LA9 is determined. . The method for measuring the resolution of 5LA9 in this way is MTF (m.

dulation transfer fanctio
n)測定方法として広く採用されている。
duration transfer function
n) Widely adopted as a measurement method.

〔従来技術の問題点] しかしながら、従来のMTF測定方法では5LA9から
出射される光をライン状センサ10で検出する為、出射
される光の一ライン分について測定、検査しているのみ
である。したがって、例えば上述の第5図b)に示すよ
うに5LAQ内の一部の棒状レンズに不良があり、しか
も出射光のフレアllb’、IIC’の発生がライン状
センサ10で検査されない場合不良の検出はできない。
[Problems with the Prior Art] However, in the conventional MTF measuring method, the light emitted from the 5LA 9 is detected by the line sensor 10, and therefore only one line of the emitted light is measured and inspected. Therefore, if some of the rod lenses in 5LAQ are defective as shown in FIG. Cannot be detected.

すなわち、ライン状センサ10の光量検出位置10′が
フレアllb’、IIC’の発生した位置に設定されて
いない場合、上述の同図(C)の受光光量特性となり、
不良を検出できない。
That is, if the light amount detection position 10' of the linear sensor 10 is not set at the position where flares llb' and IIC' occur, the received light amount characteristic will be as shown in FIG.
Unable to detect defects.

したがって、このような不良SLAを用いたプリンタに
より印字処理を行うと、第6図(a)、(b)に示す印
字不良が発生する。すなわち、同図(a)はスレッショ
ルドレベルSより低い光量の部分が検出されなかったS
LAを用いて印字した場合の画像を示し、反転現像の場
合黒帯画像Bが生じることを示す。また、同図ら)はス
レッショルドレベルSより高い光量の部分が検出されな
かったSLAを用いて印字した場合に白帯画像Wが生じ
ることを示す。尚、上述の黒帯画像B、又は白帯画像W
は正現像の場合は逆になる。また、スレッショルドレベ
ルSも具体的には現像器へのバイアス電圧、光源の光量
等により一定ではない。
Therefore, when printing is performed using a printer using such a defective SLA, printing defects shown in FIGS. 6(a) and 6(b) occur. In other words, in (a) of the same figure, a portion with a light intensity lower than the threshold level S is not detected.
An image printed using LA is shown, and it is shown that a black band image B is generated in the case of reversal development. Furthermore, FIGS. 3A and 3B show that a white band image W is generated when printing is performed using SLA in which a portion with a light amount higher than the threshold level S is not detected. In addition, the above-mentioned black belt image B or white belt image W
is reversed in the case of normal development. Furthermore, the threshold level S is not constant depending on the bias voltage to the developing device, the amount of light from the light source, etc.

[発明の目的〕 本発明は上記従来の問題点に鑑み、SLAの出射光を予
め設定される所定幅に渡って測定し、MTF値を算出す
ることにより確実に5LAO不良検出を行うことを可能
としたMTF測定方法を提供することを目的とする。
[Object of the Invention] In view of the above conventional problems, the present invention makes it possible to reliably detect 5LAO defects by measuring the emitted light of the SLA over a predetermined width and calculating the MTF value. The purpose of this invention is to provide a method for measuring MTF.

〔発明の要点〕[Key points of the invention]

本発明は上記目的を達成する為に、光源、スリット状テ
ストチャート、屈折率分布型棒状レンズアレー、光量検
知素子の順に配設し、前記光源の出射光を前記スリット
状テストチャート、屈折率分布型棒状レンズアレーを介
して前記光量検知素子へ照射し、前記屈折率分布型棒状
レンズアレーのMTFを測定するMTF測定方法におい
て、前記光量検知素子は、前記屈折率分布型棒状レンズ
アレーを介して出射される光の光軸と直行し且つ前記屈
折率分布型棒状レンズアレー内の棒状レンズの配設方向
と直行する方向の所定幅に対して受光光量を測定し、前
記所定幅内の最大光量及び最小光量に基づきMTF値を
演算することを特徴とする。
In order to achieve the above object, the present invention arranges a light source, a slit-shaped test chart, a refractive index distribution rod-shaped lens array, and a light amount detection element in this order, and directs the emitted light from the light source to the slit-shaped test chart, refractive index distribution In the MTF measurement method, the MTF of the gradient index bar lens array is measured by irradiating light onto the light quantity detection element through the gradient index bar lens array. The amount of received light is measured for a predetermined width in a direction perpendicular to the optical axis of the emitted light and perpendicular to the arrangement direction of the rod lenses in the gradient index rod lens array, and the maximum amount of light within the predetermined width is determined. The method is characterized in that the MTF value is calculated based on the minimum amount of light.

〔実 施 例] 以下、本発明の一実施例について図面を参照しながら詳
述する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第2図は一実施例のMTF測定方法を適用してSLAの
光量測定を行う装置の斜視図である。同図において、5
LA3は例えばLCSプリンタ等に使用され、液晶シャ
ンクからの出射光を感光体に結像する時使用される。こ
の5LA3は2段乙こ配列された複数の棒状レンズ3a
、3b、3C1・・・を有し、各棒状レンズ3a、3b
、3C1・・・は液晶シャンタ内の不図示のマイクロシ
ャ271個、又は複数個を介して出射される光を感光体
に結像できる。また、同図の5LA3は不図示の移動機
構により矢印A方向に移動可能に構成されている。
FIG. 2 is a perspective view of an apparatus that measures the light amount of SLA by applying the MTF measurement method of one embodiment. In the same figure, 5
LA3 is used, for example, in an LCS printer, and is used to form an image of light emitted from a liquid crystal shank onto a photoreceptor. This 5LA3 has a plurality of rod-shaped lenses 3a arranged in two stages.
, 3b, 3C1..., each rod-shaped lens 3a, 3b
, 3C1 . . . can image light emitted through one or more microshades (not shown) in the liquid crystal shunter onto a photoreceptor. Further, 5LA3 in the figure is configured to be movable in the direction of arrow A by a moving mechanism (not shown).

スリット状テストチャート4はハロゲンランプ等で構成
される光源5の出射光をスリット状の光として5LA3
へ出射する為のものであり、スリット状テストチャート
4には縦方向に所定間隔のスリット4′が形成されてい
る。このスリット4′の配設間隔は、1mn当たり4本
〜8本程度のものが使用され、例えば1−当たり5本(
5ペアライン)のスリット状テストチャートを使用した
場合、5LA3には幅0.1m+のスリット状の光が照
射されることになる。但し、スリット状テストチャート
4のスリット4′と遮光格子4″の幅比が1対1の場合
である。
The slit-shaped test chart 4 uses 5LA3 as slit-shaped light emitted from a light source 5 composed of a halogen lamp or the like.
The slit-shaped test chart 4 has slits 4' formed at predetermined intervals in the vertical direction. The spacing of the slits 4' is approximately 4 to 8 per 1 mm, for example, 5 per 1 mm (
When using a slit-shaped test chart (5 pair lines), 5LA3 will be irradiated with a slit-shaped light having a width of 0.1 m+. However, this is the case where the width ratio of the slits 4' of the slit-shaped test chart 4 to the light-shielding grating 4'' is 1:1.

尚、光源5とスリット状テストチャート4との間には図
示しないが、例えばフィルターや拡散板等が配設され不
用な波長の光の排除等の処理が行われている。
Although not shown, a filter, a diffuser plate, etc., for example, are provided between the light source 5 and the slit-shaped test chart 4 to eliminate unnecessary wavelengths of light.

一方、CCDセンサ6はライン型の光量検知素子であり
、不図示の移動機構により矢印B方向へ移動可能に構成
されている。また、このCCDセンサ6に配設されるC
CD素子は上述のスリット状テストチャート4のスリッ
トの配設間隔(例えば0.2 mm )に比べて極めて
微細な配設間隔であり、例えば10μm程度の配設ピッ
チである。
On the other hand, the CCD sensor 6 is a line-type light amount detection element, and is configured to be movable in the direction of arrow B by a moving mechanism (not shown). Furthermore, the CCD sensor 6 is provided with a
The CD elements are arranged at a much finer pitch than the slit pitch (for example, 0.2 mm) of the slit-shaped test chart 4 described above, for example, about 10 μm.

以上の構成の装置を使用して5LA3を介して出射され
る光のMTF測定方法を説明する。
A method for measuring the MTF of light emitted through the 5LA3 using the apparatus having the above configuration will be described.

先ず、不図示の移動機構を駆動して5LA3を矢印A方
向に移動し、5LAa内に配設される棒状レンズの中の
端部に位置する棒状レンズ3a〜3dから出射される光
がCCDセンサ6によって受光できる位置に移動する。
First, the moving mechanism (not shown) is driven to move 5LA3 in the direction of arrow A, and the light emitted from the rod lenses 3a to 3d located at the ends of the rod lenses disposed within 5LAa is transmitted to the CCD sensor. 6 to move to a position where it can receive light.

次に、CCDセンサ6の位置を不図示の移動機構により
矢印B方向に移動し初期位置に設定する。例えばこの初
期位置は第1図(a)に示すP、であり、CCDセンサ
6に5LA3を介して照射される光の1ライン目の位置
に対応する。尚、同図に示すLは本実施例のMTF測定
方法によって光量が測定される所定幅を示し、同図(a
)に対して比較して示す同図(b)の幅L′と同しであ
る。ここで、同図(b)に示す幅L′は本実施例のMT
F測定方法により測定、検査が行われる5LA3が使用
されるLCSプリンタの液晶シャッタの最大幅である。
Next, the position of the CCD sensor 6 is moved in the direction of arrow B by a moving mechanism (not shown) and set to the initial position. For example, this initial position is P shown in FIG. 1(a), and corresponds to the position of the first line of light irradiated onto the CCD sensor 6 via 5LA3. Note that L shown in the same figure indicates a predetermined width in which the amount of light is measured by the MTF measuring method of this embodiment, and L shown in the same figure (a
) is the same as the width L' in FIG. Here, the width L' shown in FIG.
5LA3, which is measured and inspected using the F measurement method, is the maximum width of the liquid crystal shutter of the LCS printer used.

すなわち、同図(1))に示す点線方向(主走査方向)
に2列に配設されるマイクロシャンタフa、7bの副走
査方向の最大配設幅がL′である。ちなみに、この液晶
シャッタの開閉駆動は同図に示す主走査方向1ライン毎
に実行される。
In other words, in the dotted line direction (main scanning direction) shown in (1) in the same figure.
The maximum arrangement width in the sub-scanning direction of the micro shunters a and 7b arranged in two rows is L'. Incidentally, this opening/closing drive of the liquid crystal shutter is performed every line in the main scanning direction shown in the figure.

次に、光源5を点灯し光源5の出射光をスリ・ント状テ
ストチャート4へ出射する。スリット状テストチャート
4には前述のように所定間隔のスリト4′が形成されて
いる為、スリット状テストチャート4に入射した光は縦
方向のスリット状の光となり5LA3へ入射される。
Next, the light source 5 is turned on and the light emitted from the light source 5 is emitted onto the slit-like test chart 4. Since the slits 4' are formed at predetermined intervals in the slit test chart 4 as described above, the light incident on the slit test chart 4 becomes vertical slit light and enters 5LA3.

ここで、棒状レンズに不良があり、5LA3を介した出
射光が第1図(a)に示す斜線I〜■の状態であった時
(尚、棒状レンズの不良部分に対応す部分はn’、m’
である)、CCDセンサ6で受光した光量は第3図(a
)に示すデータとなる。但し、第1図(a)に示す斜線
I〜■は第2図に示す矢印C′方向から5LA3の出射
光を観察した時の光像であり、矢印イ及び口は第5図と
同様の方向である。
Here, when there is a defect in the rod-shaped lens and the emitted light through 5LA3 is in the state indicated by diagonal lines I to ■ shown in FIG. , m'
), and the amount of light received by the CCD sensor 6 is shown in Figure 3 (a
) is the data shown. However, diagonal lines I to ■ shown in FIG. 1(a) are optical images when the output light of 5LA3 is observed from the direction of arrow C' shown in FIG. 2, and arrow A and the opening are the same as in FIG. It is the direction.

次に、CCDセンサ6の位置を上述の初期位置P1 (
1ライン目)の位置から第1図(a)に示すPl(2ラ
イン目)の位置へ移動する。例えば、このPlの位置か
らPlの位置までの間隔は10μmである。その後、l
ライン目と同様光源5の出射光をスリット状テストチャ
ート4.5LA3を介してCCDセンサ6へ出射し、C
CDセンサ6で入射する光量を検出する。この時の測定
データが第3図ら)である。
Next, the position of the CCD sensor 6 is changed to the above-mentioned initial position P1 (
It moves from the position of the first line) to the position of Pl (the second line) shown in FIG. 1(a). For example, the distance from the Pl position to the Pl position is 10 μm. Then l
Similar to the line, the light emitted from the light source 5 is emitted to the CCD sensor 6 via the slit-shaped test chart 4.5LA3, and
The CD sensor 6 detects the amount of incident light. The measurement data at this time is shown in Fig. 3, etc.).

以下同様にしてCCDセンサ6を矢印B方向に10am
毎に移動し、最後のnライン目の位置Pnまで同様に受
光検出処理を繰り返す(尚、第3図(C)に示す検出デ
ータはnライン目のものである)。
Similarly, move the CCD sensor 6 in the direction of arrow B by 10 am.
The light reception detection process is repeated in the same manner up to the last position Pn of the n-th line (the detection data shown in FIG. 3(C) is for the n-th line).

このようにして、棒状レンズ3a〜3dの出射光の所定
幅りについて受光検出処理を終了すると、次に5LA3
を矢印A方向に移動して棒状レンズ3e〜3hを介した
光がCCDセンサ6により受光される位置に移動する。
In this way, when the light reception detection processing for the predetermined width of the emitted light from the rod lenses 3a to 3d is completed, next 5LA3
is moved in the direction of arrow A to a position where the light passing through the rod lenses 3e to 3h is received by the CCD sensor 6.

またこの時、同時にCCDセンサ6の矢印B方向の位置
も前述の初期位置P+ に戻す。
At this time, the position of the CCD sensor 6 in the direction of arrow B is also returned to the above-mentioned initial position P+.

その後、上述と同様にして1ライン目〜nライン目まで
5LA3を介して出射される光の検出処理を行い、各ラ
イン毎のCCDセンサ6の検出する光量を測定する。以
後同様にして、5LAa内に配設された全ての棒状レン
ズ3a、3b、3c、・・・に対して上述の光量検出処
理を行い、全ての光量検出が終了すると、前述の式(1
)を用いて測定されたMTF値の演算が行われ、以後第
4図に示すフローチャートに従って処理される。すなわ
ち、上述の如<MTF値の演算処理は前述の式(1)に
基づいて行われ、例えば測定されたあるラインでの光量
の最大値111mKが100で最小(I!i、1.が1
7である場合MTF値は70%と演算され、また最大値
j eamxが80であり最小値1 mi+++が34
であればMTF値は約40(%)と演算される(ステッ
プ1)。
Thereafter, the detection processing of the light emitted through the 5LA3 from the 1st line to the nth line is performed in the same manner as described above, and the amount of light detected by the CCD sensor 6 for each line is measured. Thereafter, in the same manner, the above-mentioned light amount detection process is performed on all the rod lenses 3a, 3b, 3c, .
) is used to calculate the measured MTF value, and thereafter processing is performed according to the flowchart shown in FIG. That is, as described above, the calculation process of the MTF value is performed based on the above-mentioned formula (1).
7, the MTF value is calculated as 70%, and the maximum value j eamx is 80 and the minimum value 1 mi+++ is 34.
If so, the MTF value is calculated to be approximately 40 (%) (step 1).

その後、上述のようにして演算されたMTF値は予め設
定された一定値X%と比較される(ステップ2)。そし
て、MTF値の最小値が上述の一定値X%以上であれば
測定された5LA3は良品と判断され、X%以下であれ
ば不良品と判断される。例えば上述の一定値X%が45
%と予め設定されていれば、MTF値40%が含まれて
いる上述の例の5LA3は不良品と判断される。
Thereafter, the MTF value calculated as described above is compared with a preset constant value X% (step 2). If the minimum value of the MTF value is equal to or greater than the above-mentioned constant value X%, the measured 5LA3 is determined to be a good product, and if it is equal to or less than X%, it is determined to be a defective product. For example, the constant value X% mentioned above is 45
%, 5LA3 in the above example containing the MTF value of 40% is determined to be a defective product.

以上のように、本実施例によれば5LA3が使用される
液晶シャッタの最大幅L′と同じ所定幅り全てについて
棒状レンズの出射光を測定、検査でき5LA3の実用範
囲について確実なMTF値の測定を行うことができる。
As described above, according to this embodiment, it is possible to measure and inspect the light emitted from the rod-shaped lens over the entire predetermined width, which is the same as the maximum width L' of the liquid crystal shutter in which 5LA3 is used, and to determine the reliable MTF value for the practical range of 5LA3. Measurements can be taken.

尚、本実施例のMTF測定方法ではCCDセンサ6とし
てライン型のCCDセンサを使用したが、′上述の所定
領域りを全てカバーするような所謂2次元型のCCDセ
ンサを使用しても良い。そして、この2次元型のCCD
センサを使用すれば上述の実施例のようにCCDセンサ
を移動する必要もなくなる。
Although a line type CCD sensor is used as the CCD sensor 6 in the MTF measurement method of this embodiment, a so-called two-dimensional type CCD sensor that covers the entire predetermined area described above may also be used. And this two-dimensional CCD
If the sensor is used, there is no need to move the CCD sensor as in the above embodiment.

また、本論例では5LA3を矢印A方向に移動する構成
としたが、5LA3を固定として光源5、スリット状テ
ストチャート4、CCDセンサ6を矢印A方向へ移動で
きる構成としても良い。
Further, in this example, the configuration is such that the 5LA3 is moved in the direction of the arrow A, but a configuration may be adopted in which the light source 5, the slit-shaped test chart 4, and the CCD sensor 6 are movable in the direction of the arrow A while the 5LA3 is fixed.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、SLA等の
屈折率分布型棒状レンズアレーの出射光を予め設定され
る所定幅に渡ってMTF値を測定できるで、確実に屈折
率分布型棒状レンズアレーの不良検出を行うことができ
る。
As described above in detail, according to the present invention, the MTF value can be measured over a predetermined width of the emitted light of a gradient index rod lens array such as SLA, and it is possible to reliably measure the MTF value of the light emitted from a gradient index rod lens array such as SLA. It is possible to detect defects in lens arrays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は一実施例のMTF測定方法を説明する図
、 第1図(b)は一実施例のMTF測定の所定幅りと液晶
シャッタの最大幅L′との関係を説明する図、第2図は
一実施例のMTF測定方法の測定装置の斜視図、 第3図(a)〜(C)は一実施例のMTF測定方法によ
り測定される光量特性図、 第4図は一実施例のMTF測定方法の一部を説明するフ
ローチャート、 第5図(a)〜(C)は従来のMTF測定方法を説明す
る図、 第6図(a)、(b)は従来のMTF測定方法により検
査したSLAを使用して印字を行った場合の印字不良の
説明図である。 3・・・SLA、 4・・・スリ・ント状テストチャート、5・・・光源、 6・・・CCDセンサ。 特許出願人   カシオ電子工業株式会社同   上 
  カシオ計算機株式会社第2図 第4図 第5図 (a) (b) 図
FIG. 1(a) is a diagram explaining the MTF measurement method of one embodiment, and FIG. 1(b) is a diagram explaining the relationship between the predetermined width of MTF measurement of one embodiment and the maximum width L' of the liquid crystal shutter. Figure 2 is a perspective view of a measuring device for an MTF measuring method according to an embodiment, Figures 3 (a) to (C) are light intensity characteristic diagrams measured by an MTF measuring method according to an embodiment, and Figure 4 is a perspective view of a measuring device for an MTF measuring method according to an embodiment. A flowchart explaining a part of the MTF measurement method of one embodiment, FIGS. 5(a) to (C) are diagrams explaining the conventional MTF measurement method, and FIGS. 6(a) and (b) show the conventional MTF measurement method. FIG. 4 is an explanatory diagram of printing defects when printing is performed using SLA tested by a measurement method. 3...SLA, 4...Sliding test chart, 5...Light source, 6...CCD sensor. Patent applicant Casio Electronics Industries Co., Ltd. Same as above
Casio Computer Co., Ltd. Figure 2 Figure 4 Figure 5 (a) (b)

Claims (3)

【特許請求の範囲】[Claims] (1)光源、スリット状テストチャート、屈折率分布型
棒状レンズアレー、光量検知素子の順に配設し、前記光
源の出射光を前記スリット状テストチャート、屈折率分
布型棒状レンズアレーを介して前記光量検知素子へ照射
し、前記屈折率分布型棒状レンズアレーのMTFを測定
するMTF測定方法において、 前記光量検知素子は、前記屈折率分布型棒状レンズアレ
ーを介して出射される光の光軸と直行し且つ前記屈折率
分布型棒状レンズアレー内の棒状レンズの配設方向と直
行する方向の所定幅に対して受光光量を測定し、前記所
定幅内の最大光量及び最小光量に基づきMTF値を演算
することを特徴とするMTF測定方法。
(1) A light source, a slit-shaped test chart, a gradient-index rod-shaped lens array, and a light amount detection element are arranged in this order, and the light emitted from the light source is passed through the slit-shaped test chart and the gradient-index rod-shaped lens array. In the MTF measurement method of measuring the MTF of the gradient index rod-shaped lens array by irradiating light to a light intensity detection element, the light intensity detection element is aligned with the optical axis of the light emitted through the gradient index rod lens array. The amount of received light is measured for a predetermined width in a direction perpendicular to the arrangement direction of the rod lenses in the gradient index rod lens array, and the MTF value is determined based on the maximum and minimum light amounts within the predetermined width. An MTF measurement method characterized by calculating.
(2)前記光量検知素子はライン型光量検知素子であり
、該ライン型光量検知素子は前記屈折率分布型棒状レン
ズアレーを介して出射される光の光軸と直行し且つ前記
屈折率分布型棒状レンズアレー内の棒状レンズの配設方
向と直行する方向に所定量毎に前記所定幅移動し、前記
所定量の移動毎に光量を測定し、前記所定幅内の最大光
量及び最小光量に基づきMTF値を演算することを特徴
とする請求項1記載のMTF測定方法。
(2) The light amount detection element is a line type light amount detection element, and the line type light amount detection element is perpendicular to the optical axis of the light emitted through the refractive index distribution type rod-shaped lens array and is of the refractive index distribution type. The rod-shaped lenses in the rod-shaped lens array are moved by the predetermined width in a direction perpendicular to the arrangement direction, and the light amount is measured each time the rod-shaped lenses are moved by the predetermined amount, and based on the maximum light amount and minimum light amount within the predetermined width. 2. The MTF measuring method according to claim 1, further comprising calculating an MTF value.
(3)前記所定幅は前記屈折率分布型棒状レンズアレー
が使用される装置内の光書込みヘッドの副走査方向最大
光出射幅と一致することを特徴とする請求項1記載のM
TF測定方法。
(3) The M according to claim 1, wherein the predetermined width corresponds to a maximum light output width in the sub-scanning direction of an optical writing head in an apparatus in which the gradient index rod-shaped lens array is used.
TF measurement method.
JP31797290A 1990-11-26 1990-11-26 Method for measuring mtf Pending JPH04190131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31797290A JPH04190131A (en) 1990-11-26 1990-11-26 Method for measuring mtf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31797290A JPH04190131A (en) 1990-11-26 1990-11-26 Method for measuring mtf

Publications (1)

Publication Number Publication Date
JPH04190131A true JPH04190131A (en) 1992-07-08

Family

ID=18094048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31797290A Pending JPH04190131A (en) 1990-11-26 1990-11-26 Method for measuring mtf

Country Status (1)

Country Link
JP (1) JPH04190131A (en)

Similar Documents

Publication Publication Date Title
US8368002B2 (en) In-line image sensor in combination with linear variable filter based spectrophotometer
US20150253190A1 (en) Spectral characteristic obtaining apparatus, image evaluation apparatus and image forming apparatus
US8879057B2 (en) Spectral characteristic acquiring apparatus, spectral characteristic acquiring method and image evaluating apparatus
JP2005315883A (en) Full-width array spectrophotometer, method for full-width scan color analysis of collar inspection object, and method for perfect transverse-directional scan color analysis of color printing sheet
US8559005B2 (en) Spectral characteristic measuring device and image forming apparatus
CN100398327C (en) Exposure system and production method for exposure system
US6201559B1 (en) Method for measuring the quantity of light emergent from an optical tip array and image forming apparatus provided with an optical tip array
US20090322847A1 (en) Exposure device, LED head, image forming apparatus, and reading apparatus
US20030127597A1 (en) Apparatus for reading images from photographic film
US20030001917A1 (en) Optical alignment method and detector
US7764382B2 (en) Illuminator for specular measurements
JP3769895B2 (en) Image forming apparatus
US6388694B1 (en) Method for calculating the output characteristic of an optical tip array and image forming apparatus
JPH04190131A (en) Method for measuring mtf
US6469727B1 (en) Optical quantity measuring method and optical quantity measuring apparatus using same
JP3363876B2 (en) Inspection method and inspection system for lens array
JP3042523B1 (en) Solid-state scanning optical writing device, light amount correction method thereof, and light amount measuring device
JPH10185684A (en) Solid scanning type optical writing device, and method of measuring light quantity thereof
JPH0427265A (en) Photocolor copying apparatus
US7079233B1 (en) System and method for determining the alignment quality in an illumination system that includes an illumination modulator
JP3598699B2 (en) Method for measuring gradation characteristics of solid-state scanning optical writing device
US6882457B1 (en) System and method for determining the modulation quality of an illumination modulator in an imaging system
JPH03264837A (en) Apparatus for measuring distribution of light intensity of light emitting array
JP2002296709A (en) Light quantity correcting method, light quantity measuring method, image forming device and calibration device
JPH06204565A (en) Inspection of lens array