JPH0418983A - Treatment of dimethylformamide - Google Patents

Treatment of dimethylformamide

Info

Publication number
JPH0418983A
JPH0418983A JP2125193A JP12519390A JPH0418983A JP H0418983 A JPH0418983 A JP H0418983A JP 2125193 A JP2125193 A JP 2125193A JP 12519390 A JP12519390 A JP 12519390A JP H0418983 A JPH0418983 A JP H0418983A
Authority
JP
Japan
Prior art keywords
dimethylamine
dimethylformamide
alkali
formate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2125193A
Other languages
Japanese (ja)
Other versions
JPH055556B2 (en
Inventor
Masateru Akasaki
赤崎 正照
Hiroshi Miyazaki
博史 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAIGAI KAGAKU SEIHIN KK
TAKUMA PLANT KK
Original Assignee
NAIGAI KAGAKU SEIHIN KK
TAKUMA PLANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAIGAI KAGAKU SEIHIN KK, TAKUMA PLANT KK filed Critical NAIGAI KAGAKU SEIHIN KK
Priority to JP2125193A priority Critical patent/JPH0418983A/en
Publication of JPH0418983A publication Critical patent/JPH0418983A/en
Publication of JPH055556B2 publication Critical patent/JPH055556B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make DMF in waste water simply and surely harmless or useful at a low cost by mixing the waste water with alkali, forming dimethylamine and alkali formate and blowing air into the water. CONSTITUTION:Waste water contg. DMF is mixed with alkali. In the case where sodium hydroxide is used as the alkali, liberated dimethylamine and sodium formate are formed by hydrolysis. Since this reaction is an equilibrium reaction, the formed dimethylamine is expelled into a vapor phase by blowing air into the water in the same way as ammonia in water is expelled. By this method, DMF in waste water is decomposed into dimethylamine and alkali formate and the dimethylamine is transferred to a vapor phase and made useful by absorption in an acidic substance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、優れた有機溶媒として汎用されているジメチ
ルホルムアミドを使用後に分解して無害化あるいは有用
化する処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a treatment method for decomposing dimethylformamide, which is widely used as an excellent organic solvent, to render it harmless or useful.

(従来技術とその課題) ジメチルホルムアミドは、安定性が高く、且つアクリロ
ニトリル等の高分子物質に対する溶媒として極めて優れ
た性質を有することから、化学繊維紡織、合成皮革製造
等に幅広く使用されている。
(Prior art and its problems) Dimethylformamide is highly stable and has extremely excellent properties as a solvent for polymeric substances such as acrylonitrile, so it is widely used in chemical fiber textiles, synthetic leather manufacturing, etc.

しかしながら、このジメチルホルムアミドの高い安定性
は、利点となる反面で使用後の処理の困難性につながり
、現状においてこの薬剤を含む廃水の完全な処理方法が
確立されていない要因となっている。
However, although this high stability of dimethylformamide is an advantage, it leads to difficulties in post-use treatment, and is the reason why a complete treatment method for wastewater containing this drug has not been established at present.

例えば、有機系廃水に対する有効な処理方法とされる活
性汚泥法ではジメチルホルムアミドの毒性が難点となり
、この毒性を抑えるために希釈水の大量使用と曝気槽の
大容積化を必要とする上、分解に伴って多量に発生する
アンモニアの処理という新たな難題をかかえることにな
る。すなわち、このアンモニアはそのまま放流すると富
栄養化の問題を生起することになるが、硝化・脱窒にて
処理するには膨大な設備を要するため、廃水処理手段と
してはコスト面から到底現実的とは言えない。
For example, the activated sludge method, which is considered an effective treatment method for organic wastewater, suffers from the toxicity of dimethylformamide, which requires the use of a large amount of dilution water and a large volume aeration tank to suppress this toxicity. A new challenge will be faced: how to deal with the large amounts of ammonia that will be generated. In other words, if this ammonia is discharged as it is, it will cause the problem of eutrophication, but treating it with nitrification and denitrification requires a huge amount of equipment, so it is not practical as a wastewater treatment method from a cost standpoint. I can't say that.

また、ジメチルホルムアミドの安定性を逆に利用する処
理方法として、多段蒸留による精製回収法が有望と考え
られる。しかしながら、このような精製回収法によって
採真のとれるジメチルホルムアミドの濃度が30%以上
とされるのに対し、船釣に排出される廃水中の同濃度は
2.5〜7%程度が普通であるため、殆んどの場合は該
方法を適用できないことになる。
Furthermore, as a processing method that takes advantage of the stability of dimethylformamide, a purification and recovery method using multistage distillation is considered to be promising. However, while the concentration of dimethylformamide that can be collected by such purification and recovery methods is 30% or more, the concentration in wastewater discharged from boat fishing is usually around 2.5 to 7%. Therefore, this method cannot be applied in most cases.

したがって、現状では、ジメチルホルムアミドを含有す
る廃水の処理は産業廃棄物処理業者に委託されることが
多く、そのために真人な費用がかかると共に、これら処
理業者においても効果的な処理がなされている可能性は
少なく環境衛生上の問題をはらんでいる。
Therefore, at present, the treatment of wastewater containing dimethylformamide is often outsourced to industrial waste treatment companies, which incurs significant costs, and it is difficult for these treatment companies to carry out effective treatment. It has little sex and is fraught with environmental health problems.

本発明は、上述の事情に照らし、廃水中に含有されるジ
メチルホルムアミドを低コストで簡単かつ確実に無害化
あるいは有用化できる極めて実用的な処理方法を提供す
ることを目的としている。
In light of the above-mentioned circumstances, the present invention aims to provide an extremely practical treatment method that can easily and reliably render harmless or make useful dimethylformamide contained in wastewater at low cost.

(課題を解決するための手段) 本発明者らは、上記目的を達成するために種々の実験研
究を行った結果、極めて安定な物質とされているジメチ
ルホルムアミドが酸、アルカリによってかなり早急に加
水分解されるという知見を得た。そして、この知見に基
づいて更に綿密な研究を重ねたところ、酸による加水分
解では生成物の処理に新たな問題を生じるのに対し、ア
ルカリによる加水分解では生成物の取出しおよび分解が
非常に容易であり、しかも廃水処理としての充分な分解
速度および分解効率が得られ、また処理コストも安く付
くことを見い出し、この発明をなすに至った。
(Means for Solving the Problems) In order to achieve the above object, the present inventors conducted various experimental studies and found that dimethylformamide, which is considered to be an extremely stable substance, can be hydrated fairly quickly with acids and alkalis. We have obtained the knowledge that it is decomposed. Based on this knowledge, more detailed research revealed that while acid hydrolysis poses new problems in the treatment of the product, alkaline hydrolysis makes it much easier to extract and decompose the product. The present inventors have discovered that a sufficient decomposition rate and decomposition efficiency can be obtained for wastewater treatment, and that the treatment cost is low, leading to the completion of this invention.

すなわち、本発明の請求項(1)に係るジメチルホルム
アミドの処理方法はジメチルホルムアミドを含有する廃
水にアルカリを添加混合し、ジメチルアミンと蟻酸アル
カリを生成させると共に、この液中に空気を吹き込んで
上記のジメチルアミンを気相中に移行させることを特徴
とすものである。
That is, the method for treating dimethylformamide according to claim (1) of the present invention involves adding and mixing an alkali to wastewater containing dimethylformamide to generate dimethylamine and alkali formate, and blowing air into this liquid to carry out the above-mentioned treatment. This method is characterized by transferring dimethylamine into the gas phase.

また請求項(2)の発明は上記請求項(1)の方法にお
いて気相中に移行したジメチルアミンを燃焼させて窒素
ガスと炭酸ガスとに分解する方法、請求項(3)の発明
は同様のジメチルアミンを酸性物質に吸収させる方法で
ある。
The invention of claim (2) is a method of burning dimethylamine transferred into the gas phase in the method of claim (1) to decompose it into nitrogen gas and carbon dioxide gas, and the invention of claim (3) is the same. This method involves absorbing dimethylamine into an acidic substance.

更に請求項(4)の発明は、上記請求項(1)〜(3)
に方法において副生した蟻酸アルカリを活性汚泥法によ
って#1添加による中和を伴いつつ分解する方法である
Furthermore, the invention of claim (4) covers the above claims (1) to (3).
In this method, the alkali formate produced as a by-product in the method is decomposed by the activated sludge method while being neutralized by addition of #1.

(発明の細部構成と作用) ジメチルホルムアミドを含をする廃水アルカリを添加混
合した時の反応は、アルカリとして水酸化ナトリウムを
使用した場合、次式(1)で示されるように加水分解に
よって単独遊離したジメチルアミンと蟻酸ナトリウムを
生じるものとなる。
(Detailed structure and operation of the invention) When a wastewater alkali containing dimethylformamide is added and mixed, the reaction is that when sodium hydroxide is used as the alkali, it is isolated by hydrolysis as shown in the following formula (1). This results in the production of dimethylamine and sodium formate.

(CHs)t NCOH+NaOH −(CHi) * N H+ HCOON a −(1
)ここで、ジメチルアミンは、アルカリ性であることと
、沸点が7°C程度と非常に低いことから、処理液中か
ら気化させて分離可能である。しかして、上記反応は平
衡反応であるため、液中空気を吹き込むことにより、ア
ンモニアを水中から追い出すのと同様に生成するジメチ
ルアミンが気相中へ追い出され、上記反応が右辺に進む
ことになる。
(CHs)t NCOH+NaOH −(CHi) * NH+ HCOON a −(1
) Here, since dimethylamine is alkaline and has a very low boiling point of about 7°C, it can be vaporized and separated from the treatment liquid. However, since the above reaction is an equilibrium reaction, by blowing air into the liquid, the dimethylamine produced is expelled into the gas phase in the same way as ammonia is expelled from water, and the above reaction proceeds to the right side. .

従って、このジメチルアミンの気相中への移行速度をジ
メチルホルムアミドの見かけ上の分解速度として捉える
ことができる。なお、この見かけ上の分解速度はほぼ一
次式に近位し、温度(10’C上昇毎に倍増)と空気吹
込量に比例することが確認されている。
Therefore, the rate of transfer of dimethylamine into the gas phase can be taken as the apparent rate of decomposition of dimethylformamide. It has been confirmed that this apparent decomposition rate approximates a linear equation and is proportional to the temperature (doubling every 10'C increase) and the amount of air blown.

しかして、上記の如く分解速度がジメチルアミンの液中
からの払い出し速度にみなセるため、分解装置には揮発
性成分の払い出しに有効な多段分解塔方式が好適である
As mentioned above, since the decomposition rate depends on the rate at which dimethylamine is removed from the liquid, a multi-stage decomposition column system, which is effective in removing volatile components, is suitable for the decomposition apparatus.

因に酸による加水分解では、次式(■);(CHff)
X NCOH+H2So、+)+20→((CH,)、
NH)H−1(So、+HCOOH・・・(II)で示
されるように、そのまま投棄できないジメチルアミンが
アルカリ性であるために塩として副生することになるが
、この塩は液中から単独に分離できない。
Incidentally, in hydrolysis with acid, the following formula (■); (CHff)
X NCOH+H2So, +)+20→((CH,),
NH)H-1(So, +HCOOH...(II) As shown in (II), dimethylamine, which cannot be thrown away as it is, is alkaline and will be produced as a salt by-product, but this salt can be isolated from the liquid alone. Cannot be separated.

しかるに、本発明方法によって気相中へ移動させたジメ
チルアミンは、吸収あるいは燃焼によりる手段で容易か
つ確実に処理できる。
However, dimethylamine transferred into the gas phase by the method of the present invention can be easily and reliably treated by means of absorption or combustion.

上記の吸収手段は、下記の反応式(I[l)で示すよう
に硫酸等の揮発しにくい酸性物質にジメチルアミンを吸
収させて塩とするものである。しかして、生成したジメ
チルアミン塩は、化学薬品原料等の適当な用途に供し得
る。
The above absorption means is to absorb dimethylamine into a salt by absorbing dimethylamine into an acidic substance that is difficult to volatilize, such as sulfuric acid, as shown in the following reaction formula (I[l). Thus, the produced dimethylamine salt can be used for appropriate purposes such as raw materials for chemicals.

2 (CHs)*NH+H2S0a →((CHz)zNH)H−H5Oa・・・(II[)
また上記の燃焼手段としては触媒を利用した低温燃焼法
を採用できる。この場合、ジメチルアミンの燃焼熱が4
16Kcal/molであることから、廃水中のジメチ
ルホルムアミドの濃度が2重量%以上であれば、連続処
理において気相中に移行するジメチルアミンが助燃ガス
の補助なしに充分に自燃する濃度に達することがf1認
されている。この燃焼反応は、次式(■)または(V)
で示される。
2 (CHs)*NH+H2S0a → ((CHz)zNH)H-H5Oa...(II[)
Further, as the above-mentioned combustion means, a low-temperature combustion method using a catalyst can be adopted. In this case, the heat of combustion of dimethylamine is 4
Since the concentration of dimethylformamide in the wastewater is 16 Kcal/mol, if the concentration of dimethylformamide in the wastewater is 2% by weight or more, the dimethylamine that migrates into the gas phase in continuous treatment will reach a concentration that is sufficient to self-combust without the assistance of combustion supporting gas. has been approved as f1. This combustion reaction is expressed by the following formula (■) or (V)
It is indicated by.

4 (CHs)zN H+150z →2N□+14HzO+8COz・・・(IV)4 (
CHり1N H+170よ 一4NO+14H,O+8CO,−(V)ここで、上記
(R/)式の反応で燃焼が終了することが理想的である
が、(V)式のように窒素酸化物が生成する場合は、引
き続いてアンモニア添加による低温触媒脱硝法を採用し
て該窒素酸化物を次式(Vl)のように分解できる。な
お、この脱硝反応に必要な熱量はジメチルアミンの燃焼
熱で充分に眩うことができる。
4 (CHs)zN H+150z →2N□+14HzO+8COz...(IV)4 (
CHri1N H+170yo14NO+14H,O+8CO,-(V) Here, it is ideal that the combustion ends with the reaction of the above equation (R/), but nitrogen oxides are produced as shown in the equation (V). In this case, the nitrogen oxides can be decomposed as shown in the following formula (Vl) by subsequently employing a low-temperature catalytic denitrification method by adding ammonia. Note that the amount of heat required for this denitrification reaction can be sufficiently covered by the combustion heat of dimethylamine.

4NO+4NH!+O□→4Ng+6 HgO・・・(
Vl)一方、前記(1)式の如き加水分解によって副生
した蟻酸アルカリは、活性汚泥法によって容易に分解で
きる。ただし、この分解で発生する炭酸アルカリの濃度
が極めて高く、微生物の活性を失わせるほどのPH上昇
を招くことになるため、蟻酸アルカリの分解量に相当す
る酸、好ましくは塩酸を加えて中和する必要がある。こ
の蟻酸アルカリの分解と炭酸アルカリの中和は次の(■
)〜(IX)式で表される。
4NO+4NH! +O□→4Ng+6 HgO...(
Vl) On the other hand, alkali formate produced as a by-product by hydrolysis as shown in formula (1) above can be easily decomposed by the activated sludge method. However, the concentration of alkali carbonate generated by this decomposition is extremely high, leading to an increase in pH to the extent that microorganisms lose their activity. Therefore, an acid equivalent to the amount of alkali formate decomposed, preferably hydrochloric acid, is added to neutralize it. There is a need to. The decomposition of this alkali formate and the neutralization of the alkali carbonate are as follows (■
) to (IX).

2HCOONa+0゜ 4HfO+2COZ+Na20−(■)N a zo 
+ C01=N a zc Oz−(■)NazCO,
+2HCI!。
2HCOONa+0゜4HfO+2COZ+Na20-(■)N a zo
+ C01=Nazc Oz−(■)NazCO,
+2HCI! .

→2Na Cff1+HzO+C0z−(IX)上述の
ように、本発明方法によれば、廃水中に含有されるジメ
チルホルムアミドはジメチルアミンと蟻酸アルカリに分
散され、前者のジメチルアミンは気相中移行後に酸性物
質への吸収によって有用化されるか、もしくは燃焼によ
って炭酸ガスと水と窒素ガスに分解して完全に無害化さ
れ、また蟻酸アルカリも水と炭酸ガスと食塩等に分解し
て無害化される。
→2Na Cff1+HzO+C0z-(IX) As mentioned above, according to the method of the present invention, dimethylformamide contained in wastewater is dispersed in dimethylamine and alkali formate, and the former dimethylamine is converted into an acidic substance after transferring into the gas phase. It is made useful by absorption, or completely rendered harmless by being decomposed into carbon dioxide gas, water, and nitrogen gas by combustion, and alkali formate is also decomposed into water, carbon dioxide gas, salt, etc., and rendered harmless.

(実施例) 以下、本発明方法を実施例によって説明する。(Example) The method of the present invention will be explained below with reference to Examples.

(A)、ジメチルホルムアミドの加水分解5%濃度のジ
メチルホルムアミド水溶液11を収容した容量1ρのフ
ラスコを恒温水槽中に定置し、このフラスコ中にジメチ
ルホルムアミドに対して1.2倍当量となるNaOH水
溶液を加えた上で、その液中に空気を定速で吹き込む方
法により、ジメチルホルムアミドの分解速度と分解温度
および空気吹込量との関係を調べた。
(A) Hydrolysis of dimethylformamide A flask with a capacity of 1ρ containing a dimethylformamide aqueous solution 11 with a concentration of 5% is placed in a constant temperature water bath, and an NaOH aqueous solution having an equivalent of 1.2 times the dimethylformamide is placed in the flask. The relationship between the decomposition rate of dimethylformamide, the decomposition temperature, and the amount of air blown was investigated using a method in which air was blown into the solution at a constant rate.

その結果を下記第1表に示す。The results are shown in Table 1 below.

ただし、ジメチルホルムアミドの分解量は、上記フラス
コから出た気体を硫酸水溶液中に導いて副生ずるジメチ
ルアミンを硫酸に吸収させ、この硫酸の減少量を基準と
して求めた。なお、副生物としてジメチルアミンと共に
モノチルアミンやアンモニアが生成する可能性はあるが
、これらの他のアミンも発生量がジメチルホルムアミド
と当量であって且つ硫酸に吸収されることから、上記の
硫酸減少量からの分解量推定に問題はない、また、反応
を一定条件にするために、吹込む空気は予めNaOH水
溶液中に通して炭酸ガスを除去するようにした。
However, the amount of dimethylformamide decomposed was determined based on the amount of sulfuric acid reduced by introducing the gas discharged from the flask into an aqueous sulfuric acid solution and absorbing by-product dimethylamine into the sulfuric acid. Although it is possible that monotylamine and ammonia are generated as by-products along with dimethylamine, these other amines are also generated in an equivalent amount to dimethylformamide and are absorbed by sulfuric acid, so the amount of sulfuric acid reduction mentioned above is There is no problem in estimating the amount of decomposition from the above, and in order to keep the reaction under constant conditions, the blown air was passed through an aqueous NaOH solution in advance to remove carbon dioxide gas.

上記の結果から、見かけ上の分解速度はほぼ一次式に近
領し、温度(10°C上昇毎に倍増)および空気吹込み
量にほぼ比例すること、また連続的廃水処理として充分
に採用できる分解速度であることが判る。
From the above results, the apparent decomposition rate approaches a linear equation and is approximately proportional to the temperature (doubles for every 10°C increase) and air injection amount, and can be fully adopted as a continuous wastewater treatment. It can be seen that the rate of decomposition is

(B)、蟻酸アルカリの生物分解 市販の試薬特級の蟻酸ナトリウム500gを107!の
純水に溶かして約5%濃度の蟻酸ナトリウム水溶液を調
製した。この水溶液の実測BOD、CODの数値は次の
通りである。
(B), Biodegradation of alkali formate 500g of commercially available reagent special grade sodium formate is 107! An aqueous solution of sodium formate having a concentration of about 5% was prepared by dissolving it in pure water. The actually measured BOD and COD values of this aqueous solution are as follows.

BOD  8060mg/ffi  (16,1χ対H
COONa)COD  2090erg/l!  (5
,82対HCOONa)しかして、分解には回分式生物
処理方法を採用し、17Eの存効容積を持つ塩ビ製タン
クに活性汚泥を加え、5%蟻酸ナトリウム水溶液の負荷
を徐々に増加させ汚泥の馴養を行ったのち、実処理に供
した。その結果を下表に示す。
BOD 8060mg/ffi (16,1χ vs. H
COONa) COD 2090erg/l! (5
, 82 vs. HCOONa) Therefore, we adopted a batch biological treatment method for decomposition, adding activated sludge to a PVC tank with an effective volume of 17E, and gradually increasing the load of 5% sodium formate aqueous solution to decompose the sludge. After acclimatization, the animals were subjected to actual processing. The results are shown in the table below.

上記表にみられるように蟻酸ナトリウム3kg/ポ程度
まではBOD、COD共に十分処理可能であるが、5k
g/rrfを超えると両者共に除去率が低下してくるこ
とが判る。なお、Dの処理は、分解発生する炭酸ナトリ
ウムに対して中和を行わない例であり、経時的にCOD
が蓄積されるために分解が殆んど進行しないことが判る
(COD負荷よりも数値が高いのは塩酸中和停止後5日
月のテ゛−夕に基づくためである)。
As shown in the table above, it is possible to sufficiently treat both BOD and COD up to about 3 kg/pot of sodium formate;
It can be seen that when exceeding g/rrf, the removal rate of both decreases. Process D is an example in which the sodium carbonate that decomposes is not neutralized, and the COD
It can be seen that decomposition hardly progresses due to the accumulation of COD (the value is higher than the COD load because it is based on the data 5 days after hydrochloric acid neutralization was stopped).

(C)、ジメチルアミンの燃焼分解 数に確立されているジメチルアミンの触媒による低温燃
焼法に準じ、下記の条件による燃焼テストを行い、続い
て燃焼後のガスについてアンモニア添加による下記条件
の一酸化窒素の還元脱硝テストを行った。
(C) According to the low-temperature combustion method using dimethylamine catalyst, which has been established for the combustion decomposition number of dimethylamine, a combustion test was conducted under the following conditions, and the gas after combustion was oxidized under the following conditions by adding ammonia. A nitrogen reduction denitrification test was conducted.

〈ジメチルアミン燃焼テスト条件〉 ジメチルアミン濃度    6000mjl!/Nrr
fキャリアーガス温度      50℃キャリアーガ
ス風!      200 I2/分希釈倍数   2
.4倍 燃焼温度   350°C 〈燃焼後のガス〉 ジメチルアミン濃度       20−1/Nrd−
酸化窒素 発注量    1750霞1!/Nイ〈還元
脱硝テスト〉 還  元  温  度       450°Cアンモ
ニア添加量     185 (1+l/Nn(脱硝後
N Ox     l 70mj!/Nrrf(発明特
有の効果) 本発明によれば、廃水中に含有されるジメチルホルムア
ミドを、容易かつ確実にしかも低コストで分解して無害
化あるいは有用化できる極めて実用的な処理方法が提供
される。
<Dimethylamine combustion test conditions> Dimethylamine concentration 6000mjl! /Nrr
fCarrier gas temperature 50℃Carrier gas wind! 200 I2/min dilution factor 2
.. 4 times combustion temperature 350°C <Gas after combustion> Dimethylamine concentration 20-1/Nrd-
Nitric oxide order amount 1750 haze 1! /Ni <Reduction denitrification test> Reduction temperature 450°C Ammonia addition amount 185 (1+l/Nn (NOx after denitrification 70mj!/Nrrf (effect unique to the invention)) According to the present invention, the amount of ammonia added is An extremely practical treatment method is provided that can easily and reliably decompose dimethylformamide at low cost to render it harmless or useful.

しかして、請求項(2)の構成においては上記処理にて
発生するジメチルアミンを完全に無害なガスに分解でき
、また請求項(3)の構成においては同じくジメチルア
ミンを塩として単離でき、これを化生物分解によって効
率よく容易に無害化できるという利点がある。
Therefore, in the structure of claim (2), dimethylamine generated in the above treatment can be completely decomposed into harmless gas, and in the structure of claim (3), dimethylamine can also be isolated as a salt, It has the advantage that it can be efficiently and easily made harmless by chemical biodegradation.

Claims (4)

【特許請求の範囲】[Claims] (1)、ジメチルホルムアミドを含有する廃水にアルカ
リを添加混合し、ジメチルアミンと蟻酸アルカリを生成
させると共に、この液中に空気を吹き込んで上記のジメ
チルアミンを気相中に移行させることを特徴とするジメ
チルホルムアミドの処理方法。
(1) is characterized by adding and mixing an alkali to wastewater containing dimethylformamide to produce dimethylamine and alkali formate, and blowing air into this liquid to transfer the dimethylamine into the gas phase. A method for treating dimethylformamide.
(2)、気相中に移行したジメチルアミンを燃焼させて
窒素ガスと炭酸ガスとに分解する請求項(1)記載のジ
メチルホルムアミドの処理方法。
(2) The method for treating dimethylformamide according to claim (1), wherein the dimethylamine transferred into the gas phase is combusted and decomposed into nitrogen gas and carbon dioxide gas.
(3)、気相中に移行したジメチルアミンを酸性物質に
吸収させる請求項(1)記載のジメチルホルムアミドの
処理方法。
(3) The method for treating dimethylformamide according to claim (1), wherein the dimethylamine transferred into the gas phase is absorbed into an acidic substance.
(4)、副生した蟻酸アルカリを活性汚泥法によって酸
添加による中和を伴いつつ分解する請求項(1)〜(3
)のいずれかに記載のジメチルホルムアミドの処理方法
(4) Claims (1) to (3) in which by-produced alkali formate is decomposed by an activated sludge method with neutralization by addition of acid.
) The method for treating dimethylformamide according to any one of the above.
JP2125193A 1990-05-14 1990-05-14 Treatment of dimethylformamide Granted JPH0418983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125193A JPH0418983A (en) 1990-05-14 1990-05-14 Treatment of dimethylformamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125193A JPH0418983A (en) 1990-05-14 1990-05-14 Treatment of dimethylformamide

Publications (2)

Publication Number Publication Date
JPH0418983A true JPH0418983A (en) 1992-01-23
JPH055556B2 JPH055556B2 (en) 1993-01-22

Family

ID=14904223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125193A Granted JPH0418983A (en) 1990-05-14 1990-05-14 Treatment of dimethylformamide

Country Status (1)

Country Link
JP (1) JPH0418983A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278851A (en) * 1994-09-19 1995-10-24 Tokai Carbon Co Ltd Electrode plate for plasma etching and its production
CN102161534A (en) * 2011-01-26 2011-08-24 上海凯展环保科技有限公司 Device for processing dimethylamine exhaust gas and wastewater
CN103449662A (en) * 2013-08-07 2013-12-18 南京工业大学 Combined treatment method of N, N-dimethylformamide (DMF) wastewater
CN109279733A (en) * 2018-09-05 2019-01-29 滨海三甬药业化学有限公司 A kind of phosphorous, DMF and VOCs comprehensive wastewater processing system and its method
CN110372143A (en) * 2019-07-19 2019-10-25 中节能工程技术研究院有限公司 A kind of landfill leachate materialization deamination preprocess method and equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198596B (en) * 2014-05-21 2016-03-09 江苏德峰药业有限公司 A kind of detection method of propylthiouracil sodium salt dissolvent residual

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278851A (en) * 1994-09-19 1995-10-24 Tokai Carbon Co Ltd Electrode plate for plasma etching and its production
CN102161534A (en) * 2011-01-26 2011-08-24 上海凯展环保科技有限公司 Device for processing dimethylamine exhaust gas and wastewater
CN103449662A (en) * 2013-08-07 2013-12-18 南京工业大学 Combined treatment method of N, N-dimethylformamide (DMF) wastewater
CN109279733A (en) * 2018-09-05 2019-01-29 滨海三甬药业化学有限公司 A kind of phosphorous, DMF and VOCs comprehensive wastewater processing system and its method
CN110372143A (en) * 2019-07-19 2019-10-25 中节能工程技术研究院有限公司 A kind of landfill leachate materialization deamination preprocess method and equipment

Also Published As

Publication number Publication date
JPH055556B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
CN105597535B (en) Containing chlorine, hydrogen chloride, oxynitrides mixing organic exhaust gas processing method
US4168299A (en) Catalytic method for hydrolyzing urea
EP0008488A1 (en) Process of removing nitrogen oxides from gaseous mixtures
CN101602536A (en) A kind of preparation method who is used for the compound oxidant of catalytic oxidation treatment of high concentration waste water
JPH0418983A (en) Treatment of dimethylformamide
CN109879505B (en) Sodium hypochlorite-containing wastewater treatment process
US4971777A (en) Process for the removal of acid components and nitrogen oxides from the waste gases of industrial furnaces
CN105110545B (en) The handling process of double cyanogen waste water in disperse blue 60 production process
KR910007859A (en) Method for producing high purity terephthalic acid
JPH09276881A (en) Treatment of nitrogen compound-containing water
WO2002081379A1 (en) Process for treating waste water containing a nitrous organic components
CZ70897A3 (en) Process of eliminating inorganic compounds of nitrogen
CN111112286A (en) Organic waste treatment method
JPH0694029B2 (en) Ammonia-containing wastewater treatment method
RU2146168C1 (en) Method of cleaning effluent gases from nitrogen oxides
AU711800B2 (en) Nitric acid production and recycle
US3433737A (en) Method of reducing toxicity of waste streams containing organic thiocyanate compounds
KR0158471B1 (en) Heterogeneous catalyst for treating waste water and the method thereof
JP3630352B2 (en) Method for treating urea-containing water
SU1729277A3 (en) Method of nitrogen oxides removal from excreted gases
CN103523978A (en) Method or treating ammonium sulfate wastewater in acrylonitrile process
CN212362046U (en) Phosphorus and sulfur containing high concentration organic wastewater guanite method resourceful treatment device
JPH04131188A (en) Treatment of waste water
JPS5889987A (en) Treatment for purification of waste water after desulfurization and denitration
JP3565637B2 (en) Treatment of wastewater containing ammonia