JPH04188746A - Surface state inspecting device, surface state inspecting system and aligner - Google Patents

Surface state inspecting device, surface state inspecting system and aligner

Info

Publication number
JPH04188746A
JPH04188746A JP31898790A JP31898790A JPH04188746A JP H04188746 A JPH04188746 A JP H04188746A JP 31898790 A JP31898790 A JP 31898790A JP 31898790 A JP31898790 A JP 31898790A JP H04188746 A JPH04188746 A JP H04188746A
Authority
JP
Japan
Prior art keywords
substrate
light
reticle
light shielding
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31898790A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kodachi
小太刀 庸弘
Michio Kono
道生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31898790A priority Critical patent/JPH04188746A/en
Publication of JPH04188746A publication Critical patent/JPH04188746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To prevent an erroneous detection due to scattered lights derived from an end of a substrate by a method wherein shielding means covering a periphery of the substrate is provided so that incidence of a flare may be prevented by beams for one light detecting means with respect to the other light detecting means. CONSTITUTION:A plurality of optical scanning means 100 to 106 concurrently scans a substrate 103 to be detected with a plurality of beams Bu, Bl spaced at a predetermined interval. A plurality of light detecting means 109 to 113 detects lights derived from the substrate 108 corresponding to each beam Bu, Bl and a surface state detecting means 120 detects a surface state of the substrate 103 based on an output of the optical detecting means 109 to 113. A plurality of shielding means 107, 115 covers a periphery of the substrate 108 is provided so that incidence of a flare may be prevented by beams for one of light detecting means 109 to 113 with respect to the other of the light detecting means 109 to 113. Driving means 117 moves the shielding means 115. Thus, an erroneous detection due to scattered lights derived from an end of the substrate can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は表面状態検査装置及びシステム、更にそれを用
いて露光装置に関し、特に半導体製造装置で使用される
レチクルやフォトマスク等の基板上に存在するパターン
欠陥やゴミ等の異物を検出する際に好適な表面状態検査
装置及びシステム、11光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface condition inspection apparatus and system, and further relates to an exposure apparatus using the same, and in particular to an apparatus for inspecting a surface condition on a substrate such as a reticle or a photomask used in semiconductor manufacturing equipment. The present invention relates to a surface condition inspection device and system suitable for detecting existing pattern defects and foreign matter such as dust, and an 11 optical device.

[従来の技術] 一般にIC製造工程においてはレチクル又はフォトマス
ク等の基板上に形成されている露光用の回路パターンを
半導体焼付装置(ステッパー又はマスクアライナ−)に
よりレジストか塗布されたウェハ面上に転写して製造し
ている。この際、基板面上にゴミ等の異物か存在すると
転写する際、異物も同時に転写されてしまいIC製造の
歩留りを低下させる原因となる。
[Prior Art] Generally, in the IC manufacturing process, a circuit pattern for exposure formed on a substrate such as a reticle or a photomask is printed onto a wafer surface coated with resist using a semiconductor printing device (stepper or mask aligner). Manufactured by transcription. At this time, if foreign matter such as dust is present on the substrate surface, the foreign matter will also be transferred at the same time, causing a decrease in the yield of IC manufacturing.

特にレチクルを使用し、ステップアントリピート方法に
より繰り返してウェハ面上に回路パターンを焼付ける場
合、レチクル面上の1個の異物かウニ八全面に焼付けら
れてしまいIC製造の歩留まりを大きく低下させる原因
となる。その為、IC製造過程においては基板上の異物
の存在を検出する事か不可欠てあり、その為に種々の検
査装置か提案されている。第8図はその一例であり、本
出願人による特開昭62−219631号公報に示され
る。この例てはf−〇レンズ2を通過した入射ビーム3
はハーフミラ−4で2分割され、上下に各々設けられた
折り曲げミラー5,10て基板(レチクル)1上の点P
、Qに集光される。レチクル1は回路パターンをバター
ニングされた面か通常下側(lb)て、ガラスブランク
スのままの面が上側(Ia)である。回路欠陥の検査の
場合はパターン面のみビーム照射して検査てきるか、ゴ
ミ等異物の検査の場合はパターン面とブランク面の両面
にビームを入射させる必要かある。f−θレンズの前に
は不図示の回転素子(ポリゴンミラー)かあって1紙面
と直交方向にビームを移動させる。これにより上下のビ
ームはレチクル面を紙面と直交方向に走査する。
In particular, when a reticle is used to repeatedly print a circuit pattern on the wafer surface using the step-and-repeat method, a single foreign object on the reticle surface may be printed on the entire surface of the wafer, which greatly reduces the yield of IC manufacturing. becomes. Therefore, in the IC manufacturing process, it is essential to detect the presence of foreign matter on the substrate, and various inspection devices have been proposed for this purpose. FIG. 8 is an example thereof, which is shown in Japanese Patent Application Laid-Open No. 62-219631 by the present applicant. In this example, the incident beam 3 that has passed through the f-〇 lens 2
is divided into two parts by a half mirror 4, and bending mirrors 5 and 10 provided on the upper and lower sides point to a point P on the substrate (reticle) 1.
, Q. The reticle 1 has a patterned circuit pattern on the lower side (lb), and a glass blank side on the upper side (Ia). When inspecting for circuit defects, it is necessary to irradiate the beam only on the patterned surface, or to inspect for foreign matter such as dust, it is necessary to irradiate the beam on both the patterned surface and the blank surface. In front of the f-theta lens, there is a rotating element (polygon mirror) not shown, which moves the beam in a direction perpendicular to the plane of the paper. As a result, the upper and lower beams scan the reticle surface in a direction perpendicular to the paper surface.

又、レチクル全面を検査する為に図中、S2からS、の
方向にレチクルを移動させる。
Further, in order to inspect the entire surface of the reticle, the reticle is moved in the direction from S2 to S in the figure.

レチクル上の入射点Pから発した散乱光は受光レンズ6
aの作用て視野絞り7a上に結像される。視野絞り7a
は必要な信号光だけを後続するファイバー83を介して
フォトマル9aに導く為のものて、それ以外の余分なフ
レアー光を遮断する。下側の入射点Qから発した散乱光
を検出するための受光系31も上記上側の受光系30の
構成と同しである。ちなみに、パターン面上の回路パタ
ーンとゴミ等異物の分離を行う為に、従来例としては、
レチクル上のビーム走査点に対し空間的に異なる2方向
に設けた受光系の出力比較によって求める方法や、偏光
解消を利用した方法かある。
The scattered light emitted from the incident point P on the reticle is transmitted to the light receiving lens 6.
An image is formed on the field stop 7a due to the action of a. Field aperture 7a
is for guiding only the necessary signal light to the photomultiplex 9a via the subsequent fiber 83, and blocks other unnecessary flare light. The light receiving system 31 for detecting the scattered light emitted from the lower incident point Q also has the same configuration as the upper light receiving system 30 described above. By the way, in order to separate foreign matter such as dust from the circuit pattern on the pattern surface, as a conventional example,
There are two methods: a method of determining the output by comparing the outputs of light receiving systems installed in two spatially different directions with respect to the beam scanning point on the reticle, and a method using depolarization.

[発明か解決しようとしている課B] この様な従来例ては以下の様な場合かあった。以下第9
図で説明する。第9図は、第8図の検査装置において、
レチクルかステージ移動中に、例えば図中右から左へ移
動していく途中、上ビームかレチクルの左エツジに差し
かかった時を示す。この時下ビームはまたレチクルの中
央付近にあって下側の検出系31はレチクル下面からの
信号光を取り込んている最中である。
[Section B to be invented or solved] Examples of such conventional cases include the following. 9th below
This will be explained with a diagram. FIG. 9 shows the inspection device of FIG.
This indicates when the upper beam or the left edge of the reticle is approached while the reticle is moving, for example from right to left in the figure. At this time, the lower beam is also located near the center of the reticle, and the lower detection system 31 is in the process of taking in the signal light from the lower surface of the reticle.

レチクルやマスク等の基板はその端面か粗面であるため
V−ザービームを照射すると、強い散乱光をほぼ全方位
に飛散らせる。この時レチクル上面の受光系30にもこ
のエッチ散乱光は飛込むか、この時点ては上面のビーム
はもはや検査域になく、電気的に信号として取り込まれ
ない。ところか、このエッチ散乱光はレチクル下面の受
光系31にも飛び込む。
Since substrates such as reticles and masks have rough edges, when irradiated with a V-laser beam, strong scattered light is scattered in almost all directions. At this time, either this etch scattered light also enters the light receiving system 30 on the top surface of the reticle, or the beam on the top surface is no longer in the inspection area at this point and is not electrically captured as a signal. However, this etch scattered light also jumps into the light receiving system 31 on the bottom surface of the reticle.

受光光学系31 (30も同様)は、視野絞り7bの作
用により基本的にはレチクル上の発光点Qからの散乱光
(信号光)のみを7オトマルに導く。しかしなから、エ
ッチ散乱光の様に強い散乱光の場合、これか受光光学系
31の鏡筒(図中、斜線部)やレンズのコバ等にあたる
とここ(R)か二次光源となって新たな散乱光を受光光
学系内部て発生する。この散乱光(図中、点線)か視野
絞り7bを通過し、ファイ八−8bを経て7オトマル9
bに到達し光電検知される。
The light-receiving optical system 31 (same as 30) basically guides only the scattered light (signal light) from the light emitting point Q on the reticle to the 7th field by the action of the field stop 7b. However, in the case of strong scattered light such as etch scattered light, if it hits the lens barrel (shaded area in the figure) or the edge of the lens of the light receiving optical system 31, it will become a secondary light source here (R). New scattered light is generated inside the light receiving optical system. This scattered light (dotted line in the figure) passes through the field stop 7b, passes through the Phi 8-8b, and then passes through the 7 otomaru 9.
b and is photoelectrically detected.

ゴミ等の異物の場合、レチクル面上て検知されるべき大
きさはIgmないし、5μmであるか、このような微細
粒子か発する散乱光に比べると、上述したレチクルエッ
チからの散乱光の強さは同等あるいはそれ以上である。
In the case of foreign objects such as dust, the size that should be detected on the reticle surface is Igm or 5 μm, or the intensity of the scattered light from the reticle etching mentioned above is higher than the scattered light emitted by such fine particles. is the same or better.

したかってQ点に異物や欠陥かなくても、あたかもそれ
らか存在するかの様に誤検知してしまう可能性かあった
Therefore, even if there were no foreign objects or defects at point Q, there was a possibility that the sensor would falsely detect them as if they were present.

本発明は上記従来技術に鑑みなされた応用発明てあって
、検査すべき基板の端部からの散乱光による誤検知を防
止すると同時に基板の搬入搬出かスムーズに行われる表
面状態検査装置及びシステム、更にこれを用いた露光装
置の提供を目的とする。
The present invention is an applied invention made in view of the above-mentioned prior art, and includes a surface condition inspection device and system that prevents false detection due to scattered light from the edge of a substrate to be inspected and at the same time smoothly carries out loading and unloading of the substrate. A further object of the present invention is to provide an exposure apparatus using the same.

[課題を解決するための手段] 前記目的を達成するため、本発明の表面状態検査装置て
は、検査すべき基板を所定量隔たった複数のビームて同
時に走査する光学的走査手段と、前記各ビームに対応し
て前記基板からの光を検出する複数の光検出手段と、前
記光検出手段の出力に基づいて基板の表面状態を検出す
る表面状態検出手段と、前記光検出手段の一方に対して
前記光検出手段の他方に関するビームによるフレアの入
射を防止するような前記基板の周縁部を覆う遮光手段と
、前記遮光手段を移動させる駆動手段とを設けている。
[Means for Solving the Problems] In order to achieve the above object, the surface condition inspection apparatus of the present invention includes an optical scanning means for simultaneously scanning a substrate to be inspected with a plurality of beams separated by a predetermined distance, and each of the above-mentioned beams. a plurality of light detection means for detecting light from the substrate in correspondence with the beam; a surface state detection means for detecting a surface state of the substrate based on the output of the light detection means; and a driving means for moving the light shielding means. The light shielding means covers the peripheral edge of the substrate so as to prevent the incidence of flare caused by the beam on the other of the light detection means.

又、本発明の表面状態検査システムては検査すべき基板
を所定部所に搬送する搬送手段と、前記所定部所に搬送
された基板を所定量隔たった複数のビームで同時に走査
する光学的走査手段と、前記各ビームに対応して前記基
板からの光を検出する複数の光検出手段と、前記光検出
手段の出力に基づいて基板の表面状態を検出する表面状
態検出手段と、前記光検出手段の一方に対して前記光検
出手段の他方に関するビームによるフレアの入射を防止
するような前記基板の周縁部を覆う遮光手段と、前記遮
光手段を前記搬送手段の搬送動作に対応して移動させる
駆動手段とを設けている。
The surface condition inspection system of the present invention also includes a conveying means for conveying a substrate to be inspected to a predetermined location, and an optical scanning device for simultaneously scanning the substrate conveyed to the predetermined location with a plurality of beams separated by a predetermined distance. means, a plurality of light detection means for detecting light from the substrate corresponding to each of the beams, surface state detection means for detecting a surface state of the substrate based on the output of the light detection means, and the light detection means. a light shielding means that covers the peripheral edge of the substrate so as to prevent flare from being caused by a beam related to the other of the light detection means to be incident on one of the means; and the light shielding means is moved in response to the conveyance operation of the conveyance means. A driving means is provided.

又、本発明の露光装置では、所定パターンの転写を行う
ための露光手段と、前記転写に関与する基板を所定部所
に搬送する搬送手段と、前記所定部所に搬送された基板
を所定量隔たった複数のビームて同時に走査する光学的
走査手段と、前記各ビームに対応して前記基板からの光
を検出する複数の光検出手段と、前記光検出手段の出力
に基づいて基板の表面状態を検出する表面状態検出手段
と、前記光検出手段の一方に対して前記光検出手段の他
方に関するビームによるフレアの入射を防止するような
前記基板の周縁部を覆う遮光手段と、前記遮光手段を前
記搬送手段の搬送動作に対応して移動させる駆動手段と
を設けている。
Further, the exposure apparatus of the present invention includes an exposure means for transferring a predetermined pattern, a transport means for transporting the substrate involved in the transfer to a predetermined portion, and a predetermined amount of the substrate transported to the predetermined portion. an optical scanning means that simultaneously scans a plurality of separated beams; a plurality of light detection means that detects light from the substrate in correspondence with each of the beams; and a surface state of the substrate based on the output of the light detection means. a surface state detection means for detecting a surface condition of the substrate; a light shielding means for covering a peripheral edge of the substrate to prevent flare from a beam related to the other of the light detection means from being incident on one of the light detection means; A driving means is provided for moving in response to the transporting operation of the transporting means.

[実施例] 第1図は本発明の第1の実施例を示す。レーザー100
から発したビームはビームエキスパンダー101の作用
で光束を広げられ、ポリゴンミラー102に入射する。
[Embodiment] FIG. 1 shows a first embodiment of the present invention. laser 100
The beam emitted from the polygon mirror 102 is expanded in luminous flux by the action of the beam expander 101 and is incident on the polygon mirror 102 .

ポリゴンミラーは紙面と直交する面内て回転する。ポリ
ゴンミラー102て反射したビームはf−θレンズ10
3に入射する。このレンズの作用で収れん光束となった
ビームはハーフミラ−104て上下に2分割され光束B
u、B文−各々折り曲げミラー105,106を経て、
レクチル108の上面と下面に集光する。ポリゴンミラ
ーの回転に伴って上下のビーム(Bu、Bu)はレチク
ル面を紙面と直交する方向に走査する。レチクル面上の
検査域を二次元的に検査する為に、このレーザー走査と
同期してレチクル異物検査ステージ1】4を紙面内で矢
印、/の方向に移動させる。以上の検査機構において、
レチクル上に異物等かあった時の検出光学系を以下に説
明する。レチクル上面と下面の各検出系は基本的には同
し構成である。受光レンズ】09はレチクル面上のビー
ム集光点を物点とし、これを視野絞り110上に結像さ
せる。
The polygon mirror rotates in a plane perpendicular to the plane of the paper. The beam reflected by the polygon mirror 102 is sent to the f-θ lens 10
3. The beam, which has become a convergent beam due to the action of this lens, is divided into upper and lower halves by a half mirror 104, and the beam B
U, B sentences - through folding mirrors 105 and 106 respectively,
The light is focused on the upper and lower surfaces of the reticle 108. As the polygon mirror rotates, the upper and lower beams (Bu, Bu) scan the reticle surface in a direction perpendicular to the paper surface. In order to two-dimensionally inspect the inspection area on the reticle surface, the reticle foreign matter inspection stage 1]4 is moved in the direction of the arrow, / in the plane of the paper in synchronization with this laser scanning. In the above inspection mechanism,
The detection optical system when there is a foreign object on the reticle will be described below. The detection systems for the upper and lower surfaces of the reticle basically have the same configuration. The light-receiving lens 09 uses the beam condensing point on the reticle surface as an object point, and forms an image of this onto the field diaphragm 110.

これによってレチクル上の異物等か発する散乱光束(信
号光)だけを選択的にファイバー111を経てフォトマ
ル112に導く。フォトマルはこれを光電変換し、この
信号を後続するCPU120が処理することにより異物
の存在かわかる。不図示の検出器より各ビームのレチク
ル上走査位置はモニタされている。この走査位置とフォ
トマルの検出結果によって異物のレチクル上存在位置を
CP U 120か検出する。113は検出光学系の鏡
筒てあって、信号光以外の余分な光束を遮断する為のも
のである。115,107は遮光板、111′はレチク
ル108に取り付けられたアルミ枠、116は遮光板回
転軸、117はシリンダーである。
As a result, only the scattered light beam (signal light) emitted by a foreign object or the like on the reticle is selectively guided to the photomultiplex 112 via the fiber 111. The photomultiplier photoelectrically converts this signal, and the subsequent CPU 120 processes this signal to determine whether there is a foreign object. The scanning position of each beam on the reticle is monitored by a detector (not shown). The CPU 120 detects the position of the foreign object on the reticle based on the scanning position and the photomultiple detection result. Reference numeral 113 denotes a lens barrel of the detection optical system, which is used to block extra light flux other than signal light. 115 and 107 are light shielding plates, 111' is an aluminum frame attached to the reticle 108, 116 is a shaft of rotation of the light shielding plate, and 117 is a cylinder.

レチクルステージ】14には前述の遮光板1】5゜10
7を取り付けている。第2図はレチクル108と遮光板
115,107とを下ビームBl側から見たBu)の走
査方向に沿って平行に設けられ、各々、下ビームと上ビ
ームとかレチクルのエッチ(ビーム走査方向に沿う2辺
)に当たらない様にステージ114に固定されている。
Reticle stage] 14 has the aforementioned light shielding plate 1] 5° 10
7 is installed. In FIG. 2, a reticle 108 and light shielding plates 115, 107 are provided parallel to each other along the scanning direction of the lower beam (Bu) when viewed from the lower beam Bl side, and the lower beam, upper beam, and reticle etching (in the beam scanning direction) are arranged parallel to each other. It is fixed to the stage 114 in such a way that it does not hit the two sides (along the two sides).

第1図は下ビームB!;Lかレチクルの左エッチに当た
る位置にレチクルステージか移動した状態の図である。
Figure 1 is lower beam B! ;L is a diagram showing a state in which the reticle stage has been moved to a position corresponding to the left edge of the reticle.

このとき遮光板115の作用によりビームはエッチ部分
を照射しない。
At this time, the beam does not irradiate the etched portion due to the action of the light shielding plate 115.

下ビームBlかもし遮光板115なしてレチクルの左エ
ッチにあたると、前述の従来例で述べたようにレチクル
上面検出系に光かとし込んて光電出力を発生する。この
時、上ビームBuはまたレチクルの検査域108aの中
央部にあるのて、あたかもこのビームライン上に異物か
あるかの様な誤検知をしてしまう0本実施例ては遮光板
】15の働きによってこの問題を解決している。
When the lower beam Bl hits the left edge of the reticle through the light shielding plate 115, light enters the reticle upper surface detection system and generates a photoelectric output, as described in the prior art example. At this time, since the upper beam Bu is also located at the center of the inspection area 108a of the reticle, erroneous detection may occur as if there were a foreign object on this beam line. This problem is solved by the function of

第1図の装置において、上ビームBuかレチクル右エッ
チに当たる位置にレチクルステージか移動した状態のと
きは遮光板107の作用によりど−ムBuはエッチ部を
照射しない。この時、下ビームBlはレチクル面検査城
の中央部にあるのてもし、上ビームBuか右エッチて散
乱光を発していれば前述の従来技術のようにレチクル下
面の検出系て受光され、誤信号となる。本発明の遮光板
107はこの問題を解決している。尚、上記実施例ては
、入射ビーム(Bu。
In the apparatus shown in FIG. 1, when the reticle stage is moved to a position where the upper beam Bu hits the right etch of the reticle, the beam Bu does not irradiate the etched part due to the action of the light shielding plate 107. At this time, if the lower beam Bl is located at the center of the reticle surface inspection castle, if the upper beam Bu etches on the right side and emits scattered light, it will be received by the detection system on the lower surface of the reticle as in the prior art described above. It becomes a false signal. The light shielding plate 107 of the present invention solves this problem. Incidentally, in the above embodiment, the incident beam (Bu.

Bf)はレチクルに対して劃めに入射しているか、垂直
入射ても良い。
Bf) may be incident on a section of the reticle or may be incident perpendicularly.

第3図、第4図は第1図て示した光学系を含めた本実施
例の斜視図である0本図ては検出光学系や遮光板107
等は簡略化の為省略しである。図中200はレチクルを
収納する為のレチクルカセット、201はレチクルカセ
ットを数枚又は数十枚収容しているレチクルライブラリ
ー、202はレチクル搬送用ハント、203は直線ガイ
ド、204はハント202を直線ガイド203に沿って
駆動する為のモータ送り機構、205はレチクルステー
ジ114用の直進ガイド、206はレチクルステージ1
14を直進ガイド205に沿って駆動する為のモータ送
り機構である。尚ハント202モータ送り機構204.
206及びシリンダー117の制御はCP U 120
て行っている1次に動作を説明する。レチクルライブラ
リー201の任意のレチクルカセットから異物検査すべ
き任意のレチクル108をレチクル搬入搬出用のハント
202かレチクルケース200から取り出す。レチクル
搬入搬出用のハンド202かレチクルカセット200か
らレチクル108を取り出す動作は以下の如である。レ
チクル搬入搬出用ハント202か第3図で2点鎖線の方
向を向いた状態でカセット200に向かって直進してい
く。直進動作についてはモータ送り機構204により直
線ガイド203に沿って行われる。カセット200内て
レチクル搬入搬出ハント202がレチクル108を保持
後ハントは元の位!i(2点鎖線部)にもどる、その位
置でレチクル搬入搬出ハントは矢印方向に180゜旋回
しレチクル異物検査ステージ1】4との受は渡しの方向
に向く。モータ送り機構204によりレチクル搬入搬出
用ハント202は次に前述したレチクルライブラリ一方
向への動きとは逆方向に駆動されレチクル異物検査ステ
ージ114とのレチクル108の受は渡しを行なう。こ
の際遮光板115か第1図〜第3図て示す様にレチクル
のエッチを覆う位置にあった場合、ハンド202の一部
分とこの遮光板か干渉、即ちぶつかりてしまい、ステー
ジ114に搬送不能となってしまう。特に最近ては第5
図に示すようにレチクル108への異物付着を防止する
ためにニトロセルロース膜111″をアルミ枠】11に
貼りつけた異物付着防止膜(以後ペリクルと呼ぶ)付レ
チクルを使用する場合が大半を占めている。ペリクル付
レチクルにおいてもペリクル貼り付は時にレチクルに異
物が付着していないか又はペリクル面上においても大き
な異物が付着していないか等の検査は必要とされている
。現在ては前記ペリクルの種類は多種存在しており、す
べてのペリクル付レチクルの異物検査を行なえる装置に
対応するとなると前述したレチクル搬入搬出ハンドや異
物検査ステージのレチクル保持部の形状はかなり限定さ
れたものとなりレチクル搬入搬出用ハント202と遮光
板115との干渉は避けられない。第4図は前述の如く
ハント202かステージ114とレチクルの受は渡しを
行なうべく、ステージ114の方向へ移動を開始する直
前の状態を示している。この時シリンダー117は遮光
板115を回転軸116を中心として回転させ、図の様
な状態、即ち遮光板115かハント202の搬送経路の
外側に来る様にして移動するハンド202との干渉を回
避した状態になっている。この様に遮光板115を遮光
位置と回避位置との間て可動とした事により、ステージ
114へのレチクル108の搬入かスムーズにできる。
3 and 4 are perspective views of this embodiment including the optical system shown in FIG.
etc. are omitted for brevity. In the figure, 200 is a reticle cassette for storing reticles, 201 is a reticle library that stores several or dozens of reticle cassettes, 202 is a hunt for transporting reticles, 203 is a linear guide, and 204 is a guide for moving the hunt 202 in a straight line. A motor feeding mechanism for driving along the guide 203, 205 a linear guide for the reticle stage 114, and 206 a reticle stage 1
14 along the linear guide 205. Furthermore, Hunt 202 motor feed mechanism 204.
206 and the cylinder 117 are controlled by the CPU 120.
We will explain the primary operation performed. Any reticle 108 to be inspected for foreign matter is taken out from any reticle cassette in the reticle library 201 either from the reticle case 200 or from the reticle carry-in/out hunt 202 . The operation of taking out the reticle 108 from the reticle cassette 200 using the reticle loading/unloading hand 202 is as follows. The reticle loading/unloading hunt 202 moves straight toward the cassette 200 while facing in the direction of the two-dot chain line in FIG. The straight movement is performed along the linear guide 203 by the motor feed mechanism 204. After the reticle loading/unloading hunt 202 holds the reticle 108 in the cassette 200, the hunt returns to its original position! Return to i (double-dashed line). At that position, the reticle loading/unloading hunt turns 180 degrees in the direction of the arrow, and the reticle foreign object inspection stage 1]4 is oriented in the transfer direction. The reticle loading/unloading hunt 202 is then driven by the motor feed mechanism 204 in a direction opposite to the one-way movement of the reticle library described above, and the reticle 108 is transferred to and from the reticle foreign object inspection stage 114. At this time, if the light-shielding plate 115 is in a position covering the etching of the reticle as shown in FIGS. 1 to 3, a part of the hand 202 and this light-shielding plate will interfere, that is, collide with each other, making it impossible to transport the reticle to the stage 114. turn into. Especially recently, the 5th
As shown in the figure, in most cases a reticle with a foreign matter adhesion prevention film (hereinafter referred to as a pellicle) is used, in which a nitrocellulose film 111'' is attached to an aluminum frame 11 to prevent foreign matter from adhering to the reticle 108. Even in the case of a reticle with a pellicle, it is sometimes necessary to check whether there is a foreign object attached to the reticle or whether there is a large foreign object attached to the pellicle surface.Currently, the above-mentioned There are many types of pellicles, and if all types of pellicle-equipped reticles are to be compatible with a device that can perform foreign object inspection, the shapes of the reticle loading/unloading hand and the reticle holding part of the foreign object inspection stage mentioned above are quite limited, and the reticle Interference between the import/export hunt 202 and the light shielding plate 115 is unavoidable.As mentioned above, FIG. At this time, the cylinder 117 rotates the light shielding plate 115 around the rotation axis 116, and the hand moves so that the light shielding plate 115 is outside the transport path of the hunt 202, as shown in the figure. 202. By making the light-shielding plate 115 movable between the light-shielding position and the avoidance position in this way, the reticle 108 can be smoothly carried onto the stage 114.

この状態てレチクル搬入搬出ハント202かステージへ
レチクル108を搬送する。その後レチクルステージ1
14はレチクル搬入搬出ハント202からレチクル10
8を受は取りレチクル搬入搬出ハントは異物検査ステー
ジから逃げる。レチクル受は取り後ステージ1】4はレ
チクル異物検査を開始する前にシリーダー117の推力
により遮光板回転軸116を中心に回転し、遮光板11
5は第3図に示す状態となり、モータ送り機構206が
ステージ114を駆動して前述の様に異物検査が行なわ
れる。検査終了後異物検査ステージは再びS3図、第4
図に示したレチクル受は渡し位置にもどる。レチクル搬
出時にはレチクル搬入時とは逆の動作となり、遮光板1
15はシリンダー117により駆動され再び第4図に示
した状態となる。レチクル搬入搬出ハンド202がレチ
クル108を受は取りに入り、ステージ114からレチ
クル搬出する。以後法のレチクルを検査する場合には再
度同じ動作をくり返す。
In this state, the reticle 108 is transported to the reticle loading/unloading hunt 202 or stage. Then reticle stage 1
14 is the reticle 10 from the reticle loading/unloading hunt 202
8 is picked up, the reticle is carried in and carried out, and Hunt escapes from the foreign object inspection stage. After removing the reticle holder, the stage 1]4 rotates around the light-shielding plate rotation axis 116 by the thrust of the series leader 117 before starting the reticle foreign object inspection.
5 is in the state shown in FIG. 3, the motor feed mechanism 206 drives the stage 114, and foreign matter inspection is performed as described above. After the inspection, the foreign object inspection stage returns to Figure S3, No. 4.
The reticle holder shown in the figure returns to the transfer position. When carrying out the reticle, the operation is opposite to that when carrying in the reticle, and the light shielding plate 1
15 is driven by the cylinder 117 and returns to the state shown in FIG. 4. A reticle carry-in/take-out hand 202 picks up the reticle 108 and carries it out from the stage 114. Thereafter, when inspecting the reticle, the same operation is repeated again.

以上の動作をCP U 120の制御フローチャートと
して第6図に示す。
The above operation is shown in FIG. 6 as a control flowchart of the CPU 120.

遮光板115はステージ114がレチクル受は渡し位置
にある間ずっと回避位置(第4図に示す状態)にあって
もよい。又、必要に応して、遮光板107も同様に駆動
系を付けて遮光板115と同様の動作をさせても良い。
The light shielding plate 115 may be in the avoidance position (the state shown in FIG. 4) while the stage 114 is in the reticle transfer position. Furthermore, if necessary, the light shielding plate 107 may also be provided with a drive system to operate in the same manner as the light shielding plate 115.

第7図は本発明の他の実施例を示す構成図で、本実施例
ては検査装置全体か半導体焼付装置内に組込まれている
FIG. 7 is a block diagram showing another embodiment of the present invention, in which the entire inspection device is incorporated into a semiconductor printing device.

301はエキシマレーザ−のような遠紫外光源てあり、
302は照明系ユニットであって、レチクル108(図
ではペリクル枠111′を省略)を上部から均一に被検
査領域全域を同時(−括)にし−かも所定のNA(開口
数)で照明する働きをもつ。
301 is a far ultraviolet light source such as an excimer laser,
Reference numeral 302 denotes an illumination system unit that illuminates the reticle 108 (the pellicle frame 111' is omitted in the figure) from above uniformly over the entire area to be inspected simultaneously (indicated by -) and at a predetermined NA (numerical aperture). have.

309はし升クルパターンをウェハ310上に転写する
為の超高解像度レンズ系(若しくはミラー系)てあり、
焼付時には、ウェハは移動ステージ311のステップ送
りに従って1シヨツト毎ずらして露光されてい<、30
0は露光に先立ってレチクルとウェハを位置合わせする
為のアライメント光学系であり、最低1つのレチクル観
察用顕微鏡系をもっている。
309 has an ultra-high resolution lens system (or mirror system) for transferring the square pattern onto the wafer 310,
At the time of printing, the wafer is exposed by shifting one shot at a time according to the step feed of the moving stage 311.
0 is an alignment optical system for aligning the reticle and wafer prior to exposure, and has at least one microscope system for observing the reticle.

313か異物等検査ユニットであり、第1図の構成要件
をすべてとモータ送り機構206、ガイド205を含め
ている。このユニットは、レチクルがライブラリー20
1内のカセットからハンド202等(tJIJ7図では
不図示)により引き出され露光位置(図中E、P)にセ
ットされる前にレチクルの異物検査を行なうものである
。ユニット313から露光位置までの搬送はハント20
2を使用しても公知の他の搬送手段を使用しても良い。
313 is a foreign matter inspection unit, which includes all the constituent elements shown in FIG. 1, a motor feed mechanism 206, and a guide 205. This unit has a reticle of library 20.
The reticle is inspected for foreign matter before being pulled out from the cassette in the reticle 1 by a hand 202 or the like (not shown in Figure tJIJ7) and set at the exposure position (E, P in the figure). Transport from unit 313 to exposure position is carried out by Hunt 20.
2 or other known conveying means may be used.

コントローラ318はステッパーの基本動作である、ア
ライメント、露光、ウェハのステップ送りのシーケンス
を制御する。
A controller 318 controls the basic operations of the stepper, such as alignment, exposure, and wafer step feeding sequences.

以上の構成において、ユニット313における異物等の
検査の原理、動作については前述の実施例と同一なので
省略する。
In the above configuration, the principle and operation of inspecting foreign objects etc. in the unit 313 are the same as those of the previous embodiment, and will therefore be omitted.

[発明の効果] 以上説明したように、基板に対し#i数ど−ムを同時に
入射させ、これと対応する複数の検出光学系で基板の表
面状態を検査する装置において、1つの検出光学系に対
して、他の検出系のビームによる余分なフレアー光の入
射か防止され、その結果検査の信頼性か格段に向上する
と同時に検査位置への基板の搬入量かスムーズに行なえ
る。
[Effects of the Invention] As explained above, in an apparatus that simultaneously makes #i number beams incident on a substrate and inspects the surface state of the substrate using a plurality of corresponding detection optical systems, only one detection optical system is used. On the other hand, the incidence of extra flare light due to beams from other detection systems is prevented, and as a result, the reliability of inspection is greatly improved, and at the same time, the amount of substrates carried into the inspection position can be carried out smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の光学系構成図。 第2図は第1図のレチクルステージの平面図、 第3図、第4図は第1図の装置の構成斜視図、 s5図はペリクル付レチクルの説明図、第6図は第1図
の装置の制御フローチャート第7図は本発明の第2の実
施例の説明図、第8図は従来例の構jiIi、図、 第9図は従来例の問題点の説明図である。 図中 100・・・レーザー 102−・・ポリゴンミラー 104−・・ハーフミラ− 107・・・遮光板 108−・・レチクル 112−7オトマル 114−・・異物検査ステージ 115−・・可動遮光板 117−・・シリンダー 120・・・CPU 200−・・レチクルカセット 201−・・レチクルライブラリー 2Q2−・・レチクル搬入搬出用ハント301−・・遠
紫外光源 309・・・レンズ系 310・・・ウェハ である。 出願人 キャノン株式会社「7−1 代理人  丸  島  儀  −Z  ″−ビII  
   西  山  恵  三    〉。 1− 、L−一;− 8区 デb
FIG. 1 is a configuration diagram of an optical system according to a first embodiment of the present invention. Figure 2 is a plan view of the reticle stage in Figure 1, Figures 3 and 4 are perspective views of the configuration of the device in Figure 1, Figure s5 is an explanatory diagram of the reticle with pellicle, and Figure 6 is the same as in Figure 1. Control flowchart of the device FIG. 7 is an explanatory diagram of the second embodiment of the present invention, FIG. 8 is a diagram showing the structure of a conventional example, and FIG. 9 is an explanatory diagram of problems in the conventional example. In the figure, 100...Laser 102--Polygon mirror 104--Half mirror 107-- Light shielding plate 108--Reticle 112-7 Otomaru 114--Foreign object inspection stage 115--Movable light shielding plate 117- ... Cylinder 120 ... CPU 200 - ... Reticle cassette 201 - ... Reticle library 2Q2 - ... Hunt 301 for carrying in and out reticle - ... Far ultraviolet light source 309 ... Lens system 310 ... Wafer . Applicant: Canon Co., Ltd. “7-1 Agent: Gi Marushima -Z”-B II
Keizo Nishiyama〉. 1-, L-1;- 8th ward de b

Claims (1)

【特許請求の範囲】 1)検査すべき基板を所定量隔たった複数のビームで同
時に走査する光学的走査手段と、前記各ビームに対応し
て前記基板からの光を検出する複数の光検出手段と、前
記光検出手段の出力に基づいて基板の表面状態を検出す
る表面状態検出手段と、前記光検出手段の一方に対して
前記光検出手段の他方に関するビームによるフレアの入
射を防止するような前記基板の周縁部を覆う遮光手段と
、前記遮光手段を移動させる駆動手段とを有することを
特徴とする表面状態検査装置。 2)前記遮光手段は前記複数の光検出手段それぞれに対
して設けられることを特徴とする特許請求の範囲第1項
記載の表面状態検査装置。 3)前記駆動手段は基板を基板検査部所に所定の搬入経
路で搬入する際に前記遮光手段の少なくとも一つを前記
搬入経路外へ移動させることを特徴とする特許請求の範
囲第2項の表面状態検査装置。 4)検査すべき基板を所定部所に搬送する搬送手段と、
前記所定部所に搬送された基板を所定量隔たった複数の
ビームで同時に走査する光学的走査手段と、前記各ビー
ムに対応して前記基板からの光を検出する複数の光検出
手段と、前記光検出手段の出力に基づいて基板の表面状
態を検出する表面状態検出手段と、前記光検出手段の一
方に対して前記光検出手段の他方に関するビームによる
フレアの入射を防止するような前記基板の周縁部を覆う
遮光手段と、前記遮光手段を前記搬送手段の搬送動作に
対応して移動させる駆動手段とを有することを特徴とす
る表面状態検査システム。 5)所定パターンの転写を行うための露光手段と、前記
転写に関与する基板を所定部所に搬送する搬送手段と、
前記所定部所に搬送された基板を所定量隔たった複数の
ビームで同時に走査する光学的走査手段と、前記各ビー
ムに対応して前記基板からの光を検出する複数の光検出
手段と、前記光検出手段の出力に基づいて基板の表面状
態を検出する表面状態検出手段と、前記光検出手段の一
方に対して前記光検出手段の他方に関するビームによる
フレアの入射を防止するような前記基板の周縁部を覆う
遮光手段と、前記遮光手段を前記搬送手段の搬送動作に
対して移動させる駆動手段とを有することを特徴とする
露光装置。
[Scope of Claims] 1) Optical scanning means for simultaneously scanning a substrate to be inspected with a plurality of beams separated by a predetermined distance; and a plurality of light detection means for detecting light from the substrate in correspondence with each of the beams. surface state detection means for detecting the surface state of the substrate based on the output of the light detection means; A surface condition inspection apparatus comprising: a light shielding means for covering the peripheral edge of the substrate; and a driving means for moving the light shielding means. 2) The surface condition inspection apparatus according to claim 1, wherein the light blocking means is provided for each of the plurality of light detecting means. 3) The driving means moves at least one of the light shielding means out of the carrying-in route when carrying the board into the board inspection department along a predetermined carrying-in route. Surface condition inspection device. 4) a transport means for transporting the board to be inspected to a predetermined location;
an optical scanning means for simultaneously scanning the substrate transported to the predetermined location with a plurality of beams separated by a predetermined distance; a plurality of light detection means for detecting light from the substrate in correspondence with each of the beams; surface condition detection means for detecting the surface condition of the substrate based on the output of the photodetection means; A surface condition inspection system comprising: a light shielding means for covering a peripheral edge; and a driving means for moving the light shielding means in response to the transporting operation of the transporting means. 5) an exposure means for transferring a predetermined pattern; and a transport means for transporting the substrate involved in the transfer to a predetermined location;
an optical scanning means for simultaneously scanning the substrate transported to the predetermined location with a plurality of beams separated by a predetermined distance; a plurality of light detection means for detecting light from the substrate in correspondence with each of the beams; surface condition detection means for detecting the surface condition of the substrate based on the output of the photodetection means; An exposure apparatus comprising: a light shielding means for covering a peripheral portion; and a driving means for moving the light shielding means relative to the transporting operation of the transporting means.
JP31898790A 1990-11-21 1990-11-21 Surface state inspecting device, surface state inspecting system and aligner Pending JPH04188746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31898790A JPH04188746A (en) 1990-11-21 1990-11-21 Surface state inspecting device, surface state inspecting system and aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31898790A JPH04188746A (en) 1990-11-21 1990-11-21 Surface state inspecting device, surface state inspecting system and aligner

Publications (1)

Publication Number Publication Date
JPH04188746A true JPH04188746A (en) 1992-07-07

Family

ID=18105228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31898790A Pending JPH04188746A (en) 1990-11-21 1990-11-21 Surface state inspecting device, surface state inspecting system and aligner

Country Status (1)

Country Link
JP (1) JPH04188746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581348A (en) * 1993-07-29 1996-12-03 Canon Kabushiki Kaisha Surface inspecting device using bisected multi-mode laser beam and system having the same
JP2010103258A (en) * 2008-10-22 2010-05-06 Sumco Corp Method of measuring quality of semiconductor wafer
JP2010541039A (en) * 2007-09-22 2010-12-24 ダイナミック マイクロシステムズ セミコンダクター イクイップメント ゲーエムベーハー Method and apparatus for reading wafer ID simultaneously

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581348A (en) * 1993-07-29 1996-12-03 Canon Kabushiki Kaisha Surface inspecting device using bisected multi-mode laser beam and system having the same
JP2010541039A (en) * 2007-09-22 2010-12-24 ダイナミック マイクロシステムズ セミコンダクター イクイップメント ゲーエムベーハー Method and apparatus for reading wafer ID simultaneously
US10096500B2 (en) 2007-09-22 2018-10-09 Brooks Automation Germany Gmbh Simultaneous wafer ID reading
JP2010103258A (en) * 2008-10-22 2010-05-06 Sumco Corp Method of measuring quality of semiconductor wafer

Similar Documents

Publication Publication Date Title
US4999511A (en) Surface state inspecting device for inspecting the state of parallel first and second surfaces
JP4754924B2 (en) Exposure equipment
US4716299A (en) Apparatus for conveying and inspecting a substrate
KR100945918B1 (en) Method and apparatus for inspecting defects on mask
JP5144992B2 (en) Exposure equipment
JP4886549B2 (en) Position detection apparatus and position detection method
JP3183046B2 (en) Foreign particle inspection apparatus and method for manufacturing semiconductor device using the same
EP0444937B1 (en) Exposure apparatus
JPS6333834A (en) Surface state inspecting apparatus
US6445450B1 (en) Code reading device and method with light passing through the code twice, an exposure apparatus and a device manufacturing method using the code reading
KR20080021567A (en) Exposure apparatus and device manufacturing method
JPH075115A (en) Surface condition inspection apparatus
KR20030096400A (en) Arrangement and method for detecting defects on a substrate in a processing tool
JPH0815169A (en) Foreign matter inspection apparatus and manufacture of semiconductor device using the same
TW564198B (en) Device for exposure for belt-shaped work having zigzag correction mechanism
US5742386A (en) Apparatus for detecting foreign matter on a substrate, and an exposure apparatus including the same
JP3048168B2 (en) Surface condition inspection apparatus and exposure apparatus having the same
JPH04188746A (en) Surface state inspecting device, surface state inspecting system and aligner
JP2003186201A (en) Exposure device equipped with foreign matter inspecting function and foreign matter inspecting method of the same device
JPH0462457A (en) Surface state inspecting device
JP2007123360A (en) Fall detector and exposure apparatus
JP2004165218A (en) Aligner
JP2024076154A (en) MASK STORAGE, LITHOGRAPHY APPARATUS, INSPECTION METHOD, AND PRODUCTION METHOD OF ARTICLE
JPH0815167A (en) Foreign matter inspection apparatus and manufacture of semiconductor device using the apparatus
JP2720873B2 (en) Positioning apparatus and method