JPH0418994A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPH0418994A
JPH0418994A JP2124473A JP12447390A JPH0418994A JP H0418994 A JPH0418994 A JP H0418994A JP 2124473 A JP2124473 A JP 2124473A JP 12447390 A JP12447390 A JP 12447390A JP H0418994 A JPH0418994 A JP H0418994A
Authority
JP
Japan
Prior art keywords
membrane
flocculation reaction
reaction tank
filtrate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2124473A
Other languages
Japanese (ja)
Inventor
Masayoshi Oinuma
正芳 老沼
Shigeki Sawada
沢田 繁樹
Yasuhiko Ishii
保彦 石井
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2124473A priority Critical patent/JPH0418994A/en
Publication of JPH0418994A publication Critical patent/JPH0418994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To prevent the decrease in the rate of the water permeated through a membrane by flocculating of excess sludge and returning of a dehydrated filtrate to waste water treating stage and to execute an efficient treatment by introducing the filtrate of a dehydration treating device into a flocculation reaction chamber only when the permeated water of a 1st membrane separator is introduced into the flocculation reaction chamber. CONSTITUTION:The dehydrated filtrate in a filtrate storage tank 9 is returned into the flocculation reaction chamber 4 at the time of the operation of the 1st UF membrane separator 3, i.e., only when the permeated water from the 1st UF membrane separator 3 is introduced into the flocculation reaction chamber 4. The free polymers existing in the dehydrated filtrate, therefore, contribute preferentially to the flocculation reaction in the flocculation reaction chamber 4 and flocculate nearly completely. Consequently, the free polymers are hardly returned to the 2nd membrane separator 6 of the post stage. The degradation in the flux of the 2nd membrane separator 6 occurring in the adsorption of the polymers onto the membrane surfaces is, therefore, prevented and the effective treatment is executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機性廃水の処理方法に係り、特に、有機性廃
水を膜分離装置を備える処理装置で、処理するにあたり
、高い透過水量(フラックス)にて効率的に処理するこ
とができる有機性廃水の処理方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for treating organic wastewater, and in particular, when treating organic wastewater with a treatment device equipped with a membrane separation device, a high amount of permeated water (flux ) relates to a method for treating organic wastewater that can be efficiently treated.

[従来の技術〕 従来、し尿等の有機性廃水の処理方法の一つとして、有
機性廃水を生物反応槽にて生物処理した後、処理液を第
1のUF(限外濾過)原水糟を経て第1のUF膜分離装
置に送給し、膜透過水を凝集反応槽にて凝集処理し、凝
集処理水を更に第2のLIF原水槽を経て第2のOF膜
分離装置に送給して処理する方法が行なわれている。
[Prior art] Conventionally, as one method for treating organic wastewater such as human waste, organic wastewater is subjected to biological treatment in a biological reaction tank, and then the treated liquid is passed through a first UF (ultrafiltration) raw water sieve. The water permeated through the membrane is then coagulated in a coagulation reaction tank, and the coagulated water is further sent to a second OF membrane separator via a second LIF raw water tank. A method of processing is being used.

このようなし尿等の有機性廃水の生物処理工程からは、
大量の余剰汚泥が排出される。従来、余剰汚泥の処理に
は、凝集反応槽にて塩化第二鉄とカチオンポリマーを添
加して凝集した後、脱水機により脱水する方式が採られ
ている。この場合、余剰汚泥の凝集を十分に行なうため
に、凝集反応槽には、通常、過剰量の凝集剤が添加され
ている。また、脱水濾液は生物反応槽に返送されている
From this biological treatment process of organic wastewater such as human waste,
A large amount of surplus sludge is discharged. Conventionally, surplus sludge has been treated by adding ferric chloride and a cationic polymer in a coagulation reaction tank, coagulating the sludge, and then dewatering the sludge using a dehydrator. In this case, in order to sufficiently flocculate excess sludge, an excessive amount of flocculant is usually added to the flocculation reaction tank. In addition, the dehydrated filtrate is returned to the biological reaction tank.

[発明が解決しようとする課U] 前述の如く、凝集反応槽においては、過剰量の凝集剤を
添加しているため、脱水濾液中には、凝集に寄与しない
カチオンポリマーが多く含有されている。カチオンポリ
マーは生物処理に悪影響を及ぼすものであるため、この
ようなカチオンポリマーを多量に含む脱水濾液を生物反
応槽に返送することは好ましいことではない。
[Problem U to be solved by the invention] As mentioned above, in the flocculation reaction tank, an excessive amount of flocculant is added, so the dehydrated filtrate contains a large amount of cationic polymer that does not contribute to flocculation. . Since cationic polymers have an adverse effect on biological treatment, it is not preferable to return a dehydrated filtrate containing a large amount of such cationic polymers to the biological reaction tank.

このため、脱水濾液を第1のUF膜分離装置の後工程の
凝集反応槽や第2のLIF原水槽に返送して、含有され
るカチオンポリマーを凝集処理に寄与させることも考え
られる。しかしながら、この場合には次のような問題が
ある。
For this reason, it is also conceivable to return the dehydrated filtrate to the aggregation reaction tank or the second LIF raw water tank in the post-process of the first UF membrane separation device, so that the cationic polymer contained therein can contribute to the aggregation treatment. However, in this case, there are the following problems.

即ち、凝集反応槽では、′s1のUF膜の透過水に塩化
第二鉄を過剰量添加して酸性凝集を行なっているため、
第2のOF原水槽は勿論のこと、凝集反応槽では既に塩
化第二鉄により凝集は完了しており、なお、ポリマーと
凝集する物質は存在しない。このため、脱水濾液を凝集
反応槽や第2のIF原水槽に返送した場合、濾液に含有
されて導入されたポリマーか未反応、未凝集のまま遊離
の状態で液中に存在するものとなる。この遊離のポリマ
ーは、後工程の第2のLJF膜分離装置においてUF膜
面に吸着し、その透過水量を低減させる。
That is, in the flocculation reaction tank, acidic flocculation is performed by adding an excessive amount of ferric chloride to the permeated water of the UF membrane 's1.
In the coagulation reaction tank as well as in the second OF raw water tank, coagulation has already been completed by ferric chloride, and there is no substance that coagulates with the polymer. Therefore, when the dehydrated filtrate is returned to the flocculation reaction tank or the second IF raw water tank, the polymer contained in the filtrate and introduced will remain in the liquid in a free state, unreacted and unagglomerated. . This free polymer is adsorbed on the UF membrane surface in the second LJF membrane separator in the subsequent step, reducing the amount of permeated water.

また、第1のUFIIIK分離装置は第1のUF原水糟
の水位の変動に応じて間欠運転を行なっている。このた
め、第1のUF膜分離装置の透過水は凝集反応槽に連続
して送給されず、間欠的に送給される。一方、脱水濾液
は連続的に送給されるものとなることから、第1のUF
膜分離装置の停止時、即ち、第1のUF膜分葭装置の透
過水が導入されないときには、当然、凝集反応槽又は第
2のLIF原水槽中には遊離のポリマーの存在量が多く
なり、第2のUF膜分離装置の透過水量を著しく低減さ
せる。
Further, the first UFIIIK separator is operated intermittently in response to fluctuations in the water level of the first UF raw water slag. Therefore, the permeated water of the first UF membrane separation device is not continuously fed to the flocculation reaction tank, but is fed intermittently. On the other hand, since the dehydrated filtrate is continuously fed, the first UF
When the membrane separator is stopped, that is, when the permeated water of the first UF membrane separator is not introduced, the amount of free polymer naturally increases in the flocculation reaction tank or the second LIF raw water tank. The amount of permeated water in the second UF membrane separator is significantly reduced.

本発明は上記従来の問題点を解決し、余剰汚泥の凝集、
脱水濾液を廃水処理工程に返送することによる膜の透過
水量の低下を防止して、効率的な処理を行なうことを可
能とする有機性廃水の処理方法を提供することを目的と
する。
The present invention solves the above-mentioned conventional problems by coagulating excess sludge,
An object of the present invention is to provide a method for treating organic wastewater that enables efficient treatment by preventing a decrease in the amount of permeated water through a membrane due to returning the dehydrated filtrate to a wastewater treatment process.

[課題を解決するための手段] 本発明の有機性廃水の処理方法は、生物反応槽と、該槽
からの液を固液分離する第1の膜分離装置と、′fS1
の膜分離装置の透過水を凝集処理する凝集反応槽と、凝
集処理水を更に膜分離する第2の膜分離装置と、前記第
1及び/又は第2の膜分離装置の濃縮水に凝集剤を添加
して脱水する脱水処理装置と、脱水処理装置の濾液を凝
集反応槽に導入する手段と、を備える処理装置で有機性
廃水を処理する方法であって、該脱水処理装置の濾液を
、第1の膜分離装置の透過水が凝集反応槽に導入される
ときにのみ凝集反応槽に導入することを特徴とする。
[Means for Solving the Problems] The organic wastewater treatment method of the present invention includes a biological reaction tank, a first membrane separation device for solid-liquid separation of a liquid from the tank, and a 'fS1
a coagulation reaction tank that coagulates the permeated water of the membrane separator, a second membrane separator that further membrane-separates the coagulated water, and a flocculant in the concentrated water of the first and/or second membrane separator. A method for treating organic wastewater with a treatment device comprising: a dehydration device that dehydrates the water by adding water; and a means for introducing the filtrate of the dehydration device into a flocculation reaction tank, the method comprising: It is characterized in that the permeated water of the first membrane separator is introduced into the aggregation reaction tank only when it is introduced into the aggregation reaction tank.

以下に図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施方法を示す系統図である。FIG. 1 is a system diagram showing one implementation method of the present invention.

図示の方法において、し尿等の有機性廃水は、まず、配
管11より生物反応槽1に供給され、槽内で生物処理さ
れる。生物処理水は次いでポンプ12を備える配管13
、第1のUF原水槽2、及びポンプ14を備える配管1
5を経て第1のUF膜分離装置3に供給され、膜分離処
理される。第1のOF膜分離装置3の濃縮水は配管16
より抜き出され、一部は配管17より第1のUF原水槽
2に返送され、残部は余剰汚泥として配管18より汚泥
凝集反応槽7に送給される。一方、第1のUP膜分履装
置3の透過水は配管19より凝集反応槽4に送給され、
配管41より塩化第二鉄(FeCIL3)等の凝集剤を
添加されて凝集処理される。凝集処理水は、ポンプ20
を備える配管21、第2のIF原水4!5及びポンプ2
2を備える配管23を経て第2のUF膜分離装置6に供
給され、膜分離処理される。第2のUF膜分離装置6の
濃縮水は配管24より抜き出され、一部は配管25より
第2のUF原水檜5に返送され、残部は余剰汚泥として
配管26より汚泥凝集反応W!7に送給される。一方、
第2のUF膜分離装置6の透過水は配管27より、系外
に排出され、必要に応じて活性炭処理等に供される。
In the illustrated method, organic wastewater such as human waste is first supplied to the biological reaction tank 1 through a pipe 11 and subjected to biological treatment within the tank. The biologically treated water is then transferred to a pipe 13 equipped with a pump 12.
, a first UF raw water tank 2, and a pipe 1 including a pump 14
5 and then supplied to the first UF membrane separation device 3 where it is subjected to membrane separation processing. The concentrated water of the first OF membrane separation device 3 is connected to the pipe 16
A portion is returned to the first UF raw water tank 2 through a pipe 17, and the remainder is sent as surplus sludge to a sludge flocculation reaction tank 7 through a pipe 18. On the other hand, the permeated water from the first UP membrane separation device 3 is sent to the flocculation reaction tank 4 from the piping 19.
A flocculant such as ferric chloride (FeCIL3) is added through the pipe 41 to perform flocculation treatment. The flocculated water is pumped to the pump 20.
piping 21, second IF raw water 4!5 and pump 2
2 is supplied to the second UF membrane separation device 6 and subjected to membrane separation treatment. Concentrated water from the second UF membrane separator 6 is extracted from the pipe 24, a part of which is returned to the second UF raw water cypress 5 through the pipe 25, and the remainder is passed through the pipe 26 as surplus sludge through the sludge flocculation reaction W! 7. on the other hand,
The permeated water from the second UF membrane separation device 6 is discharged from the system through a pipe 27, and is subjected to activated carbon treatment, etc., if necessary.

配管18及び26より汚泥凝集反応槽7に導入された余
剰汚泥は、カチオンポリマー(配管42)やFeC1L
3 (配管43)等の凝集剤が添加され、凝集処理され
る、凝集処理水は配管28より脱水機8に送給される。
Excess sludge introduced into the sludge flocculation reaction tank 7 through the pipes 18 and 26 is mixed with cationic polymer (pipe 42) and FeC1L.
3 (piping 43), etc., and the flocculating treated water is fed to the dehydrator 8 through the piping 28.

脱水機8にて脱水処理された脱水汚泥は配管29より系
外に排出され、焼却処理等に供される。一方、脱水濾液
は配管30より濾液貯槽9に送給される。
The dehydrated sludge that has been dehydrated in the dehydrator 8 is discharged from the system through a pipe 29 and is subjected to incineration or the like. On the other hand, the dehydrated filtrate is fed to the filtrate storage tank 9 through the piping 30.

本発明においては、この濾液貯槽9内の脱水濾液は、第
1のUF膜分離装置3の稼動時、即ち、第1のUF膜分
超装置3から透過水が配管19より凝集反応槽4に導入
されるときのみに、配管31(又は32)より凝集反応
槽4に返送する。
In the present invention, the dehydrated filtrate in the filtrate storage tank 9 is transferred to the coagulation reaction tank 4 from the first UF membrane separation device 3 through the pipe 19 when the first UF membrane separation device 3 is in operation. Only when it is introduced, it is returned to the flocculation reaction tank 4 through the piping 31 (or 32).

なお、この場合、脱水濾液を配管31より第1のUF膜
分離装置3の透過水と共に凝集反応槽4に導入するとき
は、該槽4へのF e C113の添加に特に制限はな
いが、配管32より脱水濾液を第1のUF膜分離装置3
の透過水とは別に凝集反応槽4に導入する場合には、配
管41からの該槽4へのF e C113の添加を、脱
水濾液の導入よりも後に行なうのが、より効果的である
。即ち、配管41からのF e CfL3の添加も間欠
的に行ない、第1のUF膜分離装置3の透過水及び脱水
濾液の導入後、F e C113を添加し、該透過水が
脱水濾液と混合された後、FeC1L3が添加されるよ
うにする。
In this case, when the dehydrated filtrate is introduced from the pipe 31 into the flocculation reaction tank 4 together with the permeated water of the first UF membrane separation device 3, there is no particular restriction on the addition of Fe C113 to the tank 4; The dehydrated filtrate is transferred from the pipe 32 to the first UF membrane separation device 3
When introducing Fe C113 into the flocculation reaction tank 4 separately from the permeated water, it is more effective to add Fe C113 from the pipe 41 to the tank 4 after the introduction of the dehydrated filtrate. That is, addition of F e CfL3 from the pipe 41 is also performed intermittently, and after introducing the permeated water and dehydrated filtrate of the first UF membrane separation device 3, F e C113 is added, and the permeated water is mixed with the dehydrated filtrate. After that, FeC1L3 is added.

このような本発明の方法によれば、遊1m!(未反応)
のポリマーを含有する脱水濾液は、常に、ポリマーと凝
集反応する物質を含有する第1のUF膜分離装置3の透
過水と共に導入されるようになるため、凝集反応槽4内
にて速やかに凝集し、その殆どがフロック内に含有され
たものとなる。このため、後工程の第2のUF膜分離装
置6に導入される液中には、遊III(未反応)のポリ
マーが殆ど存在することはなく、ポリマーの膜への吸着
による第2のUF膜分離装置6のフラックスの低下は防
止される。
According to the method of the present invention, the play is 1m! (unreacted)
The dehydrated filtrate containing the polymer is always introduced together with the permeated water of the first UF membrane separator 3 that contains substances that coagulate with the polymer, so it is quickly coagulated in the coagulation reaction tank 4. However, most of it is contained within the floc. Therefore, there is almost no free III (unreacted) polymer in the liquid introduced into the second UF membrane separation device 6 in the subsequent process, and the second UF is generated by adsorption of the polymer to the membrane. A decrease in the flux of the membrane separator 6 is prevented.

なお、第1図に示す実施方法は、本発明の一実施例であ
って、本発明はその要旨を超えない限り、何ら図示の方
法に限定されるものではない。
Note that the implementation method shown in FIG. 1 is an example of the present invention, and the present invention is not limited to the illustrated method in any way unless it exceeds the gist thereof.

例えば、第1、第2のUF原水槽はなくても良いが、安
定処理のためには、これを設けるのが有利である。また
、膜についてもUF膜に限らず、他の膜であっても良い
For example, although the first and second UF raw water tanks may not be provided, it is advantageous to provide them for stable processing. Further, the membrane is not limited to the UF membrane, but may be other membranes.

[作用] 本発明の有機性廃水の処理方法によれば、余剰汚泥の凝
集、脱水濾液を第1の膜分離装置の透過水が凝集反応槽
に導入されるときにのみ、凝集反応槽に導入するため、
脱水濾液中に存在する遊離(未反応)のポリマーは、凝
集反応槽内で優先的に凝集反応に寄与し、はぼ完全に凝
集する。この結果、後工程の第2の膜分離装置にはtl
llI(未反応)のポリマーは送給されることは殆どな
い。
[Function] According to the organic wastewater treatment method of the present invention, surplus sludge is coagulated and the dewatered filtrate is introduced into the coagulation reaction tank only when the permeated water from the first membrane separation device is introduced into the coagulation reaction tank. In order to
The free (unreacted) polymer present in the dewatered filtrate preferentially contributes to the flocculation reaction in the flocculation reaction tank, and is almost completely flocculated. As a result, the second membrane separator in the post-process has tl
Almost no llI (unreacted) polymer is delivered.

このため、ポリマーの膜面への吸着に起因する第2の膜
分離装置のフラックスの低下は防止される。
Therefore, a decrease in the flux of the second membrane separation device due to adsorption of the polymer onto the membrane surface is prevented.

なお、凝集反応槽において、塩化第二鉄が過剰量添加さ
れても、それ自身水酸化第二鉄となってフロック化する
ため、過剰の塩化第二鉄が第2の膜分離装置のフラック
スを低下させるおそれはない。
In addition, even if an excessive amount of ferric chloride is added in the flocculation reaction tank, it will turn into ferric hydroxide and form flocs, so the excess ferric chloride will absorb the flux of the second membrane separation device. There is no risk of deterioration.

[実施例コ 以下に実施例を挙げて本発明をより具体的に説明する。[Example code] EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1 第1図に示す処理フローにて、し尿100kIlZ日の
処理を行なった。
Example 1 Human waste was treated for 100 kIlZ days according to the treatment flow shown in FIG.

なお、系内の多槽の処理条件等は下記の通りである。The processing conditions for the multiple tanks in the system are as follows.

1工」Jζ1± 余剰汚泥乾物重量:5.5kg−DS/kj2MLSS
 + 23000mg/j2 汚泥発生量+23.9m″/日 第1のUF原水槽2 余剰汚泥乾物重量:2.0kg−DS/kitMLSS
 : 20000mg/u 汚泥発生量+10rn”7日 系全体(゛ 5日稼動) 汚泥発生量:47.46rn’/日 汚泥濃度(MLSS): 22120mg/u汚泥凝集
 応s7 ポリマー添加量+ 15.75kg/日(SSに対して
1.5%) ボリマーリ〜り量・約10% 脱水機8 SS回収率:98% 脱水汚泥含水率;80% 脱水濾液量:46.2m”7日 以上の条件から、し尿100kj2/日を処理した場合
、脱水機8で発生する脱水濾液量と脱水濾液中に含まれ
るポリマー量は、それぞれ46rn’/日、32 m 
g / 12となる。
1 construction”Jζ1± Excess sludge dry weight: 5.5kg-DS/kj2MLSS
+23000mg/j2 Sludge generation amount +23.9m''/day 1st UF raw water tank 2 Excess sludge dry weight: 2.0kg-DS/kitMLSS
: 20000mg/u sludge generation amount + 10rn'' 7 days entire system (5 days operation) Sludge generation amount: 47.46rn'/day Sludge concentration (MLSS): 22120mg/u sludge flocculation response s7 Polymer addition amount + 15.75kg/day (1.5% for SS) Volimary volume: approx. 10% Dehydrator 8 SS recovery rate: 98% Dehydrated sludge water content: 80% Dehydrated filtrate volume: 46.2 m" From conditions of 7 days or more, human waste When processing 100 kj2/day, the amount of dehydrated filtrate generated in the dehydrator 8 and the amount of polymer contained in the dehydrated filtrate are 46 rn'/day and 32 m
g/12.

この脱水濾液を一旦濾液貯檀に送り、本発明に従って、
第1のUPI分離装置3が稼動して透過水が凝集反応槽
4に導入されるときのみ、凝集反応槽4に導入して処理
を行なった。
This dehydrated filtrate is once sent to a filtrate reservoir, and according to the present invention,
Only when the first UPI separator 3 was in operation and the permeated water was introduced into the flocculation reaction tank 4, the permeated water was introduced into the flocculation reaction tank 4 and treated.

その結果、第2のUF膜分離装置(平膜型UF@)6の
フラックスは第1表に示す通りであった。
As a result, the flux of the second UF membrane separation device (flat membrane type UF@) 6 was as shown in Table 1.

一方、脱水濾液を第1のLIF膜分離装置3の運転にか
かわらず、常に凝集反応槽4に導入したこと以外は、同
様にして処理を行なった場合の第2のUF膜分離装置6
のフラックスは第1表に示す通りであった。
On the other hand, the second UF membrane separation device 6 was treated in the same manner except that the dehydrated filtrate was always introduced into the flocculation reaction tank 4 regardless of the operation of the first LIF membrane separation device 3.
The flux was as shown in Table 1.

第1表 第1表の結果より明らかなように、比較例方法では脱水
濾液中の32 m g / Itのポリマーのうち数%
がSSに吸着凝集されず、未反応のまま遊離の状態で存
在しているため、第2のUF膜分離装置6のフラックス
を低下させているが、本発明法によれば、このような遊
離のポリマーが低減され、第2のUF膜分離装置6のフ
ラックスが向上する効果が得られた。
As is clear from the results in Table 1, in the comparative example method, a few percent of the 32 mg/It of polymer in the dehydrated filtrate
is not adsorbed and aggregated by SS and exists in an unreacted, free state, reducing the flux of the second UF membrane separation device 6. However, according to the method of the present invention, such free The effect of reducing the amount of polymer and improving the flux of the second UF membrane separation device 6 was obtained.

[発明の効果] 以上詳述した通り5本発明の有機性廃水の処理方法によ
れば、し尿等の有機性廃水の処理にあたり、余剰汚泥の
凝集、脱水濾液を返送することによる膜のフラックス低
下を防止して、効率的な処理を行なうことが可能とされ
る。
[Effects of the Invention] As detailed above, according to the method for treating organic wastewater of the present invention, when treating organic wastewater such as human waste, coagulation of excess sludge and reduction in membrane flux by returning the dewatered filtrate are achieved. It is possible to prevent this and perform efficient processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機性廃水の処理方法の一実施方法を
示す系統図である。 1・・・生物反応槽、 2・・・第1のOF原水槽、 3・・・第1のUF膜分離装置、 4・・・凝集反応槽、 5・・・N2のUF原水槽、 6・・・ys、2のUF膜分離装置、 7・・・汚泥凝集反応種、 8・・・脱水機、    9・・・濾液貯槽。
FIG. 1 is a system diagram showing one implementation method of the organic wastewater treatment method of the present invention. 1... Biological reaction tank, 2... First OF raw water tank, 3... First UF membrane separation device, 4... Coagulation reaction tank, 5... N2 UF raw water tank, 6 ...ys, 2 UF membrane separation device, 7... Sludge coagulation reaction species, 8... Dehydrator, 9... Filtrate storage tank.

Claims (1)

【特許請求の範囲】[Claims] (1)生物反応槽と、該槽からの液を固液分離する第1
の膜分離装置と、第1の膜分離装置の透過水を凝集処理
する凝集反応槽と、凝集処理水を更に膜分離する第2の
膜分離装置と、前記第1及び/又は第2の膜分離装置の
濃縮水に凝集剤を添加して脱水する脱水処理装置と、脱
水処理装置の濾液を凝集反応槽に導入する手段と、を備
える処理装置で有機性廃水を処理する方法であって、該
脱水処理装置の濾液を、第1の膜分離装置の透過水が凝
集反応槽に導入されるときにのみ凝集反応槽に導入する
ことを特徴とする有機性廃水の処理方法。
(1) A biological reaction tank and a first stage that separates the liquid from the tank into solid and liquid.
a membrane separator, a coagulation reaction tank for coagulating the permeated water of the first membrane separator, a second membrane separator for further membrane-separating the coagulated water, and the first and/or second membrane. A method for treating organic wastewater with a treatment device comprising: a dehydration device that adds a coagulant to the concentrated water of the separation device to dehydrate it; and a means for introducing the filtrate of the dehydration device into a coagulation reaction tank, the method comprising: A method for treating organic wastewater, characterized in that the filtrate from the dehydration treatment device is introduced into the flocculation reaction tank only when the permeated water from the first membrane separation device is introduced into the flocculation reaction tank.
JP2124473A 1990-05-15 1990-05-15 Treatment of organic waste water Pending JPH0418994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2124473A JPH0418994A (en) 1990-05-15 1990-05-15 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2124473A JPH0418994A (en) 1990-05-15 1990-05-15 Treatment of organic waste water

Publications (1)

Publication Number Publication Date
JPH0418994A true JPH0418994A (en) 1992-01-23

Family

ID=14886392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2124473A Pending JPH0418994A (en) 1990-05-15 1990-05-15 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPH0418994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364534A (en) * 1992-10-02 1994-11-15 Lyonnaise Des Eaux - Dumez Process and apparatus for treating waste liquids
JPH07256295A (en) * 1994-03-22 1995-10-09 Ngk Insulators Ltd Treatment of sewage return water
CN108706686A (en) * 2018-05-29 2018-10-26 苏州膜海分离技术有限公司 Batch-type flocculation-hyperfiltration treatment technique of micro-polluted water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364534A (en) * 1992-10-02 1994-11-15 Lyonnaise Des Eaux - Dumez Process and apparatus for treating waste liquids
JPH07256295A (en) * 1994-03-22 1995-10-09 Ngk Insulators Ltd Treatment of sewage return water
CN108706686A (en) * 2018-05-29 2018-10-26 苏州膜海分离技术有限公司 Batch-type flocculation-hyperfiltration treatment technique of micro-polluted water

Similar Documents

Publication Publication Date Title
KR100673841B1 (en) High concentration organic wastewater treatment method use of ceramic coagulant
JP4839645B2 (en) Method and apparatus for treating human waste sewage
JPS6210720B2 (en)
JP3368938B2 (en) Wastewater treatment method and apparatus
JP2010000476A (en) Organic wastewater treatment method and apparatus
JPH0418994A (en) Treatment of organic waste water
JPS6328500A (en) Treatment device for night soil sanitary sewage
JP2936938B2 (en) Treatment method of human waste and septic tank sludge
JP3591077B2 (en) Sludge dewatering method
JP4007639B2 (en) Sewage return water treatment method and equipment
JPS637900A (en) Treatment of sewage of excretion system
JP2008080310A (en) Sludge dewatering method
JPS58139798A (en) Treatment of organic waste liquid
JPH05317899A (en) Treatment of sludge
JPH0649197B2 (en) Organic wastewater treatment method
JPS60206498A (en) Treatment of excretion sewage
JPH05317896A (en) Dehydration treatment of sewage
JP2712457B2 (en) Membrane separation device
JPH03123698A (en) Treatment of excretion sewage
JPH0310396B2 (en)
JPS5851995A (en) Treatment of night soil
JPH0440800Y2 (en)
JP2001286896A (en) Treatment method for night soil and septic tank sludge
JPH0310398B2 (en)
JPS6125699A (en) Dehydrating method of organic sludge